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Performance and Complexity 
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Shannon showed that it was possible to achieve arbitrarily low error rates at any data rate less than channel capacity. By 
the early Sixties, it had been realized that the real problem was how to achieve reasonable error rates with acceptable decoding 
complexity at data rates anywhere near capacity. The author's research has been primarily motivated by this problem [l]-[22]. 

This lecture will offer an account of some of his adventures in this pursuit, and some preliminary conclusions. 
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The purpose of this talk is twofold: to give an elementary 
and concrete introduction to symbolic dynamics and to discuss 

two applications to coding problems. 

We will begin with a brief discussion of the origins of sym- 

bolic dynamics going back to the work of Hadamard in 1898. 
The rough idea is that symbolic dynamics provides a model 

for the orbits of a classical dynamical system via a space of 

sequences. Next we will introduce the basic concepts of sym- 
bolic dynamics, emphasizing sliding block codes. We will sur- 
vey some of the fundamental problems, solved and unsolved, 

in the subject. Then we will see how work on these problems 
has led to coding applications in two different settings: 

1. The state splitting algorithm for constructing en- 
coders/decoders adapted to input-constrained channels 

such as magnetic and optical recording channels. 

2. An analysis of a class of spaces with homogeneity 
properties that naturally generalize convolutional codes, 

group codes [3], geometrically uniform codes [2], and or- 
bit systems [6]. 

For introductory reading on symbolic dynamics and its ap- 

plications, see the monograph [1], the textbook [4], and the 
article [6](§IV). For a tutorial on the state spEtting algorithm 

see [5]. 
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Abstract — An important class of universal encoders 
is the one where the encoder is fed with two inputs: 

a) The incoming string of data to be compressed. 
b) A "training sequence" that consists of the last N 

data symbols that have been processed (i.e. a Sliding 
Window algorithm). 

We consider Fixed-to-Variable universal encoders 
that noiselessly compress blocks of some fixed length 
and derive universal bounds on the rate of approach 
of the compression to the /-th order (per letter) en- 
tropy H{X[) or to the smaller conditional entropy 
H(X*~k\X?_k+1) as a function of £ and of the length 
N of the training sequence X?_N+1. 

We describe non-asymptotic uniform bounds on the per- 

formance of data-compression algorithms in cases where the 

length N of the training sequence ("history") that is avail- 

able to the encoder is not large enough so as to yield the 

ultimate compression, namely the entropy of the source. 

Two characteristic ultimate goals are considered: The /-th 

order entropy H(X(), and the associated conditional en- 

tropy H(X1~ \X_k+1). The bounds are based on classical 

information-theoretic convexity arguments. Nevertheless, it 

is demonstrated that convexity arguments that work for one 

case are totally useless for the other and vice versa. Fur- 

thermore, these classical convexity arguments, when properly 

used, lead to efficient universal data compression algorithms 

for each of the two cases. For the sake of simplicity we confine 

our attention to binary stationary ergodic sources. 

The first case to be considered is the one where we would 

like to find an upper bound on the length of a training se- 

quence needed in order to guarantee that any source in the 

given class will yield a compression close to its /-th order en- 

tropy He, and to derive a uniform bound on the rate of ap- 

proach to this entropy as a function of £ and N. 

"Intuition" tells us to use the "plug-in" method: namely, 

given a training sequence of length N, find the relative fre- 

quency Q(Xi)e of all /-vectors in it . Find the appropriate 

Huffman code and use it to encode the incoming /-blocks. The 

expected compression will be -ElogQ(Xf). Clearly, by con- 

vexity, -ElogQ(Xi) > £H(X*) and eventually converges to 

it. Alas, the convergence is not uniform! 

Let the training sequence be denoted by X*^LN+1 and let: 

iV(X°N+1|Xf)=smallest  i  >  1 such that Xljj-  =  X{.    If 

no such i can be found, N(X°_N+1\Xf) = N. It then fol- 

lows from Kac's Lemma [1] that there exists a universal algo- 

rithm (a variant of the LZ algorithm ) with a length function 

L{Xi\Xa_N+l) which is roughly equal to logN(X°_N+1\X$) 

when N(X°_N+1\Xi) ^ N or to I otherwise, such that 

EL{Xf\Xe_N+1) < £[H{Xf) + 0(log £/£) + S + 2~6t] where 8 is 

some arbitrarily small positive number. This uniform bound 

holds if N > 2<B+^ where B satisfies: P[Xi : X{ < 2~m] < 

6. 

But why be satisfied with achieving H(Xf) and not try to 

aim at some smaller conditional entropy where the condition- 

ing is on some suffix of the training sequence X*Ljv+i? 

Our second goal is to achieve a universal compression that 

is close to H(X*~k\X°_k+1) where 1 < k < £ - 1. It is now 

assumed that a certain mixing condition is satisfied [2]. By 

Kac's lemma [1] and by convexity, (£ - k)H(Xl~k\X?_k+1) 

> ElogN(X°_N+1\Xe_-k
k

+1)     -     kH(X°_k+1) > 

ElogJV^^^IXi-^J+Elog"^-"^'1^^^^^ 

=ElogW(y-^l|Xl^)^+1l^,+1)-°(^)] where 

"(-^Zjv+il^T-k+i) is the number of occurrences of an index i; 

i=k,k+l,..../V such that X^+1_; = X°_k+1 (i.e. a "plug-in" 

method!). Clearly, since X^_k+1 is a suffix of the training se- 

quence it is available to both the encoder and the decoder 

prior to the processing of Xf~k. 

Thus, the existence of a simple universal encoding algo- 

rithm that can uniformly approximate the lower bound on the 

conditional entropy that is derived above follows immediately. 

A conditional version of the Kac's Lemma leads to yet an- 

other algorithm ( a conditional LZ variant) that applies to 

all finite alphabet ergodic sources. [3]. It is demonstrated in 

[3] that in a sense, this algorithm is efficient in that no other 

universal data compression algorithm can do better, when the 

length of the training sequence is bounded by N (for large N). 
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Abstract — Quantum information theory is at 
the confluent of computer science and quantum 
mechanics. We survey some of the most striking 
recent developments in the field. 

I. INTRODUCTION: THE QUBIT 

Classical and quantum information are very different. 
Classical information can be read, copied, and transcribed 
into any medium; it can be transmitted and broadcast, but it 
cannot travel faster than light. Quantum information cannot 
be read or copied without disturbance, but in some instances 
it appears to propagate instantaneously or even backward in 
time. Together the two kinds of information can perform feats 
that neither could achieve alone. For more details, references, 
and appropriate credit to the many researchers who made this 
work possible, please refer to my full paper in Current Trends 
in Computer Science, Jan van Leeuwen (Editor), Lecture 
Notes in Computer Science, Volume 1000 (special anniversary 
volume), Springer-Verlag, 1995. 

Quantum information theory has the potential to bring 
about a spectacular revolution in computer science. Even 
though current-day computers use quantum-mechanical 
effects in their operation, for example through the use of tran- 
sistors, they are still very much classical computing devices. 
A supercomputer is not fundamentally different from a purely 
mechanical computer that could be built around simple relays: 
their operation can be described purely in terms of classical 
physics and they can simulate one another in a straightfor- 
ward manner, given sufficient storage. By contrast, com- 
puters could in principle be built to profit from genuine 
quantum phenomena that have no classical analogue, some- 
times providing exponential speed-up compared to classical 
computers. Quantum information is also at the core of other 
phenomena that would be impossible to achieve in a purely 
classical world, such as unconditionally secure distribution of 
secret cryptographic material. 

At the heart of it all is the quantum bit, or qubit. In classi- 
cal information theory, a bit can take either value 0 or value 1. 
According to quantum information theory, a qubit can be in 
linear superposition of the two classical states, with complex 
coefficients. It is best visualized as a point on the surface of 
a unit sphere whose North and South poles correspond to the 
classical values. (This is not at all the same as taking a value 
between 0 and 1 as in classical analogue computing.) In gen- 
eral, qubits cannot be measured reliably: not more than one 
classical bit of information can be extracted from any given 
qubit and the more information you obtain about it, the more 
you disturb it irreversibly. As an example of how quantum 
information differs from classical information, it is possible in 
some situations to extract more than twice as much informa- 
tion from two identical qubits than from either one alone. 

1 Research supported in part by NSERC and FCAR. 
Written while visiting the University of Wbllongong, Australia. 
Email: brassard9iro.umontreal.ca 

II. QUANTUM CRYPTOGRAPHY 
The impossibility to measure quantum information reliably 

is at the core of quantum cryptography. When information is 
encoded with non-orthogonal quantum states, any attempt 
from an eavesdropper to access it necessarily entails a proba- 
bility of spoiling it irreversibly, which can be detected by the 
legitimate users. This phenomenon can be exploited to imple- 
ment a key distribution system that is provably secure even 
against an eavesdropper with unlimited computing power. 
Several prototypes have been built, including one that is fully 
operational over 30 kilometres of ordinary optical fibre. Fur- 
ther experiments are currently under way across the lake of 
Geneva. Quantum techniques may also assist in the achieve- 
ment of subtler cryptographic goals, such as protecting private 
information while it is being used to reach public decisions. 

III. QUANTUM COMPUTING 

Independent qubits are sufficient to produce nontrivial 
cryptographic phenomena, but they are not very interesting 
for computational purposes. For this, we must consider quan- 
tum registers composed of n qubits. Such registers can be in 
an arbitrary superposition of all 2" classical states. In prin- 
ciple, a quantum computer can be programmed so that expo- 
nentially many computation paths are taken simultaneously in 
a single piece of hardware, a phenomenon known as quantum 
parallelism. What makes this so powerful—and mysterious— 
is the exploitation of constructive and destructive interference, 
which allows for the reinforcement of the probability of obtain- 
ing desired results while at the same time the probability of 
spurious results is reduced or even annihilated. The most fa- 
mous example of quantum computation allows in principle for 
the quick factorization of large integers on a quantum com- 
puter, which has dramatic cryptographic significance. 

IV. QUANTUM TELEPORTATION 

Even though quantum information cannot be measured in 
general, it can be teleported from one place to another. It is 
possible for two spatially separated qubits to be entangled, in 
the sense that each of them behaves randomly when measured, 
but they always give opposite results to the same measure- 
ment. Let Alice and Bob share such a pair. If Alice makes 
her mystery particle interact in the proper way with her share 
of the pair, Bob's share will instantaneously become a replica 
of the mystery particle up to rotation; at the same time Alice's 
mystery particle loses its information but she learns which ro- 
tation Bob must perform on his replica to match the original. 
Imperfect stores of nonlocal qubit pairs can be purified by 
local transformations and exchange of classical information. 
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Wavelets have emerged in the last decade as a synthesis from many disciplines, ranging from pure mathematics (where 
forerunners were used to study singular integral operators) to electrical engineering (quadrature mirror filters), borrowing in 
passing from quantum physics, from geophysics and from computer aided design. 

The first part of the talk will present an overview of the ideas in wavelet theory, and show how it fits into the different 
disciplines in which it is rooted. The second part of the talk will discuss some recent applications, such as, in particular, a 
nonlinear "squeezing' of the wavelet transform, inspired by auditory models, with applications to speech processing; and a 
discussion of nonlinear approximation and why wavelets are so succesful in nonlinear approximation. 
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Abstract — The problem of minimizing a functional 
over a convex set of non-negative functions is con- 
sidered, when the functional to be minimized is an 
/-entropy, or /-divergence resp. Bregman distance 
from a given function. 

I. MOTIVATION 

The motivation for this paper is the problem of inferring a 
function p(x) on a set X when the only available information 
is p € E, where E is a known convex set of functions on X. 
Possibly a prior guess q is also available, namely p(x) = q{x) 
would be inferred were q 6 E. A familiar method is to take 
that p G E which minimizes a certain functional. 

II. MAXIMUM-ENTROPY TYPE METHODS 

For inferring non-negative functions, it is usual to minimize 
one of the functionals 

qffydp, Jf(p) = Jf(p)<lP,     Df(p,q) = J 

Bf{p, q) = J[HP) - /(?) - f'(g)(p ~ «)]«*/». 

(1) 

(2) 

Moreover, the difference of J}(p) resp. Bs{p,q) from its inn- 
mum is lower bounded by Bf(p,p*), for every p€ E. 

Notice that here p* does not necessarily belong to E. The 
minimum of the considered functional over E is attained iff 
p* e E. If p* £ E, it is considered a generalized solution 
of the minimization problem or (in the case of Dj or Bj) a 
generalized projection of q onto E. 

Theorem 2: The statement of Theorem 1 can be strength- 
ened to convergence in Li(p) norm 

(a) for Jj, if p is a finite measure and (3) holds, 

(b) for Ds, if q e Li(p) and (3) holds, 

(c) for Bj, if p is a finite measure, q € L\{p), and 

inf (f'{Kv) - /'(»)) > 0    for some K > 1 . . (4) 

Corollary: Under the conditions in Theorem 2, the L\{p) 
closedness of E is a sufficient condition for p* £ E, i.e., for the 
existence of a (unique) solution of the minimization problem. 

Remark: (4) is a stronger hypothesis than (3), but for the 
functions fa either holds iff a > 1. When (3) is not satisfied, 
no good sufficient conditions are available for p* £ E. 

In most applications, the feasible set E is defined by linear 
constraints, 

called /-entropy, /-divergence and Bregman distance, respec- 
tively. Here / is a strictly convex differentiable function on 
Ä+ and p is a ar-finite measure on X. B/(p, q) is a distance in 
the sense that it is non-negative and equals 0 iff p = q [p]- 
D}{p, q) is also a distance if /(l) = /'(l) = 0. 

The choice /i(t) = ilogi - t + 1 gives the method of max- 
imum entropy or ME (J/^p) for a probability density p is 
negative Shannon entropy, and Dh = Bfl is Kullback-Leibler 
/-divergence). Other familiar choices are /o(<) = -logi+i+1, 
leading to Burg's method and to minimizing reversed I- 
divergence, and fa(t) = [ta - at + a - 1] sign (a - 1), a > 0. 
There are strong arguments, both probabilistic and axiomatic, 
that support ME, cf. [1], [3]. For axiomatic justifications of 
alternative methods with some other / cf. [1], [4]. A proba- 
bilistic justification of these methods can be given by an ex- 
tension of ME [2] in the case when / can be represented as the 
convex conjugate of the log of the moment generating func- 
tion of a non-negative valued random variable. Among the 
functions fa above, those with 0 < a < 1 have this property. 

III. MAIN RESULTS 

Theorem 1: Let E be a convex set of non-negative functions 
such that the infimum for p € E of Jj{p), Ds{p, q) or Bj(p, q) 
is finite. Then each sequence {p„} C E approaching this 
infimum converges to a function p* in the sense of convergence 
in measure on every set with finite /j-measure, providing in the 
case of Dj that either q > 0    [p] or 

lim f'{t) = oo 

E = {p: / a^{x)p(x)p(dx) = 67, y E T} (5) 

Then, by the above Corollary, under the hypotheses of The- 
orem 2 the boundedness of the functions a7 is a sufficient 
condition for p* 6 E. For the functionals (1), a somewhat 
weaker sufficient condition is given in 

Theorem 3: Under the hypotheses of Theorem 2 (a) or (b), 
the finiteness of //*(A|a7|)d/< or //*(A|a7|)9d/* for every 
A > 0 and 7 £ T is sufficient for p* S E. Here /* denotes the 
convex conjugate of /. 
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Abstract — Parallel independent channels where 
no encoding is allowed for one of the channels are 
studied. The Slepian-Wolf theorem on source cod- 
ing of correlated sources is used to show that any 
information source whose entropy rate is below the 
sum of the capacity of the coded channel and the in- 
put/output mutual information of the uncoded chan- 
nel is transmissible with arbitrary reliability. The 
converse is also shown. Thus, coding of the side in- 
formation channel is unnecessary when its mutual in- 
formation is maximized by the source distribution. 
An information-theoretic interpretation of Parallel- 
Concatenated channel codes and, in particular, Turbo 
codes is put forth. 

I. MODEL 
Consider the model depicted in the Figure 1 where two inde- 
pendent channels operate in parallel. If the inputs to both 

channels were allowed to be encoded, then Shannon's cod- 
ing theorem tells us that the source is reliably transmissible 
provided its entropy rate is below the sum C\ +C2 of the chan- 
nel capacities; conversely, if the source entropy rate exceeds 
Ci + C2 then reliable transmission is not possible. The new 
twist in the model in Figure 1 is that the information going 
through channel 2 is not encoded. The following practical sce- 
narios which fit into this model are studied in this paper: an 
existing uncoded communication link is to be upgraded with 
the addition of a coded channel in order to provide reliable 
transmission; the receiver obtains a noisy version of the raw 
data in addition to the coded channel output; a single channel 
time-multiplexed into several independent subchannels. 

xn 

SOURCE 
X" 

ENCODER 
U" 

CHANNEL 1 
Y" 

DECODER * 
, I 

CHANNEL 2 
7" 

Pig. 1: Channel with Uncoded Side Information 

II. CODING THEOREM 

Our main result states that the source can be transmitted reli- 
ably provided that its conditional entropy rate given the output 
of the uncoded channel, fi^XIZ), is below the capacity Cy of 

channel 1, and, conversely, it cannot be transmitted reliably if 
the conditional entropy rate exceeds Ci. 

This result suggests that we view the information rate 
of the source as split into two nonoverlapping components, 
H(X) = -ff(X|Z) + J(X; Z). Even though the information 
quantified by the second term is transmitted uncoded, the 

source is reproducible with arbitrary reliability at the output. 
If, furthermore, the source is matched to the uncoded channel 
in the sense that it maximizes its input/output mutual in- 
formation, then it is possible to transmit information at rate 

Ci + Ci even though no coding is provided for the information 
going through one of the channels. This implies that the sum 

of the capacities of K independent parallel binary symmetric 

channels can be achieved even if only one of them is encoded. 
This observation is most striking when the encoded BSC has 
very poor crossover probability. 

Our coding theorem is proved under very mild conditions 
on the channels and the source. The source and the out- 

put of the uncoded channel are assumed to be jointly er- 
godic/stationary and the coded channel is assumed to be such 
that its capacity is equal to the limit of maximal mutual in- 
formations. 

To prove the converse part of the result we show that even 
if the encoder were to observe the output of the uncoded chan- 
nel, it would not be possible to send information at a faster 

rate. The proof of the achievability part is by construction of 
an encoder where the source coding and channel coding op- 
erations are performed separately. The source encoder does 
not operate at the full entropy rate of the source. Rather it 
is a Slepian-Wolf encoder [1] operating at rate H(X\Z). In 
the special case of binary-input memoryless channels, optimal 
encoding is possible by restricting attention to linear codes. 

III. PARALLEL-CONCATENATED CODES 

Parallel-Concatenated codes, and in particular Turbo codes 
[2], exhibit favorable complexity/performance tradeoffs. They 
can be cast within the model of this paper by considering a 

single-channel time-multiplexed into several independent sub- 
channels. For example, one subchannel transmits the uncoded 
raw data (the Turbo codes are systematic), and two parallel 
channels are driven by partial encoders which can be viewed as 
joint source-channel encoders driven by a redundant source. 
A practically appealing way to ensure that the information en- 
coded by the partial encoders is nonoverlapping is by prepend- 
ing a sufficiently long interleaver at the input of one of the en- 
coders. This setup is more attractive than simply multiplexing 

the source because of the complexity reductions of combined 
source/channel coding with high compression ratios. Good 

component codes in Parallel-Concatenated schemes are able 
to trade to some extent the traditional role of reducing the 
uncertainty of the source given the channel outputs for the 
easier goal of preserving mutual information. 
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Abstract — We define zero-error list capacities for 
discrete memoryless channels. We find lower bounds 
to, and a characterization of, these capacities. As 
is usual for such zero-error problems in information 
theory, the characterization is not generally a single- 
letter one. Nonetheless, we exhibit a class of channels 
for which a single letter characterization exists. We 
also show how the computational cutoff rate relates 
to the capacities we have defined. 

I. INTRODUCTION 

It is sometimes desirable that the decoder of a communi- 
cation system declare not just one, but several estimates of 
the transmitted data. For example, the encoder and the de- 
coder may be the inner code of a more complex transmission 
system, the structure of the outer code can then be used to 
choose among the estimates the inner code provides. A de- 
coder that may produce more than one estimate is called a 
list decoder. 

Suppose we are given a discrete memoryless channel (DMC) 
with input alphabet X, output alphabet y and transition 
probabilities {P(y\x),y G y, x G X}. 

Let C be a block code of length n for P. A zero-error list 
decoder for C is a decoder that assigns to every output y € yn 

the set of codewords C(y,C) C C that could have produced 
that output with positive probability: C(y,C) = {c G C : 
Pn(y\c) > 0}. Let L(y,C) = |£(y,C)| be the size of the list. 
The uniform distribution on C induces a distribution on L, 
and we will be interested in the moments of L. 

For any p > 0 and P define the zero-error pth-moment list 
capacity Cot(p, P) as the largest rate R such that for all e > 0 
there exists a code of rate at least R for which the p moment 
of the list size is at most 1 + e. 

II. SUMMARY OF RESULTS 

To state our results, we introduce 

Fo(p,P)=max        min        pI(Q, W) + D{V\\P\Q), 

WQ=VQ 

where Q ranges over the distributions on the input alphabet 
of P, D(V\\P\Q) is the conditional informational divergence 
and I{Q,W) is the mutual information. In the minimization 
V and W range over the set of channels with the same input 
and output alphabets as P, the notation VQ = WQ means 
that the distribution on the output alphabet of the channels 
V and W are the same when their inputs have distribution Q, 
and V <C P means that V(j\k) = 0 whenever P(j\k) = 0. 

Theorem 1 For all p > 0, C0i(p,P) > F0(p,P)/p. More- 
over, if we compute the lower bound for Pn, normalize, and 
pass to the limit, Cot{p,P) = lim„_oo n~ Fo(p,Pn)/p- 

The case of p = 1 is of particular interest; the correspond- 
ing capacity C<M(1, P) is called the zero-error average list size 

capacity. The substitution p = 1 in Theorem 1 recovers the 
results of [1]. 

Another special case is obtained by letting p become van- 
ishingly small. The constraint on the p* moment of the list 
size is then equivalent to demanding that Pr[L > 1] gets ar- 
bitrarily small. Taking the limit as p —> 0 in Theorem 1 we 
recover the previously known lower bound for zero-undetected- 
error capacity Cou [1, 2, 3]. 

As a further special case, consider the limit Coi(oo,P) = 
limp^ooCot(p,P). 

min    C(W),  where C(W)  = 
W:W<CP 

Theorem 2 C0t(oo,P) 

maxQ I(Q, W) is the ordinary capacity of a discrete memo 
ryless channel W. 

We have thus seen that CW(oo, P) has a single letter char- 
acterization. A more surprising result is that for a special 
class of DMCs one can obtain a single letter expression for 
Coi{p,P) for any p > 0: 

Theorem 3 Given a DMC P with input alphabet X and out- 
put alphabet y, construct the bipartite graph G(P) with ver- 
tices X U y and edges {(x,y) : x € X, y G y, P(y\x) > 
0}.    If G(P) is acyclic then Coi{p,P) = E0(p,P)/p, where 

E0(p,P) =maxQ-ln£y [E.OW^(l/k)1/(1+P>]1+P- 

The quantity Eo(p)/p is the largest rate for which the pth 

moment of the number of computations per symbol remains 
bounded in sequential decoding [4, 5]. Theorem 3 is similar 
to the result of [6] where it is shown that for the same class 
of channels the zero-undetected-error capacity Co« is identical 
to the ordinary capacity C. 
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Abstract — We answer the question, what should 
we say about V when we want to gamble on X, and 
what is it worth? If V = X, we show that every bit of 
description at rate R is worth a bit of increase A(R) 
in the doubling rate. Thus the efficiency A(R)/R is 
equal to 1. For general V, we provide a single letter 
characterization for A(R). When applied specifically 
to jointly normal (V, X) with correlation p, we find the 
initial efficiency A (0) is p2. It V and X are Bernoulli 
random variables connected by a binary symmetric 
channel with parameter p, the initial efficiency is (1 — 
2pf. 

We finally show how much increase in doubling rate 
is possible when the sender can provide R bits of in- 
formation about V and side information S is available 
only to the investor. 

SUMMARY 

Suppose we are interested in gambling on the outcome of a 
random variable X. The gambling consists of betting a pro- 
portion of wealth b(x) on the outcome x. We would like to 
maximize the doubling rate, which is the growth rate of wealth 
when the gambler uses a fixed betting strategy on independent 
realizations of X. It is well known that Kelly gambling, which 
is to bet in proportion to the probability mass function of X, 
is optimal. 

Now suppose we allow a description of X at rate R bits 
per symbol. Let A(R) be the maximum increase in the dou- 
bling rate of wealth for transmission rate of R. We prove that 
A(R) = R. Any bit of information one sends about X is worth 
a bit of increase in the doubling rate. 

We next consider the effectiveness of sending information 
when side information S is available to the investor but not 
to the encoder. The gambler combines this side information 
with the partial description of X to form the bet. 
Theorem 1 If X is described at rate R, and side information 
S is available to the gambler, then, 

A(R) = R. 

We ask what information should be given about a corre- 
lated random variable V if we want to help the investor gam- 
ble on X. This problem shows some similarities to source 
coding with side information [4, 1]. The encoder sends R bits 
about V and the investor uses this information to gamble on 
X. Here maximal efficiency is not generally possible. 

Theorem 2   When the encoder observes V correlated with X, 

We establish certain properties of A(R) using entropy max- 
imization results from Witsenhausen and Wyner [3]. 

Next, we find the increase in the doubling rate when the 
encoder sends information at rate R about a correlated ran- 
dom variable V with side information S present only at the 
investor. The investor uses these R bits together with the side 
information S to invest in the outcome of X. 

Theorem 3   When the encoder observes V,  and side infor- 
mation S is available at the investor, 

A{R) max 
p(v\v,x,s): I(V;V\S)<R,  V-tV-tf,X,S) 

I(V;X\S) 

Finally, we investigate the efficiency of descriptions based 
on correlated variables. If JT and V are both Bernoulli(|) and 
are associated by a binary symmetric channel with crossover 
probability p, it can be shown that A(R) has a derivative of 
(1 — 2p)2 at R = 0. Thus, even the most effective description 
of V relative to the investment in X pays off at the rate of 
only (1 — 2p)2 bits of doubling per bit of description. 

Now suppose that V and X are jointly Gaussian with cor- 
relation p. In this case the initial efficiency, A (0), is equal to 

The functional form of A(R) for binary and Gaussian ran- 
dom variables will be developed in [2]. Also, the relationship 
between the derivative of A(R) at R = 0 and the Renyi max- 
imal correlation of V and X will be investigated. 
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Abstract — In some applications, channel noise is 
the sum of a Gaussian noise and a relatively weak 
non-Gaussian contaminating noise. Although the ca- 
pacity of such channels cannot be evaluated in general, 
we analyze the decrease in capacity, or sensitivity of 
the channel capacity to the weak contaminating noise. 
We show that for a very large class of contaminating 
noise processes, explicit expressions for the sensitivity 
of a discrete-time channel capacity do exist. Sensitiv- 
ity is shown to depend on the contaminating process 
distribution only through its autocorrelation function 
and so it coincides with the sensitivity with respect to 
a Gaussian contaminating noise with the same auto- 
correlation function. A key result is a formula for the 
derivative of the water-filling capacity with respect to 
the contaminating noise power. 

Parallel results for the sensitivity of rate-distortion 
function relative to a mean-square-error criterion of 
almost Gaussian processes are obtained. 

where K0 is the nominal water level. It follows that the sensi- 
tivity is maximized by a contaminating random process which 
concentrates its power at those frequencies where the nominal 
noise spectral density is minimum. Note that the worst-case 
sensitivity is minimized over the nominal noise spectral den- 
sity by white noise, in which case the sensitivity is equal to 

I. SENSITIVITY OF CHANNEL CAPACITY 

Consider a discrete-time stationary channel: 

Yj = Xj + Nj + eZj (1) 

We assume that the random sequences X - {Xj}, N - {Nj} 
and Z = {Zj} are second-order and mutually independent. 
The nominal noise N is Gaussian, ENj = EZj = 0, ENj = 
o-2, EZ2 = 1. Denote by CP(6) the capacity of channel (l) 
under the assumption that the input power is constrained to 
some fixed constant P. The sensitivity of channel capacity 
with respect to the contaminating noise power is denned as 

SP = lim 
e-fO 

CP(0) - CP{B) 

e2 (2) 

II. GAUSSIAN CONTAMINATION 

If the contaminating process {£;} is Gaussian,  then the 
capacity of (1) admits the well-known water-filling solution 

C(6) -i£>0+ \Ke-N0(f)-6*Z(fT\ (3) 

2#o 7_1/ .™fflP 

S = (5) 
2<r2  P + cr2 

regardless of the power spectral density of the contaminating 

process. 

III. NONGAUSSIAN CONTAMINATION 

Since Gaussian noise minimizes capacity for a given power 
spectral density, the expression in (4) is an upper bound to 
sensitivity for nonGaussian contamination. Despite the lack 
of an expression for C(9) in the nonGaussian case, this paper 

shows that 
• The sensitivity is equal to (5) if the nominal Gaussian 

noise is white and the contaminating noise is regular (cf. 

[2])- 
• The sensitivity is equal to (4) if both the nominal and 

contaminating noises are regular and if the ratio of 
spectral densities of contaminating to nominal noises: 

Z(f)/Mf) is bounded on [o, £]. 
• The sensitivity is equal to 0 if the nominal noise is reg- 

ular and the contaminating noise is entropy-singular. 

IV. RATE-DISTORTION FUNCTION 

Consider the random process N + 8Z and denote by RD(8) 

its rate-distortion function relative to the mean-square-error 
criterion. We have shown (under the same conditions as 

above) that if D < 
distortion function is 

where N0(f) and Z(f) are the power spectral densities of the 
nominal and contaminating noises, respectively, and the water 
level Ke is adjusted so that the integral of the optimum input 
power spectral density Se(f) is equal to P, where Se{f) is the 

numerator in (3). 
We show in this paper that the sensitivity of the water- 

filling channel capacity formula admits the following simple 

expression: 

Sp = ^_ /1/2 zm^Mdf, (4) 

then the sensitivity  of the rate- 

lim 
e->o 

RD(e)-RD(o) 
62 -r z{f) 

max{Ao,J\T0(/)} 

where Ao is defined by the equation 

,1/2 
2/      mm{\o,N0{f)}df = D. 

Jo 

df      (6) 

(7) 
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Abstract — A graphical calculus is presented for de- 
termining the independence and conditional indepen- 
dence of random variables in a specified probabilistic 
setting. The calculus is developed first for the case 
of random variables that form a Markov chain. The 
calculus is then extended to the "general causal case" 
where the random variables are obtained from a se- 
quence of random experiments in which each exper- 
iment can be carried out in full when the results of 
specified previous experiments are made available to 
it. 

I. INTRODUCTION 

Because mutual information is essentially a measure of 
probabilistic dependence, information theory can be used to 
devise a convenient calculus for reasoning about probabilistic 
dependence. For example, because I(X; Y) > 0 with equality 
if and only if the random variables X and Y are indepen- 
dent, it follows that the determination of whether X and Y 
are independent is equivalent to determining whether I(X; Y) 
vanishes. Moreover, the vanishing of I(X; Y) can alternatively 
and conveniently be taken as the definition of (probabilistic) 
independence. Similarly, the vanishing of the conditional mu- 
tual information I(X; Y \ Z) can be taken as the definition of 
the independence of X and Y when conditioned on knowledge 
of Z. 

Conditional independence will be seen to play an important 
role in the study of probabilistic dependence. Independence 
and conditional independence are in general unrelated prop- 
erties of random variables in the sense that X and Y can be 
independent but dependent when conditioned on Z and, con- 
versely, X and Y can be dependent but independent when 
conditioned on Z. 

II. MARKOV CHAINS 

A Markov chain can alternatively and conveniently be de- 
fined as a sequence X1,X2,---Xn of random variables such 
that, for all i strictly between 1 and n, [X\, X2, ■ ■ ■ Xi-i] and 
[Xi+i, X1+2,... X„] are independent when conditioned on Xi. 
An immediate consequence of the symmetry of mutual infor- 
mation, i.e., of the fact that I(X;Y \ Z) = I(Y;X \ Z), is 
that the reversed sequence Xn,Xn-i,.. .Xi is also a Markov 
chain, which is a well-known fact but one that is awkward 
to prove from the usual definition of a Markov chain. An- 
other immediate consequence of this alternative definition of 
a Markov chain is that any subsequence of a Markov chain 
Xi,X2,- ■ -X„ is also a Markov chain, which again is a well 
known fact that is awkward to prove from the usual definition. 

The following result is as useful in formulating a calculus 
of dependence as it is trivial to prove. 
Proposition 1  (Independence Inheritance) 
If I{WX; Z\Y) = 0, then also I(X; Z \ Y) = 0 and I(X; Z \ 
WY) = 0. 

In other words, if some (possibly conditional) mutual informa- 
tion is zero, then any random variable not in the conditioning 

can be discarded or moved into the conditioning with the mu- 
tual information remaining zero. 

The above proposition is the basis for the following calcu- 
lus of independence for Markov chains: The random variables 
Xi,X2,-..X„ in the Markov chain are used to label in the 
natural order the nodes of a simple (undirected) linear graph 
with n nodes. Then any (possibly conditional) mutual infor- 
mation involving only the random variables Xi, X2, ■ ■ ■ X„ is 
zero if, for every pair of random variables with one to the left 
and one to the right of the semicolon in the mutual informa- 
tion expression, there is a random variable in the conditioning 
whose node in the graph lies between the nodes for these two 
random variables. Moreover, this is the strongest statement 
that can be made in general about the (conditional) indepen- 
dence of the random variables in a Markov chain in the sense 
that there are chains for which the given mutual information 
is non-zero when this condition is not fulfilled. It is thus nat- 
ural from the graphical viewpoint to think of conditioning 
as "blocking" dependence between the random variables in a 
Markov chain. 

III. GENERAL CAUSAL SYSTEMS 

The graphical calculus of independence developed for 
Markov chains can be extended to apply to any random vari- 
ables that can be described as the results of a sequence of 
random experiments in which the results of only previous ex- 
periments affect the results of following experiments, i. e., the 
random variables in the sequence have a well defined defined 
causal dependence. The distinction between causal depen- 
dence, which is directed, and probabilistic dependence, which 
is undirected, is crucial to the formulation of this extended 
graphical calculus. In contrast to the Markov chain case, con- 
ditioning can in general create probabilistic dependence be- 
tween random variables that would be independent without 
this conditioning. 

The real utility of the information-theoretical calculus 
for analyzing probabilistic dependence becomes evident when 
considering networks of information sources, channels, en- 
coders and decoders. Precise definitions of all these devices to- 
gether with the rules for their valid interconnection in neworks 
are required for the precise formulation of the calculus. Exam- 
ples will be given in the presentation of this paper to illustrate 
the utility of the calculus in rather complicated networks. 
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Abstract — This paper gives a simplified treatment 
of, and new results on, information-theoretic lower 
bounds on an opponent's cheating probability in an 
authentication system with a given key entropy. 

I. INTRODUCTION 
Authentication theory is concerned with providing evidence 

to the receiver of a message that it was sent by a specified le- 
gitimate sender, even in the presence of an opponent with un- 
limited computing power who can intercept and modify mes- 
sages sent by the legitimate sender or send fraudulent mes- 
sages to the receiver. Authenticity (like confidentiality) can 
be achieved by cryptographic coding when sender and receiver 
share a secret key. 

Compared to Shannon's theory of secrecy, authentication 
theory is more subtle and involved. After some purely com- 
binatorial results on authentication theory had been derived 
[1], Simmons [4] initiated a sequence of research activities on 
information-theoretic lower bounds in authentication theory 
(e.g., see [2], [3], [5], [6]). 

II. DESCRIPTION OF THE AUTHENTICATION MODEL 
Consider a scenario in which a sender and a receiver share 

a secret key Z. The sender wants to send a sequence of mes- 
sages Xi, X2,..., Xn, at some independent time instances, in 
an authenticated manner to the receiver. Each message Xi is 
authenticated separately by sending an encoded message Y; 
which depends (possibly probabilistically) on Z, Xi, and pos- 
sibly also on the previous messages X\,..., Xi-\. Based on 
Yi, Yi,..., Yi-i and Z the receiver decides to either reject the 
message or accept it as authentic and, in case of acceptance, 
decodes Yi to a message Xi. 

An opponent can use either of two different strategies for 
cheating. In an impersonation attack at time i, the oppo- 
nent waits until he has seen the encoded messages Yi,..., Yi-\ 
(which he lets pass to the receiver) and then sends a fraudu- 
lent message Y, which he hopes to be accepted by the receiver 
as the ith message. In a substitution attack at time i, the 
opponent lets pass messages Yi,..., Yi_i, intercepts Yi and 
replaces it by a different message Yi which he hopes to be ac- 
cepted by the receiver and decoded to a message different from 
the one sent by the sender. There are three possible goals an 
opponent might persue in either of these two attacks: 

• The receiver accepts Yj as a valid message. 

• The receiver accepts Yi and decodes it to a message Xi 
known to the opponent. In other words, an opponent is 
only considered successful if he also guesses the receiv- 
er's decoded message Xi correctly. 

• The receiver accepts Y, and decodes it to a particular 
message Xi = x chosen by the opponent. Hence this 
type of attack depends on a particular value x. 

'This  work  was  supported   by  the   Swiss  National   Science 
Foundation. 

We will denote the maximal possible probabilities of success, 
for the three described scenarios, by Pi(i), Pi(i) and Pi(i,x), 
respectively, for an impersonation attack at time i, and by 
Ps(i), Ps(i) and Ps(i,x), respectively, for a substitution at- 
tack at time i. 

III. INFORMATION-THEORETIC BOUNDS 

The literature on information-theoretic bounds in authenti- 
cation theory is quite diverse because various different models 
are considered. Generally, the proofs are quite complicated 
and valid only for a restricted model while the results could 
actually be proven for a general model. For instance, some 
proofs only hold for deterministic encoding, for single (rather 
than a sequence of) messages, for a sequence of messages but 
with the restrictions that the encoding rule be the same for 
each message and that consecutive messages be distinct, or 
that the encoding rules do not depend on previous messages. 

The goal of this paper is to derive various bounds in a 
coherent, more general setting, but by a simpler proof tech- 
nique than those used before. In particular, we consider all 
three scenarios described above and our results could be gen- 
eralized to a scenario where, for the sake of a smaller cheating 
probability, also a specified maximal probability of a decoding 
error for a correct message can be tolerated. 

Some of the derived bounds are stated below. The first two 
bounds were also derived in [5] in a slightly less general form. 

Pi(i) > 2-'(y"z|yi"yi-i> 

Ps(i) > 2-H<*lyi-y<> 

Pi(i) > 2-,{Yi'z^-Yi-'x^ 

Ps(i) > 2-
H(*lyi-™> 

A(*>) > 2-/W^in...Vi-i.xj=«) 

Ps(i,x)    >    2-"(zly>"y^=*> 
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Abstract — Finding the input distribution that max- 
imizes mutual information leads, not only to the ca- 

pacity of the channel, but to engineering insights that 

tell the designer what good codes should be like. This 
is due to the folk theorem: The empirical distribution of 
any good code (i.e., approaching capacity with vanishing prob- 

ability of error) maximizes mutual information. This paper 
formalizes and proves this statement. 

I. INTRODUCTION 

The unique n-dimensional distribution that maximizes the n- 

block input-output mutual information of a binary symmetric 
channel (BSC) puts equal mass on all 2n binary n-strings. 

Thus, common wisdom in information theory indicates that 
in order to approach the capacity of a BSC, a code must be 
such that the ensemble of its equiprobable codewords appears 

to be generated by a source of independent equally-likely bits. 
Formalizing and proving such a statement is not trivial as evi- 
denced by the fact that the entropy rate of a source of pure bits 
is equal to 1 bit, whereas the entropy rate of the channel input 
induced by 2nR equiprobable codewords is equal to R, and if 
the probability of error is to vanish, then R < 1 — h(p) < 1. 

Thus, convergence of the re-dimensional input distributions to 
a Bernoulli-1/2 source is ruled out. A good deal of the intu- 
ition on which the above common wisdom is grounded arises 
from the consideration of the input distributions of random 

coding, where not only do we average over equiprobable code- 
words, but over codebooks generated randomly according to 

the distribution maximizing mutual information. Then, the 
averaged input distributions of a random code are trivially 
equal to the capacity achieving input distributions. However, 
this trivial conclusion predicts nothing about the behavior of 
the input distributions of any particular code, which is the 
problem of interest. 

It has been shown in [1] that for any finite-input channel 
that satisfies the strong converse, the output distribution in- 

duced by any good code sequence converges (in normalized 
divergence) to the (unique) output distribution induced by a 
capacity achieving input distribution. In certain cases (such as 
discrete memoryless channels with full-rank transition matri- 

ces [2]), such a result implies convergence of the input statis- 
tics. However, in general, such convergence does not follow 
directly from the convergence of output statistics. 

II. DEFINITIONS 

A. Empirical Distributions. For every codeword of a channel 
code we can find its first-order empirical distribution by com- 
puting the fraction of symbols in the codeword equal to each 
input letter. If for a given codebook we average the empirical 
distributions over equiprobable codewords we obtain the first- 
order empirical distribution of the code. Analogously, /c-th 

order empirical distributions can be defined by computing for 
each re-string v the fraction of re-strings within the codeword 

equal to v. Averaging over equiprobable codewords results in 

the re-th order empirical distribution of the code. Thus, for a 
code composed of M codewords of blocklength n, 

{zim, i = 1 ... 7i, m= 1,... M}, the reth-order empirical dis- 
tribution, P™,„\, is defined as: 

pn      — 
n — re + 1 

n-«+l 
■pri 

where 

M 

■P£(«)(<»i . • • • i a*) = jj 22 l{ztm = ai} • ■ ■ l{zi+K-1>m. = aK} 
m=l 

B. Good Codes are channel codes whose rate is close to the 
channel capacity and whose decoding error probability van- 
ishes with blocklength. More precisely, a good code-sequence 
for a channel with capacity C is a sequence of (re, M, A„) codes 
such that: 

A„ —► 0 , 

liminf \2KM = C . 
n-foo n 

III. DISCRETE MEMORYLESS CHANNELS 

We have obtained results for a variety of channels, includ- 

ing channels with memory and continuous-alphabet channels. 
Our main result for discrete memoryless channels (DMC) is 

Theorem 1 Consider any good code sequence which does not 
use any symbol having zero mass under every input distri- 
bution that maximizes the single-letter mutual information. 
Then, the K-order empirical distribution of such a code se- 
quence satisfies: 

lim min JD(P^K)\\PX x 

where C is the channel capacity. 

Note that the existence of a good code sequence satisfy- 
ing the approximation property in Theorem 1 for any fixed re 

is predicted by the optimality of constant-composition codes. 
But, in fact, this result holds for any good code sequence be- 
cause of Theorem 1. A refinement of Theorem 1 entails letting 

re grow with n. We have shown that any growth faster than 
log n destroys convergence. 
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Abstract — In this work, for the memoryless source 
with unequal probabilities of symbols generation we 
derive the limiting distribution for number of phrases 
in the Lempel-Ziv parsing scheme. This proves a long 
standing open problem. In order to establish it we 
had to solve another open problem, namely, that of 
deriving the limiting distribution of the internal path 
length in a digital search tree. 

I. INTRODUCTION AND MAIN RESULTS 
The primary motivation for this work is the desire to un- 

derstand the asymptotic behavior of the fundamental parsing 
algorithm on words due to Lempel and Ziv [5]. It partitions 
a word into phrases (blocks) of variable sizes such that a new 
block is the shortest subword not seen in the past as a phrase. 
For example, the string 110010100010001000 is parsed into 
(1)(10)(0)(101)(00)(01)(000)(100). 

We study the distribution of the number of phrases Mn 

constructed from a word of a fixed length n in a probabilistic 
framework. We assume that the word is generated by a prob- 
abilistic memoryless binary source. That is: symbols are gen- 
erated in an independent manner with "0" and "1 " occurring 
respectively with probability p and q — 1 — p. li p = q — 0.5, 
then we call it the symmetric Bernoulli model; otherwise we 
refer to the asymmetric Bernoulli model. 

In order to study M„, we reduce it to another problem on 
digital trees that is easier to handle. The reader is referred to 
[3] for a discussion and definition of digital trees. In short: the 
root of the tree is empty. All other phrases of the Lempel-Ziv 
parsing algorithm are stored in nodes. When a new phrase is 
created, the search starts at the root and proceeds down the 
tree, that is, symbol "0" in the input string means a move 
to the left and "1" means a move to the right. The search is 
complete when a branch is taken from an existing tree node 
to a new node that has not been visited before. 

Observe that for fixed n the number of nodes in the associ- 
ated digital tree is random and equal to M„. We also consider 
a digital tree in which the number of nodes is fixed and equal 
to TO, and we call such a model the digital tree model. For 
fixed m, we denote by Dm(i) the length of the path from the 
root to the ith node (the ith depth). Then, the internal path 
length Lm becomes Lm = Y^iLi Dm{i)- 

In view of the above definitions, we note that M„ satis- 
fies the following renewal equation M„ = max{m : Lm = 
Y^k=\ Dm(i) < n] , which directly implies that Pr{M„ > 
TO} = Pr{im < n}. Thus one can analyze Mn through Lm 

due to the following result of Billingsley [2]: If 

then 
Mn - n/(ßn/n) 

fl>m 
N(0,1), (1) 

1 Supported by the ESPRIT Basic Research Action No. 7141. 
Supported by NSF Grants NCR-9206315 and CCR-9201078. 

N(0,1) (2) (Tn(ßn/n)-3/2 

where N(0,1) is the standard normal distribution,  and \im 

and o~m are positive constants. 
Let Lm(u) = EuLm and L(z,u) = ^^^(^""/m! be 

generating functions of Lm and Lm(u), respectively. We can 
show that L(u, z) satisfies the following differential-functional 
equation for a memoryless source 

dL(z, u) 
dz 

L(pzu, u)L(qzu, u) (3) 

with 1(2,0) = 1. 
Using the above differential-functional equation and (2), we 

prove the following theorem that directly extends the Aldous 
and Shields [1] results who established the limiting distribu- 
tion of Mn only for the symmetric Bernoulli model. 

Theorem .   (i) For a memoryless source the following weak 
convergence result holds 

Mn ~ EMn 

\fvarMn 
#(0,1) (4) 

with EMn ~ j^7 andvarMn ~ %p% where c2 = (H-h2)/h3 

with h — —plogp — qlogq being the entropy of the alphabet and 
H = plog2p + qlog2 q. Moreover, moments of Mn converge to 
the appropriate moments of the normal distribution. Finally, 

Pi{\Mn-EMn\>eEMn} <Aexp(-a£^/n~) (5) 

for some constants A > 0 and e > 0. 

Theorem above has plenty of applications in data compres- 
sion (e.g., rate of convergence, etc). For example, using it 
we established in [4] the limiting distribution of the phrase 
length. Furthermore, using the large deviation result (5), we 
can obtain information about Lemepl-Ziv code redundancy, 
R„. That is, Pr{Än > e} = Pr{M„(log M„ + l) > n(h+e)} < 
j4exp f—ae-y/n) for e <C h. 
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Abstract — A class of multiple dictionary Lempel- 
Ziv algorithms is described, where a set of context de- 
pendent dictionaries are maintained, and a dictionary 
chosen based on empirical performance data. These 
algorithms are conceptually simpler than an earlier 
approach based on dynamic programming[l] and are 
also asymptotically optimal. 

It is well known [3] that the context of a symbol (the 
preceding few symbols) can be used to improve compres- 
sion or prediction of the symbol. For example, the con- 
text algorithm [3, 4] chooses the estimated best context 
for compression via arithmetic coding. However, the most 
popular techniques are based on Lempel-Ziv coding. In 
LZ78, a tree structured dictionary is constructed using 
the source sequence, and then used for compression. Plot- 
nik, Weinberger and Ziv[2] consider a source generated by 
a finite state Markov chain and show that maintaining 
separate dictionaries for each state of the source machine 
improves the rate of convergence of the algorithm. 

In [1], a class of context dependent extensions to the 
Lempel-Ziv algorithm were described, in which multiple 
dictionaries were maintained, of which a subset (called 
the basis set, corresponding to a complete suffix tree of 
contexts) was chosen via dynamic programming to opti- 
mize an estimate of the compression achievable over the 
next phrase. This family of algorithms was shown to be 
asymptotically optimal, and showed promise of improved 
compression. 

We here develop an alternative approach where the set 
of contexts selected at a given time need not, as in [1], cor- 
respond to a complete suffix tree. The method utilizes a 
more extensive set of performance estimates, which how- 
ever is available via direct empirical observations for the 
proposed dictionary construction algorithms. 

Associated with every context of length < D, we main- 
tain a dictionary consisting of phrases seen in that context 
and the empirical performance of such dictionaries. For 
example, if D = 3, then, corresponding to the maximal 
depth context 010, we maintain a record of the perfor- 
mance of the dictionaries corresponding to context 0 (the 
null context), 0, 10, and 010. These D + 1 numbers are 
updated each time the context is seen at the end of a 
phrase (not just when the context is actually used for 
compression). Compression of the next phrase is then 
via the dictionary corresponding to a current best empir- 
ical context. The decoder maintains the same estimates, 
and therefore knows the dictionary used. 

Dictionary maintenance algorithms that we consider 
are closely related to those of [1]. For two of those al- 
gorithms, empirical performance measures are directly 

available as a consequence of the construction process. 
The two algorithms are (following the names in [1]): 

• Algorithm 2'- Multiple dictionaries: Separate 
Lempel-Ziv trees are maintained for each possible 
context of depth upto D. Phrases are added to 
the corresponding dictionary every time a context is 
seen by means of constructs termed tokens added to 
the root of the LZ tree every time a context is seen 
at the end of a phrase, and then advanced through 
the tree using the subsequent symbols, ultimately 
being promoted to form a new node. When this 
occurs, the performance measures are updated. 

• Algorithm 3'-Compound dictionary: In [1], it was 
suggested that it would be more efficient to view the 
multiple dictionaries as subtrees of a single larger 
dictionary, reached from the root via the appropri- 
ate context. This makes more efficient use of stor- 
age, and here too, tokens are used in the updating 
procedures. 

Algorithms 2 and 2' have substantial overhead, which 
may be regarded as "wasted" since many of the dictio- 
naries may not be used for compression. However, in 
Algorithm 3', dictionaries not used for compression also 
contribute to the growth of useful dictionaries, yielding 
better performance. Both the algorithms above are as- 
ymptotically optimal, as shown by the results of [1]. Ex- 
perimental results on binary versions of ASCII files show 
that these new methods do better than standard Lempel- 
Ziv, and perform close to that of context allocation with 
dynamic programming. 
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Abstract — The minimum universal coding redun- 
dancy for finite-state arbitrarily varying sources, is 
investigated. If the space of all possible underlying 
state sequences is partitioned into types, then this 
minimum can be essentially lower bounded by the 
sum of two terms. The first is the minimum redun- 
dancy within the type class and the second is the min- 
imum redundancy associated with a class of sources 
that can be thought of as "representatives" of the dif- 
ferent types. While the first term is attributed to the 
cost of uncertainty within the type, the second term 
corresponds to the type itself. The bound is achiev- 
able by a Shannon code w.r.t an appropriate two-stage 
mixture of all arbitrarily varying sources in the class. 

We investigate the minimum attainable redundancy in uni- 
versal coding for arbitrarily varying sources (AVS's). An AVS 
is a nonstationary memoryless source characterized by the 
probability mass function (PMF), 

P{x\s) = f[p(xi\si), (1) 

where x = (xi,...,xn) is an observed data sequence to be 
encoded, Xi taking on values in a finite set X, and s = 
(si,...,s„) is an unknown arbitrary sequence of states cor- 
responding to x, where each s, takes on values in a set S. We 
shall assume, for the sake of simplicity, that the parameters 
of the AVS {p(x\s)}x<=x,ses are known. 

The problem of universal coding for AVS's has relatively re- 
ceived only little attention. Berger [1, Sect. 6.1.2] and Csiszär 
and Körner [2, Theorem 4.3] have characterized the best at- 
tainable rate-distortion tradeoff for block-to-block (BB) codes 
where the average distortion is required to be within a pre- 
scribed level D for the worst possible state sequence. For the 
distortionless case (D = 0) the best attainable rate in this 
sense is given by the entropy of the worst memoryless source 
in the convex closure of {p(-|s), s € S}, that is the maximum 
entropy attained among all mixtures m(x) = J w(ds)p(x\s), 
w being a probability measure on S. The reason for this worst 
case result is that both the rate is held fixed at each block and 
the distortion constraint must be met for every possible state 
sequence. 

We show that one can improve upon this pessimistic result 
if variable-rate codes are allowed because then there is a po- 
tential freedom to "adapt" the rate to the underlying state 
sequence in some sense. Specifically, we show that for finite- 
state AVS's there exists lossless a block-to-variable (BV) code 
whose compression ratio is essentially the entropy of the mem- 
oryless source ms(i) = X}ses ws(s)p{x\s), where ws(s) is the 
empirical probability (i.e., relative frequency) of s € S along 
the underlying state sequence s. This entropy is of course 
never larger than the maximum entropy mentioned above. It 
is therefore easy to see that the redundancy, namely, the ex- 
cess rate beyond the per-letter entropy of the AVS given s, is 

essentially equal to the mutual information JWS(S;X) associ- 
ated with the joint PMF ws(s)p(x\s). This quantity in turn 
agrees with that of [l] and [2] only if s maximizes the entropy. 

Furthermore, IWS(S;X) is essentially a lower bound on the 
redundancy in a fairly strong sense. If we consider the set of all 
state sequences of a certain type class (i.e., the same empirical 
PMF ws) and hence yield the same ms, then by a direct 
application of [3, Theorem 1], for any uniquely decipherable 
code that is independent of s, the redundancy is essentially 
never less than IWS(S; X) for most state sequences in this type 
class. 

This bound is valid even if the type class in known a-priori. 
But if the type class is not known in advance intuition suggests 
that there must be an additional cost. We next demonstrate a 
coding scheme that is optimal in the sense of yielding the min- 
imum attainable extra term, which in turn can be thought of 
as the redundancy associated with universal coding for a class 
of auxiliary sources that are "representing" the different type 
classes in a certain sense. Specifically, The proposed coding 
scheme can be interpreted as an hierarchical, two-step univer- 
sal code, where the first step is to construct the best universal 
code within each type, and the second is to optimally inte- 
grate these codes by constructing another universal code for 
the class of the above mentioned auxiliary sources. The opti- 
mality of the proposed hierarchical code is in the sense that 
for any other code, most type classes have the property that 
except for a small minority of state sequences in the type class, 
the redundancy is essentially never less than the redundancy 
of the proposed code. 

Finally, we point out that a natural subdivision of a class 
A of sources into subclasses Ai,A2,..., takes place in other 
situations as well. Another example is the class of all Markov 
sources, where A; is the class of ith order Markov sources. The 
hierarchical universal coding approach demonstrated here, ex- 
tends in the general case to a Shannon code w.r.t the double 
mixture, first over each A, and then over {i}. Such a code 
was called "twice universal" in [4]. Similarly to Theorem 2, 
it can be shown that any other code cannot outperform the 
twice universal code, for "most" points in every A;, except for 
a minority of classes A;. Here by "most" we mean with high 
probabilty as measured by the mixture weights. 
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I. INTRODUCTION 

A two-stage-procedure using the sufficient, statistics of the 
parameters of the source models is proposed in this paper. In 
the procedure, the sufficient statistics calculated from a source 
sequence is transmitted at first stage. At second stage, the 
source sequence is encoded by using the conditional distribu- 
tion given the sufficient statistics. Although the quantization 
is need to transmit the estimator vector in the previous two- 
stage codes [1][2J, since the sufficient statistics is discrete ran- 
dom variable, the quantization is not need to transmit them. 
Moreover, the redundancy of the proposed code is equal to 
that of Bayes code[3j|4| . 

II. THE PREVIOUS TWO-STAGE CODES 

We assumed that a class of parameterized distributions of 
an information source is known but the parameters of the dis- 
tribution function are unknown throughout this paper. Let 
x, 6 A be a source symbol in a finite alphabet A. A source se- 
quence is denoted by xn : xix2 ■•■xn. A parameterized distri- 
bution is denoted by P(xn\0) where 6» € 0 is a real parameter 
vector in the parameter space 0 of the distribution. 

In the coding procedures using MDL[1] or MML[2] crite- 
rion, at the first stage, the estimator 0(x") of the parameter 0 
estimated from a source sequence xn is encoded. At the second 
stage, the source sequence is encoded by using the estimator 
9{xn). The code word length LM{xn) of these procedures is 
represented by 

LM(xn) = L(0(xn)) - \ogP(xn\0 = 0(xn)). (1) 

The first term of the right hand side L(0(xn)) represents the 
description length of the estimator vector 0(xn) itself. The 
second term is the ideal codeword length of a source sequence 
x" encoded by P(xn\0 = 0(x")): the distribution whose pa- 
rameter is substituted by the estimator 0(x"). 

However, since the parameter vector is real, the quantiza- 
tion of the estimator vector 0(x") is need to transmit it. MDL 
criterion was induced by considering the quantized scale of 
the estimator 0(xn) to minimize the total description length 
LM(xn). MML criterion was also derived by studying encod- 
ing method of the estimator using the prior distribution P{0). 

III. SUFFICIENT STATISTICS CODE 

The fundamental difference between sufficient statistics 
codes and the previous two-stage codes is to transmit the suf- 
ficient statistics u(x") instead of the estimator 0(x"). 

The sufficient statistics u(xn) satisfies the following equal- 
ity. 

H(0\u{xn)) = H(0\xn). (2) 

The above equality indicates that the sufficient statistics u(xn) 
includes all information with respect to 0 in a source sequence 
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xn. Thus, there is no information loss with respect to 0 by 
transmitting u{xn) instead of the estimator 0(x"). 

In sufficient statistics codes, at the first stage, the suffi- 
cient statistics u(xn) is encoded and transmitted. At the 
second stage, the source sequence x" is encoded by using 
P(xn\u(xn)): the conditional probability of xn given u(xn). 

The encoding probability P(xn\u{xn)) at the second stage 
essentially differs from P(xn\0 = 0(x")) used in the pre- 
vious two-stage procedures. P(xn\0 = 0(x")) is given by 
substituting 0(x") for 0 in the source distribution P(x"|0). 
P(x"|6[ = 0(xn)) is different from the conditional probability 
P(xn|0(xn)) under the condition that 0(xn) is estimated from 
a source sequence xn. In sufficient statistics code, the condi- 
tional probability P(x"|u(x")) under the condition that the 
sufficient statistics u(xn) is calculated from xn, is used for the 
encoding probability. 

The ideal codeword length Ls(x") of sufficient statistics 
codes is given as follows: 

Ls(xn) = L(u(x")) - \ogP(xn\u(xn)). (3) 

The first term of the right hand side of the above expression 
L(u{xn)) represents the description length of the sufficient 
statistics u(xn) in first stage of the procedure. Although the 
quantization is need to transmit the estimator vector 0(x") 
in the previous two-stage-code, since the sufficient statistics 
u(xn) is discrete random variable, the quantization is not need 
to transmit u(xn). 

The second term is the ideal codeword length of the source 
sequence x" in the second stage. The term is uniquely deter- 
mined by the conditional probability P(x"|u(xn)). Then, the 
total code word length of sufficient statistics codes is depend 
on the coding method of u(xn). 
Theorem 1 The ideal code word length of sufficient statis- 
tics code Ls(xn) is identical with that of Bayes code, if the 
description length L(u(xn)) of u(xn) as follows: 

I L(u(xn)) = -log / P(u(xn)\0)P(0)d0. (4) 

Various type of sufficient statistics codes can be constructed 
by changing the prior distribution P(0) as Bayes codes. Es- 
pecially, the minimax redundancy codes are constructed by 
using the least favorable prior for the redundancy risk. 
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Abstract — Two modifications of the Lempel-Ziv- 
Welch (LZW) algorithm are presented to limit the 
dictionary size. First, a run-length encoding (RLE) is 
combined with the LZW algorithm, in order to pre- 
select the input data. Then, a dynamic update of 
the dictionary is performed by eliminating the free 
branches in the tree representing the dictionary. 

I. INTRODUCTION 

The LZW technique is included in the V42 bis recommenda- 
tion of the CCITT and it is widely used in communications. 
Basically, it is a lossless and a non statistic compression al- 
gorithm which maps variable length strings to fixed length 
indexes (codewords). It has the advantage of being adaptive 
and does not assume any advance knowledge of the source 
properties. It uses a dictionary which is built by performing 
a string matching after each source symbol occurrence. String 
of different lengths are represented by indexes in the diction- 
ary, which is the same at the encoder and decoder. During the 
compression phase, the dictionary is built on the basis of the 
input symbols and the coder becomes more efficient with the 
growth of the table [1], [3]. However, once the dictionary is 
full, no adaptivity is provided any more. In order to be able 
to add a very long strings to the table, the algorithm needs a 
very large dictionary, the code words become very large and 
the compression ratio decreases. To counter this problem a 
compromise is necessary. In fact, the compression is optim- 
ised when the dictionary is a real mirror of the input statistics. 
With text or source files, long repetitive strings provide less in- 
formation, and, thus, the corresponding space in the dictionary 
is not efficiently used. Therefore, the algorithm must continu- 
ously update the dictionary, without increasing its size. That 
can be achieved by the two following schemes: 

-Combining the LZW algorithm with a run length encod- 
ing to avoid overloading the dictionary with long repetitive 
sequences (pre-selection). 

-Eliminating less probable strings from the dictionary, in 
order to keep a sufficient level of adaptivity for the algorithm. 

II. COMBINING LZW AND RUN-LENGTH ENCODING 
The run-length encoding eliminates the repeated symbols from 
the input data. The number N of repetitions must be greater 
than a pre-defined threshold. It exchanges all the repetitions 
in the stream of data with a special sequence. The LZW al- 
gorithm can be introduced in the cascade as follows. The cre- 
ation of a new string (Xi+y) in the dictionary is made by con- 
catenating a unique character (y) with a string (Xi) present 
in the dictionary. The run-length encoding technique scans 
the input strings; if the input is a repetition of N symbols (N 
greater than a pre-defined threshold), without using the dic- 
tionary, the algorithm outputs a run-length encoding, to code 
the repetitions. Then, the LZW-RLE coder continues normally 
the coding process with the LZW algorithm. The compression 
ratios achieved respectively by the LZW encoder and the RLE 
are compared. According to our simulations, the threshold 
value N must be greater than 10. 

Ill, DYNAMIC UPDATE 

In the LZW algorithm, the update of the dictionary stops 
when the dictionary is full. For example, in the CCITT V42 
bis recommendation [2], when the dictionary is full, the al- 
gorithm deletes the old dictionary ( flush ) and starts build- 
ing a new one. The compression ratio decreases considerably 
after the dictionary flush. Instead of deleting the entire dic- 
tionary, it is proposed to delete just a section, namely all the 
free branches of the tree representing it. The procedure is as 
follows. While building the dictionary, the algorithm marks all 
the free branches, using a one row table. Once the dictionary 
is full, the flush phase deletes all the branches already marked. 
This technique keeps the very long strings, so that the statist- 
ical properties of the input are well known and the previously 
deleted branches are used to continue the update. The number 
of free branches deleted in each flush phase allows us to follow 
the evolution of the algorithm and estimate if it is better to 
delete only a part or all the dictionary. In fact, after several 
updates, the number of free branches tends to become a con- 
stant value. It corresponds to the saturation of the dictionary. 
At this point, deleting all the dictionary is the best solution. 

IV. RESULTS 

The improvement in compression ratio, with the LZW-RLE 
coder is confirmed by several tests with standard files. It 
provides better performance during the learning phase with 
less complexity. The improvement is around 4 to 6 percent 
with respect to the LZW algorithm alone. The dynamic up- 
date acts once the dictionary is full. It provides an improve- 
ment of 4 percent with respect to the V42 bis method. The 
flush threshold value seems to be around 1000 free branches. 

V. CONCLUSION 

In this paper, two modified algorithms based on combining 
the run-length encoding with (LZW) and the free branches de- 
leting method have been analysed and simulated. A signific- 
ant compression ratio improvement is achieved with the LZW- 
RLE coder, when repetition sequences are present in the file. 
The LZW-RLE coder does not affect the compression ratio in 
the case of normal files (files without repetitions). Application 
to speech and image coding leads to further refinements which 
are presently under study. 
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Abstract — We study the universal coding problem 
for the integers, in particular, establish rather sharp 
lower and upper bounds for the Elias omega code 
and other codes. For these bounds, the so-called log- 
star function plays the central role. Furthermore, we 
invesigate unbounded search trees induced by these 
codes, including the Bentley-Yao search tree. 

1. ELIAS OMEGA CODE AND RELATED CODES 

Let us denote the standard binary expression of positive 
integer j € A/'+ as (1)2- For example, (13)2 = 1101. The 
binary expression of integer j to base 2k is denoted by (.7)2,fc• 
Next we express the floor function of log by \2{j) = |_10S2 J\ ■ 
Moreover, A* is the fc-fold composition of function A2. 

Elias[l] introduced a universal code u : A/"+ —► {0,1}*, 
called the w-code, described by 

w(j) ■■ 
0 , if j = 1 
(^_10"))a---(Aa(i))2Ü')20    ,ifj>2 (1) 

where k = k(j) is the positive integer satisfying \2(j) = 1 
(which exists for any j > 2). Then the codeword length of 
this prefix code w is given by 

CB(i) = Ki)| =     Y.    (AHi) + i) (J = l,2,...).   (2) 
«>l;AJ(j')>0 

Another class of universal codes introduced by Stout[3] is 
given, for any integer d > 0, by 

Uh.dO , if 0 < j < 2d, 

•••(Afd]0))2(A[d](j))2(i)2 0    , if i > 2d, 

for j £ Af = {0,1,...}, where 

V](x) = U°g2 x\-d  (x> 0), 

(3) 

(4) 

Af^ is the t-fold composition of the function A[<j], and k is the 

positive integer satisfying 0 < A^fj) < 2 . 
Stout has defined the code Sj only for d > 2. So is identical 

to the code introduced by Levenshtein[4]. 

2. BOUNDS FOR THE CODEWORD LENGTHS 

In order to introduce the bound for CE(J), we define the log- 
star function log*.(:r) for x > 1 as 

1OS2(a;)=loS2(;(;)+1Og2loS2(^:)+•••+loS2,   {X\X) (5) 

where log^x) is the fc-fold composition of the function 
log2(:c), and w*(x) is the largest positive integer satisfying 
log"(a;) > 0. Therefore, w*(x) = l,log^(x) = 0 for x = 1. 

Then we established upper and lower bounds for the length 
function CE(J'). 

□   Theorem 1 For any real 1 > 1, 

log^x) < CE(x) < log*(l) + W*(x). (6) 

Here we have extended the domain of function cg(-) to the set 
of real numbers through the extension of A2. Through a simple 
consideration, we can check that the upper bound is attained 
at the points jm = exp^l) (m = 0,1,...), where exp2(i) = 
2X and exp^i) is the fc-hold composition of function exp2(-)- 
Moreover, the lower bound is also attained at the same points 
in the sense of 

lim cE(x) -logKjm). (7) 

Therefore, the two bounds are best possible as far as we re- 
strict the bounding functions to such smooth functions. 

We can obtain same bounds for the codeword length of the 
Stout code Sd by a similar argument. 

Furthermore, the unbounded search trees on Af+ induced 
by the Elias omega code and Stout codes have a more beautiful 
recursive structures than Bentley-Yao search tree[2]. 

3. MODIFIED LOG-STAR FUNCTION 
Define the modified log-star function by 

logr.aM = log'W ~ «»*(«)      (* >  1) (8) 

for integer r > 2 and real number a. Then, we have 
□   Lemma 1 For integer r > 2, set a* = logr(logr e). 

1) If a < a*, then 

£%-'<<«(•>) <+oo, 
J=I 

2) If a > a*, then 

£'-los*' .(» +oo. 

(9) 

(10) 

J=I 

From the lemma, we can show the existance of better prefix 
codes than Elias omega code, and other known codes. 
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Abstract — The context tree weighting algorithm 
was introduced at the 1993 ISIT. Here we are con- 
cerned with the context tree maximizing algorithm. 
We discuss several modifications of this algorithm. 

I. INTRODUCTION 
In this paper we assume that the source has a tree structure. 
The context (e.g. the most recent symbols from the source 
sequence) selects one of the leaves. Symbols following this 
context are assumed to be independent. The tree structure is 
called the model of the source. A full tree with depth D and 
with symbol counts in its nodes and leaves is called a context 
tree. In [2] an one-pass algorithm, the context tree weighting 
algorithm was introduced. This method uses such a tree. 

For the context tree weighting algorithm it was proved that 
the individual redundancy p of a source sequence xj, with 
respect to a binary source with model <S and with parameter- 
vector 0s satisfies (the terms represent the model, parameter 
and coding redundancy respectively): 

p(xJ\x°1_D,S, Qs) < (2|5| - l) + (i|i log J!J + |S|) + 2. 

This holds for every model <S and every parametervector &s- 
The context tree maximizing algorithm (see also [1]), a two- 

pass algorithm, fulfils the same upperbound, but at the same 
time, it will give a slightly longer codeword. During the first 
pass the counts in the tree will be updated. After the first pass 
the two-pass algorithm will determine the "best" model, and 
in the second pass it uses this model to compress the sequence. 
Two-pass algorithms can have distinct advantages. Most im- 
portant is that their decoding complexity is considerably less 
than the complexity of the weighting algorithm. 

II. THE CONTEXT MAXIMIZING ALGORITHM 
Just like the weighting algorithm, this algorithm uses the 

Krichevsky-Trofimov estimator for encoding memoryless se- 
quences. This results in the following block probability for a 
sequence with a zeros and b ones (if a > 0 and 6 > 0) : 

Pe(a,b) 
(a-\) (b-h) 

1-2- (a + b) 

In every node of the context tree we compute the maximized 
probability according to the following formula. With D we 
denote the maximum level of the tree, and l(s) is the depth 
of the context in node s. We define 

P' = 
Pe(as,bs) 
fmax(Pe(as,M,P°sP^ 

if l(s) 
if l(s) 

= D, 
<D. 

One can find the model by walking depth-first through the 
tree. If the product of the maximized probabilities of the 
children is larger than the Pe in node s, then s must be an 
internal node of the model, else s is a leaf. The maximizing 
algorithm will find a model which minimizes the description 
length (MDL). The description length is the sum of the cost 
needed to describe the model (the factors |) and the cost of 
describing the data with this model (Pe)- 

III. THE YOYO ALGORITHM 
The maximizing algorithm can be modified such that it pro- 
duces a model with not more than C leaves (parameters), to 
limit the complexity of the decoder. We walk through the con- 
text tree again in a depth-first search way. In every node we 
compute a list which contains for all c = 1,C the maximized 
probability achievable with not more than c leaves. In each 
node the list can be computed by combining the estimated 
probability in that node with the lists from its two children. 

For every total number of leaves one looks for the distribu- 
tion of leaves over its two children that results in the' highest 
product of the maximized probabilities. Finally one finds a 
list in the root with for every number of leaves up to C, the 
corresponding maximized probability. 

To determine the list in the root one needs at most D + 1 
open lists. Once one knows the appropriate total number of 
leaves, one knows which distribution of the number of leaves 
over each child (of the root) resulted in this "optimal" solu- 
tion. In this way the problem is reduced to two trees of depth 
D — 1. If one applies this technique recursively, we will find 
the best constrained model. 

IV. MODEL DESCRIPTION ON-THE-FLY 
Instead of sending the model description first, followed by the 
code for the data, we now use a growing model. The decoder 
walks through the context tree as far the current model allows. 
If the new context passes an endpoint (leaf) of the current 
model, which is not known to be a leaf or internal node of the 
MDL model yet, and this new context differs from the previous 
ones that have passed this endpoint, then the decoder needs 
more information about the model. We must first tell him that 
the endpoint is a leaf or not. If not we should give him the 
same information about the next node on the context path, 
etc. This process ends when the current context diverges from 
the previous ones. The diverging node must be included. In 
this way the current model grows to the MDL-model. 

In total the encoder now has to describe all internal nodes of 
the found model, plus all leaves (not at the maximum depth) 
which are followed by different context sequences. 

With this technique we gain compared to the original two- 
pass algorithm. But the model costs in the weighting algo- 
rithm are similar. The maximizing algorithms can be modified 
such that the best "on-the-fly models" will be found. 

V. IMPROVED MODEL DESCRIPTION 
In binary, but especially in non-binary trees, with on-the-fly 
model description, the number of children of a node that need 
specification is not known in advance. Using an estimator, e.g. 
Pe, to specify these children, we get improved compression. 
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Abstract — This paper presents a fixed-to-variable 
variation of the Ziv-Lempel code called "FVLZ code", 
and clarifies its asymptotic performance with respect 
to a non-probabilistic model for constrained sources 
proposed by Ziv and Lempel. It is shown that the 
FVLZ code has almost the same asymptotic perfor- 

mance as the Ziv-Lempel code. 

I. ZIV-LEMPEL CODING 
In 1977, Ziv and Lempel proposed a universal coding al- 

gorithm called "LZ77 code"[l]. The LZ77 coding algorithm 

parses input data into a sequence of phrases with their length 

less than F, each of which excluding the last symbol is the 

longest matched string in a sliding window consisting of the 
previously encoded N — F symbols. The phrases are rep- 
resented by the position and length of the longest matched 
string in the window as well as the following un-matched sym- 
bol, and these triples are encoded into a codeword. Then, the 
window slides to the position just before the next symbol to 

be encoded. 

II. DESCRIPTION OF THE ALGORITHM 
We begin with the description of the FVLZ coding al- 

gorithm. Let A be a finite alphabet set with a elements, 
where a > 2. Let d be the ith FVLZ codeword which 
is obtained by concatenating some intermediate codewords 

C{ (1 < j < E(i)) described later, i.e., d = C\ ... Cf(i). 
Let d(C?) denote the length of the input data encoded into 

the jth intermediate codeword C\, and let /■ = ££=1 ^PX) 
where l\ = 0. Assume that p indicates the number of encoded 
symbols. Then, the FVLZ coding algorithm can be described 

as follows: 
Step 1    (Initialization)  Sliding window is initialized in the 

similar manner as the LZ77 coding algorithm. 
Step 2 (Encoding) Obtain the intermediate codeword G\ by 

using the LZ77 coding algorithm assuming that sliding win- 

dow consists of the previously encoded JV — F + l\ symbols 
and the length of longest matched string is less than F — l\. 
Then, the contents of C\ are represented with lengths spec- 
ified in Table 1. If p mod F = 0, output the ith code- 

word d = C\Cf ■■■ Cf(,), and refresh the sliding window 
by shifting F symbols to obtain the next FVLZ codeword. 
Repeat Step 2 until the whole input data is encoded.        Ü 

Table 1: Lengths of intermediate-codewords  

IV. ANALYSIS 
In this section, we clarify an asymptotic performance of the 

FVLZ code and compare it with that of the LZ77 code[l]. To 
this end, we employ a following model for constrained sources 
which was defined by Ziv and Lempel[l]. Let A* denote the 
set of all strings of finite length over A. Given a string S 6 A* 
of length l(S) and a positive integer m < l(S), and S{m} 
denotes the set of all substrings of length m contained in S. 

Given a subset a of A*, and let a{m} = {S € <r\l{S) = m}. 

Assume that <r(m) denotes the cardinality of <j{m}. Then, a 

subset a of A* is called a source, if the following three prop- 

erties hold: 1) A C a, 2) S € a implies SS e a, 3) S G a 

implies S{m} C <r{ra}. With every source a, we associate a 
sequence h(l), h(2), • • • of parameters, called the /i-parameters 

of a, where h(m) = ^ log(cr(m)) m = 1,2, ■ ■ ■. Let the com- 

pression ratio p be 

total length of codewords 

Contents to be represented 

Starting position: 

Longest length: 
Last symbol (un-matched symbol): 

Length 

\\og(N-F + ll)] 

riog(-F-^)l 
|"log "1 

III. EXAMPLE 
Fig.l shows an example of the FVLZ encoding for .A={a,b}, 

JV=16 and F=8.  Bi(l,N) in Fig.l A denotes a string in the 
sliding window used for the encoding of the ith FVLZ code- 
word Ci (i.e., Bi(l,N) =abbbbaababbababa). 

1 e-mail: k-iwata@jaist.ac.jp 

encoded source length 
(1) 

Now, we can state the following result. 
Theorem 1 If the length of the sliding window JV for a 

source with known /i-parameters is chosen by JV = FMF 

where MF = (F - 1) {^=1 a™ + £^+1 a(F - 1)} + F, 

\ = [(F — l)h(F — 1)J. Then, the compression ratio p attain- 

able by the FVLZ code satisfies 

p<h(F-l) + e(F), (2) 

where e(F) = (3 + log(F - 1) + 31og F)/(F - 1). □ 

By using Theorem 1, we can show the universality of the 
FVLZ code in the similar manner as Ziv and Lempel did for 

the LZ77 code in Ref.[l]. Since e(F) of Eq.(2) is equal to that 
of the LZ77 code up to the coefficient of the highest order, we 
can show that the FVLZ code has almost the same asymptotic 
performance as the LZ77 code has. Further, experimental re- 
sults reveal that the FVLZ code and the LZ77 code provide 
almost the same performance from the viewpoint of compres- 
sion ratio and encoding/decoding time, as well as it requires 
almost the same amount of memory as the LZ77 code. 
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The sliding window of the FVLZ code: 
► already encoded: B i( 1,1 «■ to be encoded: Bi(9. 

0 

B: 

C: 

already encoded: Bid, 12) 
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Figure 1: Encoding by FVLZ code with JV=16 and F=8. 
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Abstract — This paper presents a new variation of 
the Ziv-Lempel code called "Partial Decodable Ziv- 
Lempel (PDLZ) code", which can decode a part of 
the encoded data from a sequence of codewords. 

I. ZIV-LEMPEL CODING 

In 1977, Ziv and Lempel proposed a universal coding al- 
gorithm called "LZ77 code"[l]. The LZ77 coding algorithm 
parses input data into a sequence of phrases with their length 
less than L, each of which excluding the last symbol is the 
longest matched string in a sliding window consisting of the 
previously encoded N — L symbols. The phrases are repre- 
sented by the position and length of the longest matched string 
in the window as well as the following un-matched symbol, and 
these triples are encoded into a codeword. Then, the window 
slides to the position just before the next symbol to be en- 
coded. Now, we define the matched relation as the relation 
between the ith symbol of the longest matched string in the 
sliding window and the ith symbol of the parsed phrase to be 
encoded. It is noted that if ai and 02 are in matched relation, 
and a.2 and 03 are in matched relation, then ai and 03 are also 
in matched relation. 

II. DESCRIPTION OF THE ALGORITHM 

For each symbol in the sliding window, let a quotation sym- 
bol be the oldest symbol in matched relation with the sym- 
bol. Then, the quotation symbol has been encoded as an 
un-matched symbol. Let the quotation set be the set of the 
previously encoded K symbols. Then, the PDLZ coding algo- 
rithm can be described as follows: 
Step 1    (Initialization)  Sliding window is initialized in the 

same manner as the LZ77 coding algorithm. 
Step 2    (Encoding)  Obtain the next phrase to be encoded 

in the same manner as the LZ77 coding algorithm.  Then, 
execute the following procedure: 
Case 1:    If the quotation symbols corresponding to the ob- 

tained phrase, are all in the quotation set, then the phrase 
is encoded into the ith codeword Ci in the same manner 
as the LZ77 coding algorithm. 

Case 2:    Otherwise,  we divide the obtained phrase into 
some substrings, such that each last symbol in the sub- 
strings except for the last substring has the quotation 
symbol out of the quotation set. Then, each substring is 
encoded into the intermediate codeword G\ j = 1,2, ■■■ 
in the similar manner as the LZ77 coding algorithm, and 
obtain Ci by concatenating C\. 

Refresh the sliding window to obtain the next codeword in 
the same manner as the LZ77 coding algorithm.   Repeat 
Step 2 until the whole input data is encoded. O 

Fig.l shows an example of the PDLZ encoding for an input 
alphabet set 4={a,b}, iV=12, L=6 and K=6. For each sym- 
bol in the sliding window, the quotation window as shown 
in Fig.l(i) stores the position of the corresponding quotation 
symbol in terms of the length from the next symbol to be 
encoded. 

III. ANALYSIS 
In this section, we clarify an asymptotic performance of 

the PDLZ code. To this end, we employ a following model for 
constrained sources which was defined by Ziv and Lempel[l]. 
Let A be a finite alphabet set with a elements, where a > 2, 
and A* denotes the set of all strings of finite length over A. 
Given a string S € A" of length l(S) and a positive integer 
m < l(S), and S{m} denotes the set of all substrings of length 
m contained in S. Given a subset a of A*, and let <r{m} = 
{S 6 c|Z(S) = m}. Assume that a(m) denotes the cardinality 
of a{m}. Then, a subset a of A* is called a source, if the 
following three properties hold: 1)AC<T,2)5€<T implies 
SS £ a, 3) S € a implies S{m} C a{m}. With every source a, 
we associate a sequence h(l), h(2), ■ ■ ■ of parameters, called the 
/i-parameters of a, where h(m) = ^ log(cr(m)) m = 1, 2, • • •. 
Let the compression ratio p be 

P = 
total length of codewords 

(1) encoded source length 

Now, we can state the following result. 
Theorem 1       Assume  that  for  a  source  with  known  h- 
parameters, the length of sliding window N is chosen by 

N = (L-l)l J2(L-m)am+   ^   (L - m)a{L - 1) \+L, 

where X = \_(L — l)h(L — 1)J. Further, let K be specified by 

K = (N-L)1+(,        £>0. (2) 

Then, the compression ratio p attainable by the PDLZ code 

p<{h{L-l) + e,{L)}{l+si{L)}, (3) 
where ei(i) = (3 + 31og(L - 1) + log(L/2))/(i - 1) and 
e2(L) = 2t/(L-l)2t-1L(. □ 

Theorem 1 implies the following corollary. 

Corollary 1 If K > {N - L)4/3 then the PDLZ code is a 
universal code in the sense of Ziv and Lempel[l]. Ü 
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Figure 1: PDLZ encoding with N=12, L=6 and K=6. 
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Abstract — This paper presents a multicarrier signaling 
technique for an asynchronous Direct Sequence (DS) Code 
Division Multiple Access (CDMA) system which employs 
linear convolutional codes to achieve frequency diversity 
performance gains in excess of path diversity gains realized 
in conventional single carrier RAKE DS CDMA systems. 

I. OVERVIEW 

DS CDMA is a popular signaling technique in which binary data 
sequences for multiple access users are modulated by unique 
spreading signature sequences having bandwidth much greater than 
that of the data. Waveforms are transmitted simultaneously over the 
same frequency band and are distinguished at the receiver via a 
correlation operation against the spreading code of the user-of- 
interest. We consider a slowly varying, Rayleigh fading multipath 
channel, where the spread bandwidth exceeds the coherence 
bandwidth of the channel, and, thus, the signals are said to fade in a 
frequency selective manner. In such systems, a RAKE receiver is 
often employed to combine the energy received over several 
resolvable propagation paths. 

We present an alternative system where the available frequency 
bandwidth is decomposed into M distinct sub-bands, each of an 
bandwidth equal to the coherence bandwidth of the channel. The 
sub-channels, therefore, tend to fade non-selectively, and are 
assumed to fade independently. In short, we exchange path 
diversity for frequency diversity, wherein forward error correction 
may be utilized without the penalty of bandwidth expansion. 

II. SUMMARY 

The data sequence for a given user is input to a rate 1/M 
convolutional encoder (where M is the number of carriers) and each 
of the M outputs are multiplied by a spreading sequence which, in 
turn, modulates the M carrier tones. The receiver utilizes coherent 
BPSK detection and weights the outputs of each correlator in an 
optimum fashion. These outputs are then used to calculate branch 
metrics in a soft decision Viterbi decoder. Whereas the 
conventional DS CDMA system experiences path diversity on the 
order of the number of resolvable paths, the coded multicarrier DS 
CDMA system experiences frequency diversity on the order of the 
number of carriers plus an effective diversity improvement on the 
order of the minimum free distance of the convolutional code [1]. 
The diversity gains realized make for significant improvements in 
user capacity, while preserving the desirable properties exhibited in 
DS CDMA systems: robustness to fading, tolerance to multiple 
access interference, and a narrowband interference suppression 
effect [2]. 

The performance of the coded multicarrier system is compared to 
that of a conventional single carrier system in the presence of 
additive white Gaussian noise, multiple access interference, and 
Gaussian partial-band interference. It can be shown that the outputs 
of the M sub-channel correlators are approximately conditionally 
Gaussian, conditioned on the respective channel fade amplitudes 
[3]. We derive the optimal correlator weights and branch metrics 
for the soft decision decoder using standard methods [1]. 

To obtain an upper bound on the average probability of bit error, 
we assume that the all-zero path is sent and consider the event that 
some competing path is selected. This is accomplished by 
developing a convolutional code generating function evaluated in 
terms of an exponential upper bound on the probability of a 

pairwise error event [1]. Since the variances of sub-channel 
correlator outputs may be different, due to partial-band interference, 
we consider the pairwise error event of a competing path containing 
precisely ds code bit errors in the ith bit location (i.e., ith sub- 
channel). It can be shown that the Chernoff bound on this 
probability is 

M (     1     ^d' 

P2(du~>dM)<f[ 
l 

l+y,. 
where y. is the average signal-to-noise ratio of the ib channel. It is 

then straightforward to develop a generating function for a 
particular convolutional code which enumerates not just the number 
of code bit errors over a path, but the location (i.e., sub-channel) of 
those bit errors, whereupon the probability of bit error may be union 
bounded as 

P„< 
dT{Du..,DM,N) 

dN N=\, D,  i_ i=l,..,M 

To analyze and compare these systems, we selected raised-cosine 
chip wave-shaping filters with 50% excess bandwidth. Single 
carrier RAKE system performance is taken as equivalent to that of 
4b order path diversity reception using maximal-ratio combining 
[l]. The multicarrier system employs 4 carriers, and thus, rate 1/4 
codes of varying constraint lengths [4]. We hold total system 
bandwidth, information rate, and energy-per-bit constant. The 
figure below depicts the upper bound on the BER for multicarrier 
systems as a function of the number of muliple access users for 

Ej/Tio fixed at 12 (dB). At a BER of 10"3, significant capacity gains 
are realized as an increasing function of the code constraint length. 

REFERENCES 

[1]    J. Proakis, Digital Communications. McGraw-Hill, New York, 1989. 
[2]    M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread 

Spectrum Communications Handbook. McGraw-Hill, New York, 1994. 
[3]    S. Kondo and L. B. Milstein, "On the Performance of Multicarrier DS 

CDMA Systems," submitted to IEEE Trans. Commun. 
[4]    K. J. Larsen, "Short Convolutional Codes with Maximal Free Distance 

for rates 1/2, 1/3, and 1/4," IEEE Trans. Inform. Theory, vol. TT-19, pp. 
371-372, May 1973. 

I       o.oi 

a 
J 
s      0.0001 . 

- single carrier RAKE system (L=4, N=512) 
" mulücarrier systems (M=4,N=128) 

E*/n„ = 12(dB) 

Constraint Length K 

0      20     40     60     80     100   120    140   160   180   200   220   240   260   280  300 

This work was supported in part by the National Science Foundation under Grant NCR-9213140. 

23 



The Performance of Voice and Data Communications in a Mobile 
Cellular CDMA System 

John H. Gass, Jr., Daniel L. Noneaker, and Michael B. Pursley1 

Dept. of Elec. and Comp. Eng., Clemson University, Clemson, SC, USA 29634-0915 

Abstract — The purpose of this paper is to examine 
the effects of the power control technique, the cod- 
ing, and the interleaving depth on the performance of 
code-division multiple-access (CDMA) systems with 
different chip rates and rake receivers with different 
numbers of taps. We consider the implications of the 
results for the support of voice and data services in a 
cellular CDMA system. 

Direct-sequence (DS) spread spectrum CDMA is a leading 
candidate for use in mobile cellular systems and personal com- 
munication systems. Important characteristics of a CDMA 
system include the chip rate, the power-control technique, 
the forward error-correction (FEC) code, the depth of code- 
symbol interleaving, and the number of taps in the rake re- 
ceiver. Though the development of emerging CDMA systems 
has focused primarily on the support of voice communications, 
the increasing demand for packet data services points to the 
need for systems that efficiently support both voice and data 
traffic. 

The effect of near-far interference [l] in a cellular CDMA 
system can be reduced by adapting the power of each trans- 
mitter to the channel response or the interference environ- 
ment. In a full-duplex voice connection, the forward (base 
station to mobile) link can serve in part as a feedback channel 
for power-control commands from the base station. This is 
referred to as closed-loop power control. We consider the ef- 
fect of feedback delay on the performance of a CDMA system 
with closed-loop power control, and the effect is examined for 
several channels and for systems of different chip rates and 
different numbers of taps in the rake receiver. 

In contrast, data traffic on the reverse link is likely to be 
bursty. In many instances, it is not practical to provide feed- 
back during the transmission of a data packet. As a result, the 
mobile must determine a priori the appropriate power level for 
the entire packet. This is referred to as average power control. 
Some compensation for rapid fading can be obtained by using 
FEC coding together with interleaving as a form of time diver- 
sity. We consider the effect of coding and interleaving on the 
performance of a CDMA system with average power control, 
and we examine its effectiveness for different channels and for 
systems with different chip rates and different numbers of rake 
receiver taps. 

The ability of the receiver to resolve multipath components 
of the received signal depends on the chip rate of the DS sig- 
nal. Our channel model reflects this phenomenon and allows 
for tractable analysis of receiver performance. Each chan- 
nel is a special case of the Gaussian wide-sense-stationary 
uncorrelated-scattering channel, and it is described in detail 

1This research was supported in part by the Holcombe Endow- 
ment at Clemson University and in part by the Army Research 
Office under grants DAAH04-94-G-0154 and DAAH04-93-G-0253. 
J. H. Gass is the recipient of a National Science Foundation Grad- 
uate Research Fellowship. 

in [2]. A closed-from expression is derived in [3] for the proba- 
bility of error at the input to the decoder for a CDMA system 
that employs closed-loop power control and rake reception. 
The performance of the system is assumed to be limited by 
multiple-access interference, and the composite interference 
is modeled as additive white Gaussian noise. The result is 
employed here to determine two quantities of interest - the 
spectral efficiency [3] of the cell and the average signal-to- 
interference ratio (SIR) that is required to achieve a target 
error probability. For a given traffic mix and collection of 
channels, the relationship between required SIR and spectral 
efficiency varies with the chip rate, the power-control feedback 
delay, the FEC code, and the interleaving depth. 

In contrast to the "esult in [3], no closed-form expression 
can be obtained for the probability of error at the output of the 
decoder. Chernoff-bound techniques can be used to evaluate 
the performance of coding and finite interleaving depth, but 
the bounds fail to converge for many circumstances of inter- 
est in mobile communications. Thus, we employ simulations 
to examine the effect of persistent fading on the performance 
of CDMA systems with average power control, convolutional 
coding, and interleaving. The receiver that is considered em- 
ploys Viterbi decoding. 

We have obtained numerical results for many circumstances 
that are encountered in mobile communications. It is shown 
that the performance of a CDMA system with a low chip rate 
is more sensitive to channel and system parameters than is 
a CDMA system with a high chip rate. The rake receiver is 
necessary for adequate performance of a low-chip-rate system 
under many more circumstances than for a high-chip-rate sys- 
tem. The best choice of chip rate for a system with closed-loop 
power control depends on the ratio of the maximum Doppler 
spread to the feedback delay, and it also depends on the allow- 
able number of taps. For a CDMA system employing average 
power control, coding, and interleaving, a high chip rate pro- 
vides performance superior to that of a low chip rate in most 
circumstances. 
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Summary- Given an ordered J group partition of the 
K simultaneously transmitting users of a CDMA channel, 
a sequential group detector consists of J group detectors 
that are connected sequentially. The jth group detector 
uses the decisions from the previous j - 1 group detec- 
tors and cancels the inter-user interference from those 
users before it makes joint decisions for the jth group. 
This successive interference cancellation scheme was in- 
troduced in [1] for the Gaussian CDMA channel. This 
paper consists of extending that idea to the Frequency- 
Selective Rayleigh Fading (FSRF) CDMA channel (de- 
scribed in [2]). The two group detectors (I and II) in- 
troduced in [2] for the FSRF-CDMA channel are consid- 
ered as the basic building blocks. The resulting sequen- 
tial group detectors can be regarded as members of two 
distinct classes (each class parametrized by the ordered 
partition) of multiuser detectors that satisfy a wide range 
of complexity constraints. In particular, each of the two 
sequential group detectors has a time complexity per sym- 
bol (TCS) of 0(£/=1 M

Ki) for M-ary signalling, where 
Kj is the jth group size. The optimum multiuser de- 
tector has a fixed TCS of 0(MK). The simplest case 
corresponds to the degenerate ordered partitions consist- 
ing of K groups of size 1 each. For this choice, the two 
sequential group detectors reduce to two distinct decor- 
relating decision feedback detectors. These special cases 
can be seen as two distinct generalizations (to the FSRF- 
CDMA channel) of the multiuser detector by the same 
name for the Gaussian channel that was proposed in [3] 
and for which the analysis can be found in [1]. A succinct 
indicator of the average BER over high SNR regions for 
the FSRF-CDMA channel is defined via the asymptotic 
efficiency in [2]. In this work, upper and lower bounds on 
the asymptotic efficiency for the two sequential group de- 
tectors are derived. Minimax criteria under which these 
detectors are optimal are specified. The following numer- 
ical example illustrates the vast improvements achievable 
by the sequential group detector based on the group de- 
tector II of [2] over the detector proposed in [4]. 

Numerical Example- Consider the six user direct- 
sequence spread-spectrum system employing Gold se- 
quences of length 31 of [2] operating in a fading multipath 
environment with four paths for each user. The users 
are numbered according to decreasing average power 
ratios (with respect to the minimum power) given in 
order as [10.0,2.5,2.0,1.5,1.25,1.0]. Suppose that the 
performance of a single-user RAKE receiver for the 
last (weakest) user in the hypothetical single-user sce- 
nario,  where  all the other users are absent,  is con- 

1This work was supported by NSF Grant NCR-9406069. 

sidered acceptable. Equivalently, the effective SNR 
(ESNR) to minimum actual SNR ratio (henceforth re- 
ferred to relative ESNR) for every user has to be no 
less than 1. The linear suboptimum detector of [4] re- 
sults in relative ESNRs for the six users given in or- 
der as [1.40,0.37,0.53,0.21,0.18,0.26]. As for sequen- 
tial group detection, it turns out that the decollat- 
ing decision-feedback detector suffices. The resulting up- 
per bounds for the relative ESNRs for the six users are 
[1.40,1.22,1.12,1.06,1.09,1.0] and the lower bounds are 
[1.40,1.22,1.12,1.06,1.06,1.0]. The minimum specifica- 
tion is met. Moreover, note that the upper and lower 
bounds coincide for all but the fifth user. Now suppose 
that the power ratios are made less disparate by reduc- 
ing them for the odd-numbered users so that the power 
distribution for the six users is [2.5,2.5,1.5,1.5,1.0,1.0]. 
The relative ESNRs for the six users for the linear 
suboptimum detector are [0.35,0.37,0.39,0.21,0.15,0.26]. 
The upper bounds for the relative ESNRs for the six 
users for the decorrelating decision feedback detector are 
[0.35,1.22,0.84,1.06,0.87,1.0] with a lower bound of 0.35 
for all the users. The wide gap between the upper and 
lower bounds for users 2 to 6 suggests that error propa- 
gation is a severe problem inspite of the users being ar- 
ranged in decreasing order of powers. However, consider 
a sequential group detector with an ordered group par- 
tition {1, 2}{3,4}{5,6} consisting of three groups of size 
two each. In this case, relative ESNRs for the six users 
are equal to [1.16,1.22,1.115,1.114,1.0,1.0] (the upper 
and lower bounds coincide for every user in this case). 
The minimum requirement is thus met. Moreover, er- 
ror propagation has little effect on the performance. The 
lower complexity of the sequential group detector however 
is achieved at the expense of approximately 3 dB loss for 
the strongest users and nearly 1.25 dB for the users of 
intermediate power relative to the optimum detector. 
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Abstract — We develop an adaptive interference 
suppression scheme for DS-CDMA systems in the 
presence of impulsive noise. This scheme is realized 
by deriving an IPA based stochastic gradient algo- 
rithm that minimizes the average probability of error 
for such systems. The resulting detector outperforms 
the conventional matched filter detector for such sys- 
tems. 

I. INTRODUCTION 

Recently, there has been much work done on deriving adap- 
tive linear detectors for DS-CDMA systems corrupted by ad- 
ditive Gaussian noise ([1] and the references within). How- 
ever, such communication systems are often interfered with 
by noises other than the classical white Gaussian noise, and 
in here we consider DS-CDMA systems corrupted by natural 
impulsive noise sources, such as those found in low-frequency 
atmospheric channels, and for channels corrupted by man- 
made impulsive sources such as those occurring in urban or 
military radio networks. The conventional correlation receiver 
has been shown to experience a degradation in performance 
in impulsive noise (relative to the Gaussian noise model) even 
when the user's codes are chosen to have low cross-correlations 
[2]. On the other hand, when the multiple access interference 
dominates, the linear correlator in the impulsive noise channel 
is not near near-far resistant (similar to the Gaussian Chan- 
nel). In this paper, we develop an adaptive linear detector, 
for such impulsive noise channels, which directly minimizes 
the average probability of bit-error. The approach is similar 
to that used in [3], where we develop an infinitesimal pertur- 
bation analysis (IPA) based stochastic gradient algorithm for 
achieving minimum probability of bit-error. The adaptive in- 
terference rejection scheme is shown to have a very simple re- 
cursive structure (thereby by allowing easy implementation), 
and the conditions for convergence of this algorithm are pre- 
sented. 

II. SYSTEM DESCRIPTION 
We will consider a AT-user DS-CDMA system where the re- 
ceived signal in the channel is the sum of the transmissions 
due to the K users and additive channel noise. The received 
signal due to the transmission of the kth user at any receiver 
is given as 

oo 

pk{t) = \fW~k   ^2 hi* a*'(* " iT ~ Tk)cos{ujct + fa), 
i= — oo 

where b,.,k G {-1, +1} is the ith bit of the kth user, T is the 
bit-period, Pk, fa, and Tk are the power, carrier phase and 
delay of the kth user, respectively. The carrier frequency is 
denoted by wc, and ak(t) is the spreading waveform of the k 
user. The received signal in the channel due to the K users 
and additive noise is given as 

where r](t) is assumed to be the additive impulsive noise that 
is characterized by the first order probability density function 

fnln)(x) = (l-e)fn(x) + ef,(x), 

where e € [0,1], and /„ and /; are pdf's [2]. The nominal 
density function /„ is usually taken to be a Gaussian density 
representing the background noise. The impulsive component 
of the noise is represented by /; which is taken to be more 
heavily tailed than /„. The above model represents an approx- 
imation to the canonical Class A interference model studied 
by Middleton and Spaulding. 

III. ADAPTIVE INTERFERENCE SUPPRESSION 

In [2] a conventional correlator was used for detection of the 
desired user's bits. We are interested in finding the best set 
of correlation sequences h, such that the average probability 
of bit-error is minimized. Following the approach in [3], we 
develop an IPA based stochastic gradient algorithm that yields 
the optimum linear detector for this system. Therefore, we 
require the vector h" such that 

h* = arg {min Pe}. (1) 

We now adaptively update the vector h, using a stochastic 
algorithm given as 

hi+1 =hi-fiVhiPe{hi,si (2) 

where the gradient VhPe is estimated using infinitesimal per- 
turbation analysis, and s, is the vector of transmitted signals 
for the ith iteration, i.e., the ith bit period. It is shown that 
the algorithm allows a very simple recursive structure owing to 
the analyticity of the Q function. The conditions for conver- 
gence of the algorithm are presented as well. The performance 
of the adaptive linear detector is seen to be uniformly better 
than that of the linear correlator even under the extreme cases 
when either the multiple access interference or the impulsive 
noise is dominant. 
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Abstract — We examine the performance of convolu- 
tional coded DS/SSMA communication system with 
error-and-erasure decoding in AWGN and multipath 
Rayleigh fading channel. The demodulator makes 
a three-level-decision {-1,1,?} based on the channel 
state information(CSI), where ? represents an era- 
sure. The CSIs considered are the matched filter out- 
put and the fading amplitude. The optimum decision 
threshold that minimizes BER is found to be almost 
equal to the threshold that maximizes the channel 
cut-off rate R0. A simple parallel decision scheme is 
proposed to give a performance which is very close 
to the optimum decision scheme. The performance 
improvement made by using the CSI is investigated. 

I. INTRODUCTION 

It is well known that soft decision decoding requires 2-3dB 
less in signal-to-noise ratio over the hard decision decoding 
in AWGN channels [1]. However, soft decision decoding re- 
quires real arithmetic operations, which are much more com- 
plex than binary operations involved in hard decision decod- 
ing. Clark and Cain has pointed out that erasing unreliable 
symbols based on channel state information (CSI) and per- 
forming error-and-erasure decoding is an effective method to 
provide a good trade off between system performance and 
implementation complexity[2]. In this paper we analyze the 
performance of convolutional coded DS/SSMA communica- 
tion systems employing error-and-erasure decoding and binary 
PSK modulation with several demodulation schemes. 

II. DEMODULATION SCHEMES 

We consider several demodulation schemes that make a 
three-level-decision {-1,1,?} based on the CSI. In AWGN chan- 
nel, we use the matched filter output as a CSI, which is most 
convenient, useful, and easy to get. If the absolute value of the 
matched filter output is larger than a threshold, the demodula- 
tor makes a decision {-1,1} based on the matched filter output, 
otherwise the demodulator erases the corresponding symbol. 
In multipath Rayleigh fading channel we use the matched fil- 
ter output and/or the fading amplitude as a CSI. For the case 
of demodulator using only the fading amplitude, we consider 
a demodulator that makes a hard decision if the fading ampli- 
tude is larger than a threshold, otherwise erases the symbol. 
We assume the fading amplitude information is available at 
the demodulator. We also consider a demodulator that uses 
both the matched filter output and the fading amplitude. In 
this case if the fading amplitude is below a threshold(fic) or 
the matched filter output is below a threshold(H), the de- 
modulator erases the symbol, otherwise makes a hard decision 
based on the matched filter output. 
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Fig. 1: BER vs. Eb/N0 : code rate = 1/2, constraint length = 
7, convolutional code, number of user = 30, 128 chips/coded bit, 
Rayleigh fading channel(<r2 = 1/2) 

III. DISCUSSIONS 
We have investigated the optimum erasure threshold that 

minimizes BER. It is found that the erasure threshold that 
maximizes the channel cut-off rate Ro is almost optimal and 
the optimum erasure threshold increases as the traffic in- 
creases. Based on this observation, we propose a simple paral- 
lel decision scheme that changes the erasure threshold accord- 
ing to the channel traffic. We found that the parallel scheme 
yields a performance close to that with the optimum decision 
scheme. We have also examined how much the performance 
improvement can be made by using the CSIs in Rayleigh fad- 
ing channel. Fig.l shows the BERs with different CSIs. We 
can see that the erasure based on the fading amplitude in- 
formation alone gives a higher BER than with matched filter 
output alone. However, when the fading amplitude informa- 
tion is combined with the matched filter output, the fading 
amplitude information gives a gain of 1.0-2.5dB in Eb/N0 at 
the BER of 10~3, and even a higher gain can be obtained for 
lower BER. 
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Abstract — The performance is evaluated for a 
hypothetical CDMA digital cellular telephone system 
whose reverse link uses TT/4-DQPSK modulation and 
equal gain RAKE diversity combining. The results are 
shown numerically in comparison with those for 
Qualcomm's (IS-95) CDMA cellular system, which uses 
64-ary orthogonal modulation on the reverse link. 

INTRODUCTION 

The mobile-to-base (reverse) link of the North Ameri- 
can IS-95 DS-CDMA cellular system employs an M-ary 
orthogonal modulation using Walsh-Hadamard se- 
quences with QPSK phase coding with M = 64. For 
lack of the carrier phase reference-providing pilot 
signals, which are used for the forward (base-to-mobile) 
links, the system employs noncoherent demodulation 
for the reverse links for each of the i-path diversity 
receptions in its RAKE system. 

In this paper we suggest and investigate an 
alternative scheme for the reverse link modulation and 
multipath receptions: the information sequence is to be 
7T/4 - DQPSK modulated after inserting the DS-CDMA 
spreading sequence in the I and Q channels prior to the 
pulse shaping and summation, and the demodulation is 
done with partially coherent differential detection for 
each multipath component before diversity combining. 

We show a closed form error probability expression 
for the 7T/4 — DQPSK reverse link with L independent 
multipath diversity receptions in Rayleigh fading and 
CDMA interference. The results are evaluated with 
capacity and processing gain values as parameters. The 
exact closed form expression for the performance of the 
system is based on the authors' previous work [1]. 

SUMMARY OF ANALYTICAL RESULTS 

Resolution of multipath signal components separated 
in time delay by more than the chip period of the DS- 
CDMA SS sequence is possible, and the paths can be 
combined to provide diversity. The unconditional prob- 
ability of error for the reception of one of L fading 
multipath components is found to be 

where A Eb/LK0 

i>2(
e) 

pL cos (IT/4) 

^[PLCOB(*/4)]
2
+\ + PL 

(1) 

PL      l + (EbW.^^- 
(2) 

and where M is the number of multiple access users, 
PG is the spread spectrum processing gain, F is the 
frequency re-use factor, d is a voice activity factor, and 
Gs is the sector antenna gain. 

For a receiver combining the L > 1 paths, assuming 
independent fading in the multiple paths, the prob- 
ability of error can be shown to be 

p^)=H4-Lt{L-Vk)V-^4-   (3) 
fc=o 

The values of d, M, F, PG, and Gs determining the 
amount of interference can be traded off to achieve the 
desired system performance. The corresponding error- 
expression for the diversity combining of M-ary 
orthogonal signals is [2] 

M-l/__   -x     i   i\n-l 

+npL) 
n(L-l) (        ' (    1 4- o       \ 
*E/wr(£+*)(irofe).      (4) 

in which the value of ßf,(n) is the coefficient of x   in 
the expansion    , v n     , T   ,. L-\  k\     n(L-l) 

Elf     =E  ßdn)*k- (5) 

It is found that, in the fading environment, the pro- 
posed reverse link modulation, which is less complex 
than the IS-95 64-ary orthogonal modulation, actually 
outperforms the latter when L < 2 paths are combined. 
We consider examples of capacity and processing gain, 
and implications for the error correcting codes needed 
for meeting operational requirements for voice or data. 
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Abstract — In this paper, the average interference 
parameter (AIP) of polyphase code-sequences in DS- 
CDMA systems is investigated. The expected value 
and the variance of the AIP for randomly chosen 
cyclic shifts of the code-sequences are derived. 

I. INTRODUCTION 
The performance of direct-sequence code-division multiple- 

access (DS-CDMA) systems depends on the correlation prop- 
erties of the used code-sequences. The most common criteria 
to describe the correlation behavior are the periodic peak cor- 
relation parameter, describing the worst-case behavior, and 
the average interference parameter (AIP) on which the signal- 
to-noise ratio depends. Usually, families of code-sequences for 
these systems are constructed considering the periodic peak 
correlation parameter. In a second step, cyclic shifts of these 
sequences which result in an optimum AIP are sought. (The 
periodic peak correlation parameter remains unchanged if the 
sequences are cyclically shifted.) Since not all combinations of 
shifts can be examined, simplified search methods, e.g. based 
on the sidelobe energy, are applied. To compare the perfor- 
mance of these techniques and to derive bounds on the achiev- 
able AIP, the expected value and the variance of the AIP for 
randomly chosen shifts are needed. For this reason, these val- 
ues will be derived for some of the most important families of 
code-sequences. 

II. INVESTIGATED FAMILIES 
We consider families T = {Sk(n) | 1 < k < K} consisting 

of K sequences of length N (0<n< N -1). The elements 
of the sequences are roots of unity. The aperiodic correlation 
function is defined by CSR(rn) = E^,1-"* S*(n)R(n + m) 

(m > 0) and the periodic correlation function by Csß(m) = 
£n=o S*(n)R(n + m mod N). The maximum magnitude of 
the periodic crosscorrelation values and the autocorrelation 
sidelobes is the periodic peak correlation parameter 8. 

Three types of large families of code-sequences have 
been investigated: Prime-phase code-sequences (e.g. Gold-, 
Kasami-, and Kumar-Moreno-families) are constructed in the 
Galois-field GF(pr) using an additive character [1]. Because 
of their practical importance, quadriphase code-sequences and 
other prime-power-phase sequences are considered. The con- 
struction of these sequences in Galois-rings GR(pa,r) is de- 
scribed in [2]. The third family is constructed by multiplying 
all sequences of families of type 1 or 2 with exp(j2nkn/N) 
with k = 0...N - 1. 

III. INTERFERENCE PARAMETERS 
We consider an asynchronous phase shift keying DS-CDMA 

system for K users. The signal-to-noise ratio of these systems 
can be expressed in terms of the total interference parameter 
TIP [3] which is defined as (at receiver i) 

TIP, = 1/(37V3) £M. 2»Sisk (0) + „Sisk (1), 

where ßSisk{l) = Re {ZLLN Qts»<?siS> + 0) ■ Usu- 
ally, the average interference parameter AIP = 2/^(0) + fi{l) 

with ,,(*) = 1/(K(K - 1)) Ef=1 EL.^W*) is used as 
measure for the average system performance. To simplify the 
notation, we define the sum S(F, v) = ^    T Css(y). 

IV. EXPECTED VALUES OF THE AIP 
Since the AIP depends on the cyclic shift of the code- 

sequences, we suppose that the cyclic phase of the sequences is 
picked at random with each of the shifts being equally likely 
to be chosen [4]. Then, the expected value of u(0) can be 
derived:    E[n(0)] = 

JV-1 

N2 + 
N2M(M ■ — Y, (TV - vf [S{T, v)S* (T, v) - S{T, u, „)] . 

The expected value of fj,(l) and the variance of the AIP 
can be expressed in terms of other sums (S(T,u,v + I) = 
£lsETC*ss(l')Css{v + I))- These sums have been derived 
for all families described in section II, too. 

V. RESULTS 

We have investigated families of size M « (N + 1)* with 
* > 1- Typical periodic peak correlation parameters 6 are 
6 < 2WN + 1 + 1 or 6 < 2^\/WTl + l if binary sequences 
are considered or 6 < ty/N + 1 + 1 for sequences with larger 
phase alphabet. In both cases, we found E(//(l)) « E(p(0)) 
and hence 

E(AIP) « 2E(/*(0)) = 2N2 2(2N 

3 

1)(N-1) 
K- 

Obviously, £[AIP] does not depend on the size of the phase- 
alphabet and is nearly independent of the size of the family. 
For the described linear families, the E[AIP] becomes 2N2 

- the expected value for random sequences - if N tends to 
infinity. For the variance, we found noticeable differences de- 
pending on the investigated families. Using these results, the 
known numerical results on the AIP of linear code-sequences 
for different selection criteria of cyclic shifts (e.g. LSE/AO, 
MSE/AO) can be explained. Moreover, bounds on the achiev- 
able AIP for all linear families are derived. 
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Abstract — In this paper we present the Wavelet Or- 
thogonal Frequency Division Multiplexing (WOFDM) 
that in conjunction with Frequency Hopping can be 
used for Synchronous Code Division Multiple Access 
(FH/S-CDMA). A Low Probability of Intercept (LPI) 
modulation scheme based on a pseudo random selec- 
tion of basis functions for modulation spanning the 
same frequency channel is also described. 

I. INTRODUCTION 

In [1] the use of scaling functions and wavelets, multiplicity- 
M wavelets and wavelet packets to modulate different infor- 
mation signals on adjacent channels with overlapping spectra 
was proposed. In this paper we demonstrate an application of 
this technique for multiple access communication [2]. 

The envisioned Frequency-Hopped Synchronous Code Di- 
vision Multiple Access (FH/S-CDMA) scheme is for a multi- 
point to point fully synchronized communication. In this envi- 
ronment, wavelets provides a great flexibility in controlling the 
data rate and hence the power, making the proposed CDMA 
scheme inherently adaptive. 

II. ORTHOGONAL FREQUENCY CHANNELIZATION 

The basic techniques to subdivide a given frequency band 
into orthogonal subchannels spanned by basis functions de- 
rived from the scaling functions and wavelets are described 
in [1]. This defines the WOFDM modulation scheme, which 
possesses the following characteristics: (1) orthogonal chan- 
nels are spanned by translates of a single envelope function. 
The translation step size is directly related to the Band Width 
(BW) of the subchannel; (2) the channels overlap in frequency 
but remain orthogonal with proper synchronization; (3) there 
is great flexibility in how the available BW is channelized, and 
this channelization has a tree structure. It is therefore possi- 
ble to accommodate variable rate data modulation by routing 
data to different nodes of the tree structure that have different 
data rate capacities; (4) this switching induces some transient 
InterSymbol Interference (ISI). 

III. FH/S-CDMA WITH WAVELETS 

The described WOFDM scheme can be employed for mul- 
tiple access communications using frequency hopping, where 
a given information sequence can be hopped by routing the 
data in this sequence to the input of the filter generating the 
desired frequency channel. 

The key features of this scheme are: (1) there is no need 
for a programmable frequency synthesizer; (2) the size of the 
hopping BW is related to the information data rate. Changes 
in this data rate are accommodated by routing the data to the 
appropriate internal nodes of the tree structure. The protocol 
for how the variable data rate is to be accommodated should 
be established from the outset and programmed into the oper- 
ation of the connection network; (3) multicarrier modulation 

'This work was partially supported by M.U.R.S.T. 

is possible with the proposed technique. Note that in the pro- 
posed scheme a high degree of security may be afforded to the 
communication system using a relatively small number of or- 
thogonal frequency channels due to the combinatorial power 
of the connection network; (4) the hopping rate relative to 
the data rate is directly controlled by the rate at which the 
connection machine changes its patterns relative to the maxi- 
mum rate each channel can be utilized; (5) aside from carrier 
synchronization needed to perform the down conversion, clock 
synchronization and PN code synchronization are needed for 
proper operation. 

Direct Sequence (DS) spectrum spreading could be incor- 
porated into the design by forming the product between the 
spreading code and the information sequence prior to mod- 
ulating the wavelet filters. In this process what controls the 
BW of each hopping channel is the PN code rate used for the 
DS component. 

IV. Low PROBABILITY OF INTERCEPT 
We previously noted that the switching of frequency chan- 

nels employed in order to accommodate variations in source 
data rate causes transient ISI [3]. This transient ISI can 
be used to introduce a novel LPI modulation scheme. More 
specifically, suppose a given frequency band spanned by a shift 
orthogonal function is channelized in a variety of ways. Each 
such channelization corresponds to a different distribution of 
dimensions in the time-frequency plane. A modulator can be 
state dependent and use a given distribution of dimensions 
for modulation in accordance with a PN code known to the 
transmitter and receiver. Suppose the modulator state varies 
rapidly so that a given distribution of dimensions is not used 
for more that a few symboling intervals. An unintended re- 
ceiver with perfect knowledge of the waveforms used by the 
transmitter and perfect knowledge of symbol timing may still 
be unable to recover the symbols since it perceives a sequence 
with very high randomly fluctuating ISI [3]. 

The above procedure can be embedded in the FH/S- 
CDMA, and the multicarrier modulation scheme proposed 
here, and two PN codes could be used by each information 
source, one controlling the operation of the switching network 
used to frequency hop the spectrum of the transmitted signal, 
and the other used to select which distribution of dimensions 
in the time-frequency plane is to be used by the modulator. 
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Since the spreading operation and error correction must 

share the bandwidth available in a CDMA system, it is appro- 
priate to approach these problems jointly. Several papers have 

addressed this problem with promising results [1, 2]. Hui has 

shown that under certain assumptions, the system performs 
better when more bandwidth is devoted to error correction 

[2]. Giallorenzi [3] shows that combining error correction de- 

coding and multiuser detection significantly improves system 
performance. We extend this research by considering not only 

simultaneous despreading and decoding, but also the simulta- 

neous encoding and spreading. 

We consider a coded asynchronous CDMA system over an 

AWGN channel with constant information rate, Rj. Each 
user's transmission rate is Rtx = Rj ■ Q ■ N where 1/Q is 
the convolutional code rate and N is the spreading factor. 

The receiver matches to each signature sequence and performs 
maximum likelihood sequence detection. 

For fixed Ri and Rtx we optimize the Asymptotic Mul- 

tiuser Coding Gain (AMCG) with respect to Q and N. The 
AMCG relates the energy gain for high SNR to the sin- 
gle user uncoded antipodal system, i.e. t] in the expression 

Te = Q{\/2Eb/NoV} where Q(-) is the Marcum-Q function, 
Eb is the information bit energy, and N0 is the one sided noise 
density. We have extended this measure derived in [3] which 
considers Q = 2 and fixed N to arbitrary Q and N. 

The probability of error for the kth user can be 

bounded by V{yk(e)=j]k,min}Q^(2Ebk/N0)r}k(e)} < Ve{k) 

< Eflec EjnD}Q{V(2Ebk/N0)r,k(e)} where C is the 
codebook , e is any valid error sequence for the codeword 
D, r)k(e) is the energy gain of user k when the error event 

e occurs, f\ktmin = mine{?7fc(e)} and Ebk is the energy of 
user k. For high SNR, r]k>min will dominate, hence it is 
the AMCG. In the 2 user case the AMCG is bounded  by 

minj/ (y/E2/Ei,df,n , d//QJ < m.-min < Vk{e) for some 

valid e where E\ and Ei are the two user's energies, £ is 

the sum of the magnitude of the two partial crosscorrela- 
tion, df is the free distance of the convolutional code and 

f(y/E2/E1,dJ,£) = l/2[dt{l + E2/E1)-2ZVE2/E1(ds + l)). 

These bounds for two users are computed for 3 different 
length M-sequences in Fig.l (a) and (b). Plots (a) and (b) 
represent Rtx = 32.ftr and Rtx = 64Ä/ respectively. These 
bounds were computed using the maximum partial crosscor- 

relations over all delays between the two users. Fig.l (a) shows 
that when the partial crosscorrelations approach 1, the system 
with the lower coding rate may not show any improvement. 
However, when the crosscorrelations are high but less than 1, 
as in Fig.l (b), the lower rate codes perform as well as the 
single user detector, i.e. ACMG=ACG=d//Q for all E2/Ei. 

Since high crosscorrelations between signature sequences 
can prevent expected coding gains, we propose spreading and 
despreading in the frequency domain which was considered 
for optical systems in [4].    Because delays appear as phase 
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Fig. 1: In (a), (c), and (d) for Q=8,4,2: dj=2\, 10, and 5, and 
N=4, 8 and 16, and for (b) df =21,10, and 5 and N=8,16 and 32. 
The crosscorrelations £ for Q=8,4,2 are (a): 1.0, 0.71, 0.6, (b): 0.71, 
0.6, 0.35, (c): 1.0, .43, .35 and (d): 0,0,0. 

factors in the frequency domain, we can find sequences for an 
asynchronous system that are both short and have sufficiently 

low crosscorrelations to allow coding gains. 
In this system the encoder multiplies each encoded bit by 

the inverse FFT of a signature sequence that has low crosscor- 
relation in the frequency domain. The decoder matches the 
Fourier transform of each received symbol to the signature 
sequence and sends the output to a maximum likelihood se- 
quence decoder. In Fig.l (c) and (d), we show the bounds 
for the AMCG for two frequency domain codes with con- 
stant rates, Rtx = 32Ri. Fig.l (c) and (d) are computed 
assuming worst case interference for frequency domain M- 
sequences and Hadamard codes, respectively. These codes 
show a great improvement over the time domain codes, and, 

in fact, the Hadamard sequence achieves the single user ACG 
for all E2/E1. Although the Hadamard sequences outper- 

form the M-sequences, there are fewer available Hadamard 
sequences for a given sequence length. 

The asymptotic multiuser coding gain of a CDMA system 

can achieve the single user coding gain when the crosscorrela- 
tions between users are low. However, since low crosscorrela- 
tions between short signature sequences are difficult to obtain 
in the time domain in an asynchronous system, frequency do- 

main signature sequences are a viable alternative. 
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Abstract — We propose an analytical method to up- 
per bound the bit error probability of parallel con- 
catenated block and convolutional codes. 

I. INTRODUCTION 
The so called turbo codes [1], which in the following we will 

call parallel concatenated convolutional codes (PCCC), con- 
sist of two linear, generally simple convolutional codes (the 
constituent codes, CC) linked by an interleaver as shown in 
Fig. 1. In [1], PCCC's with appropriate choices of the CC's 
and of the interleaver have been shown to yield coding gains 
close to those predicted by the Shannon limit, yet keeping the 
complexity of an "ad hoc" iterative soft-decoding procedure 
significantly low and comparable to that of the CC's. These 
results have been further reinforced by [2]. Despite the aston- 
ishing performance of the turbo codes, however, neither seri- 
ous attempts toward a theoretical explanation of the codes be- 
havior/performance nor a sufficient comprehension of the role 
and relative importance of the ingredients of a PCCC have 
appeared in the literature so far. In this paper, we propose 
an analytical method to upper bound the error probability of 
a PCCC, and use it to shed light on important issues raised 
by these new coding schemes. 

II. AN ANALYTICAL UPPER BOUND TO THE BIT ERROR 
PROBABILITY OF PCCC'S 

Fig. 1 shows clearly the discouraging complexity of the at- 
tempts trying to obtain the weight enumerating function of a 
PCCC, especially when the length N of the interleaver is large 
(say 1000-10000) as it should be to yield good performance. 
The only viable solution to the problem seems to pass through 
an appropriate and meaningful way of making independent 
the weights of the parity checks generated by the first and 
second encoders. To this end, we define a uniform interleaver 
as a probabilistic device which maps a given input informa- 

tion sequence of length N and weight w into all distinct ( {* 1 

permutations with equal probability 1/ ({j). Use of this de- 

vice, instead of the actual interleaver, makes the weight enu- 
merating functions A^,l(Z) and A^,3(Z) of the parity checks 
generated by the two encoders, conditioned to a given weight 
w of the input sequence, independent. As a consequence, the 
conditional weight enumerating function of the parity check 
bits of the whole PCCC AZ

P
(Z) can be easily obtained as 

AcP(z) _ A^(Z)-A^(Z) 

' (#) 

and, from it, an upper bound to the bit error probability can 
be written in the form 

N 

P^) < £ JjWWAZp{Z) W=Z=e-R"Eb/No 

'This work was supported by European Space Agency and 
by CNR under Progetto Finalizzato Trasporti, sub-project 

Prometheus. 
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Fig. 1: Parallel Concatenated Convolutional Code '••' 

where Re is the rate of the PCCC. Previous results refer 
to an (N — L,3N) block code equivalent to the PCCC and 
obtained from it considering input information sequences of 
length N — L and codewords of length 3N, where L is the 
constraint length of the CC's, generated by terminating trel- 
lises of the two CC's. Extensions to the case of continuous 
PCCC can be done [3]. 

III. THE ROLE OF INTERLEAVER AND CC'S 

Use of the uniform interleaver permits a separation of the 
effects of the interleaver length and of the CC's on the per- 
formance of the PCCC. Using our analytical tools, we see 
that, for large N and in the limits of the validity of the upper 
bounds, the interleaver provides an interleaevr gain which de- 
creases the bit error probability by a factor 1/N. Moreover, 
we prove that this gain can be obtained only if the CC's are 
recursive convolutional codes, and that this is due to the par- 
ticular weight profile of them, characterized by the fact that 
input sequences of weight w = 1 do not produce error events 
of finite lengths. Finally, by extensive simulations, we validate 
the upper bounds based on the uniform interleaver, showing 
that an interleaver chosen as a random permutation is likely 
to yield bit error probabilities very close to those anticipated 
by the bounds. 

As to the role of the recursive CC's (defined by the generat- 
ing function (1, n(D)/d(D) for the case of rate 1/2 ), we have 
shown that a reasonable design criterion consists in choos- 
ing the polynomial d(D) defining the feedback connections as 
a primitive polynomial, and that the choice of the numerator 
n(D) should aim at maximizing the weight of the parity checks 
for input information sequences of minimum weight w = 2. 
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I. INTRODUCTION 
Several parallel concatenated coding schemes (turbo codes) 
based on multi-memory (MM) convolutional codes (more 
specifically, a (2,1,4,7) code) were recently proposed to 
achieve near Shannon-limit error correction performance with 
reasonable decoding complexity [l]-[3]. On the other hand, 
in many cases of interest, unit-memory (UM) codes have been 
demonstrated to have larger free distances than the MM codes 
with the same rate and the same number of memory elements 
[4]. In this paper, new turbo codes based on the (8,4,3,8) UM 
Hamming code [4] will be developed and shown to possess bet- 
ter performance potential in some senses. The standard turbo 
decoding algorithms, however, do not appear to achieve this 
potential. 

II. ENCODER 
An equivalent systematic recursive generator matrix for the 
UM Hamming code can be obtained by first properly permut- 
ing the columns and then multiplying on the left by the inverse 
of the left-most 4x4 sub-matrix of the original generator ma- 
trix: 

G = [I\P] = 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 
l+D 

1 
D 

l+D 
1 

1 
1 

+D 

D 
l+D 

1 
1 1 
D 
+D 

1 
l+D 

1 
D 

l+D 
1 

The corresponding encoder can be implemented with three 
memory elements. The encoder for the UM turbo (UMT) 
code is similar to those for the MMT codes [l]-[3], except that 
there are multiple inputs to the encoder of the component 
codes. The trellis is terminated using the method of [3]. Since 
the systematic bits from the second encoder are discarded, the 
overall code rate is K/3(K + 4), where K is the interleaver 
size. 

III. THE MAP ALGORITHM FOR MULTI-INPUT 

RECURSIVE TRELLIS CODES 
In this section, a modified MAP algorithm is presented to 
deal with multiple inputs. Let the state of the encoder for 
the (n,k,u) code at time t be St € {0,1,... ,2" - 1}, for 
t = 0,... , L — K/k, where the initial and final states, So and 
Si, are known. The input block ut = (ut,i,... ,ut,k) causes 
a transition from St-I to St, and the corresponding output 
codeword xt = {xt,i,... ,xt,n) is observed over an AWGN 
channel as yt = (yt,i,... ,yt,„), for t = 1,... ,L. The log like- 
lihood ratios of the a posteriori probabilities can be computed 
as: 

A(ut,j) = log E.E.'^V»*)«*-!^)/^) 

at(s) 

ßt{s) = 

E.E./7rJV.«)«*-i(«')/fc(*) 
^slTt{s',S)at-i{8') 

Y,sY,s>Tt{s',s)at-i{s>y 

E8,rf+1(5,8')/?t+1(s') 

fort = 1,... ,L 

for t = L - 1,... , 0 

where, if the transition s' -► s is allowed by input mj — i, 

7t,j(s,s) = Pr{ut,j =i}Pr{yt\St = s,utj =i,St-i = s'} 

rt(s',s)=   ]T   Pr{ut = i}Pr{yt|5« = «,ut = i>5t-i=a'} 

IV. DECODER AND PERFORMANCE 

The decoder structure used is similar to that in [2] except 
that the MAP algorithm in III is applied instead. Numerical 
results are shown in Fig. 1 and summarized as follows: 

• The minimum distance of the (60,16) UMT code with 
the best known interleaver is 14. Maximum-likelihood 
decoding simulation of this code shows a gain of 0.5 dB 
over the (80,16) MMT code [3] which has the same min- 
imum distance. The use of turbo decoding introduces a 
loss of about 1.5 dB. 

• For large block lengths, simulation results show that 
the turbo decoding algorithm converges faster than that 
for MMT codes, but the performance is not as good. 
Comparing these with the transfer bounds computed 
with a double recursion method and a random averaging 
argument [5], a gap of coding gain with turbo decoding 
as in the previous case can be observed again. 
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Figure 1: Performance of unit-memory turbo codes. 
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Abstract - In this paper an analytical approach to newly invented 

Turbo-Codes (TC) is presented. That approach is based on 

evaluating the properties of TC by means of the Minimum 

Hamming Distance (MHD) and the Hamming Distance Spectrum 

(HDS). An algorithm for computing HDS is presented and 

numerical results are discussed. The concept of basic return- 

to-zero sequence is introduced. It is shown how basic return-to- 

zero sequences can be used in the algorithm for computing 

HDS and how it can justify the properties of TC. Numerical 

results of computing MHD and HDS for different TCs are 

presented and verified by simulations. 1 

I. INTRODUCTION 

TC seem to be very attractive for applications in practical 

communication systems, since their error performance is close to 

the Shannon limit [1, 2]. During the last two years some 

modifications of the originally proposed parameters of both the 

encoder and decoder . of the turbo-code, have been proposed, 

which lead to the improvement of the turbo-code performance. In 

most cases the performance of turbo-codes has been evaluated by 

means of simulation. In this paper we show that the properties of 

turbo-codes can be predicted by means of MHD and HDS. We 

describe a method to efficiently calculate the MHD and HDS of the 

turbo-codes, provided that the interleaver size is not larger than 

16x16. This procedure is a modification of the well known Fano- 

algorithm. We introduce the concept of basic return-to-zero 

sequence. We shown how basic return-to-zero sequence can be 

used in the Fano algorithm for computing HDS. We show also how 

the properties of are correlated with basic return-to-zero sequences 

can justify the properties of TC. 

II. DESCRIPTION OF THE SYSTEM 

The scheme of a turbo-encoder is given in Fig. 1 [1]. Turbo-encoder 

consists of two Recursive Systematic Coders (RSC), Interleaver (I) 

and puncturing circuit. Both RSC encoders are identical rate-1/2 

convolutional encoders. In our study we have considered RSC 

encoders: (23,35), (7,5), (5,7), (15,17), (5,7), (1,1)2. The puncturing 

pattern used by us is following: we transmit bit Y0 without any 

change, alternatively every second bit Y1, Y2 is punctured Thus the 

overall rate of the TC is 1/2 and the transmitted sequence is: Y0, Y1, 

Y0, Y2, Y0, Y1 ... . 

III. AN ALGORITHM FOR COMPUTING HDS 

The algorithm used by us for computing HDS of the turbo-codes is 

the modified Fano algorithm. The modification is following: we use 

the fact that in order for a turbo-coder to return to the all-zero-state, 

both RSC encoders must come to the zero state. So, instead of 

applying to the input of the turbo-code arbitrary binary sequences, 

we feed it only with some selected sequences which are known to 

force RSC1 to come to the zero state, so called return-to-zero 

sequences. Basic return-to-zero sequences are defined as those 

return-to-zero sequences which are not a linear combination of other 

return-to-zero sequences. We have proven that for any recursive 

code there exists only one basic return-to-zero sequence. For 

example, for RSC (5,7) the basic return-to-zero sequence is x=[101], 

for RSC (7,5) it is equal to x=[111]. 

Y0 

Puncturing 

Y1 

RSC1 Y0', Y1', Y2' 

Y2 a 
I RSC2 

1This work was partially sponsored by the following grant of the 
National Committee for the Scientific Research: KBN- 
8S50401905. 

2 Generating polynomials are given in the octal notation. 

Fig. 1. The scheme of the turbo-encoder. 

IV. BASIC RETURN-TO-ZERO SEQUENCE 
Basic return-to-zero sequence can always help in rejecting "bad" 
RSC encoders. We have shown that for any TC (whatever the size 
or kind of interleaving is) with RSC (5,7) one basic return-to-zero 
sequence can drive TC to the all-zero-state. For such TC when we 
use the puncturing pattern presented in Fig. 2 the weight of an 
output sequence of TC is always equal to 5. Thus for that particular 
RSC code and puncturing pattern any changes in the size of the 
interleaver or introducing non-uniformity to the interleaver, will not 
lead to the increase of MHD. 

V. CONCLUSIONS 
We have computed HDS for a range of TC, for different RSC codes, 
different interleavers (sizes up to 16x16, both uniform and non- 
uniform).   We   have   also   verified   our   results   by   simulation. 
Conclusions of our study are the following: 
• Simulation results show that analytical approach by using 

MHD and HDS can be used for evaluating the properties of 
turbo-codes. For example for TC with RSC (7,5) and the 
interleaver 1=8x8 the difference between simulation and 
analytical results for BER=10"5 is 0.22 dB for uniform 
interleaving and 0.7 dB for non-uniform one. 

• The number of elements in the HDS which must be taken into 
account does not exceed 3 (sometimes one spectrum element 
is sufficient). For example for TC with RSC (7,5) and uniform 
interleaver 1=8x8 the difference between BER curves for 1 and 
3 (or more) elements is 0.4 dB for BER=10"4 and 0 dB for 
BER=10"6. There is no difference in BER between 3 or more 
elements. 

• BER of the turbo-code can be increased by: 
- increasing the constraint length of the RSC code. For 
example for BER=10"6 and uniform interleaver 1=8x8 the TC 
with RSC (23,35) is better than TC with RSC (15,17) by 3.2 
dB, and outperforms TC with RSC (1,1) by about 5.8 dB. 
- increasing the size of the interleaver. For example for TC 
with RSC (7,5) for BER=10"6 TC with 1=8x16 outperforms TC 
with 1=8x8 by 2.4 dB and TC with no interleaving by 1.6 dB. 
- introducing non-uniformity to the interleaver, 

• For any Recursive Code there exists only one basic retum-to- 
zero sequence. By analyzing the properties of basic return-to- 
zero sequence we may find "bad" codes. The problem which is 
still open is how basic return-to-zero sequence can be used 
for designing TC which would possess very good properties 
(i.e. large MHD value). 
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Abstract— We develop b/n multiple turbo codes and 
an iterative turbo decoding scheme based on an ap- 
proximation to the optimum bit decision rule (MAP). 
For random interleaver size of 16384 bits, a bit error 
probability of 10~5 at a required Eb/N0 of about 0.8 dB 
from the binary-input channel capacity for rate b/n 
was obtained for various turbo codes. Examples are 
given for rate b/n =1/2, 1/3, 1/4 and 2/6 turbo codes 
using component codes with up to 16 states. 

I. INTRODUCTION 

Turbo codes were recently proposed by Berrou, Glavieux and Thiti- 
majshima [1]. We propose rate b/n codes that consist of the parallel 
concatenation of q systematic recursive convolutional codes, with 
random interleavers of size N between rate b/nt, encoders, such that 
n = YH=i ni- Encoding and decoding is done block by block. En- 
coders are forced to the all-zero state at the end of each block by a 
simple termination method [4]. 

II. TURBO DECODING FOR MULTIPLE CODES 

Let Uk be a binary random variable taking values in {0,1), representing 
the sequence of information bits u = (u\ u^b)- This sequence 
is partitioned into N groups of b bits representing input symbols. 
Bit-by-bit, rather than symbol-by-symbol, interleaving is performed. 

The modified MAP algorithm [5] provides the log likelihood ratio 
Lk = log f "'^ given the received symbols y, where 

,    ,   Eu,ut=ip(yiu)I~U^("j) ,,   p{uk = i)   ... 
Lk = lo8 v'——D,  i  ^n      D,   ^ + lo8 T7 m     (1) 

Eu,„=» f*(yl») Um P{u')        P(Uk = 0> 

Consider the parallel concatenation of q codes. The combination of 
permuter and systematic recursive convolutional code is considered 
as a block code with input u and output xy-, j = 1,2 q. The 
components of x; may be binary or non-binary. For the non-binary 
case multilevel modulation is used, resulting in turbo trellis coded 
modulation (TTCM). The corresponding received sequences are y,-. 

The optimum bit decision rule (MAP) for data with uniform prob- 
abilities is 

Lk = log 
£u,„4=1 n ■=,''(y» 

(2) 

An approximation to .P(y;|u) was used in [4] to obtain (2) as Lk = 
£?

=i Ljk, where L;t's are iterative solutions to a set of non-linear 
equations that can be efficiently computed using the MAP algorithm 
with pre-interleaving and post-deinterleaving as 

L%+l)=log- 'U,"k ^(yyWrW .«.a z,<™) 

Eu,ut=op(y»n,Y*e -El L 
(3) 

f(»0 
> Ljk ■ fork= 1,2,..., Nb and j = 1,2, ...,<?. ThenL,t = limm_ 

All initial conditions are set to zero, i.e. Lfk = 0. 

'The research described in this paper was performed at the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the National 
Aeronautics and Space Administration. 

III. PERFORMANCE 

The bit error rate performance of these codes was evaluated by using 
transfer function bounds [3] [2]. In [2] it was shown that transfer 
function bounds are very useful for signal-to-noise ratios above the 
cutoff rate threshold and that they cannot accurately predict perfor- 
mance in the region between cutoff rate and capacity. In this region, 
the performance was computed by simulation. 

The figure below shows the performance of turbo codes with 
the following generators: For two K = 5 constituent codes, 
0-,gb/ga,gc/ga) and (gb/ga), with ga = (31)octah gb = (33)octai 
and gc = (25)„„fl/; For three K = 3 codes, (l,gb/ga) and (gb/ga) 
withga = (l)octai andgt = (5)oc/a/; ForthreeK = 4codes, (1, gb/ga) 
and (gb/ga) with ga = (13)oc(a, and gb = (11W- 

Further results at BER=10~5 were obtained for two constituent 
codes with interleaving size N = 16384 as follows. For a rate 1/2 
turbo code using two codes, K = 2 (differential encoder) with {gb/ga) 
where ga = (3)oc(a/ and gh = (l)oc(a;, and K = 5 with (gb/ga) where 
ga = (23)octai and gb = (33)DCM; the required bit SNR was 0.85 dB. 
For rate 1/3, we used two K = 5 codes, (1, gb/ga) and (gb/ga) with 
ga = (23)octa, and gb = (33)oc/a, and obtained bit SNR= 0.25 dB. 
For rate 1/4, we used two K = 5 codes with (1, gb/ga, gc/ga) and 
(gb/ga) with ga = (23)„„a/, gb = (33)octal and gc = (25)oclai and 
obtained bit SNR = 0 dB. For a rate 2/6 turbo code each constituent 
code is constructed from two parallel AT = 3 codes (1, gbi/ga> gd/ga) 
and (1, gbi/ga, gal go) where the output of gb\/ga is added to the 
output of gbi/ga and the output of gc\/ga is added to the output of 
gd/ga-   ga   =  (l)octah gb\   =   (6)„«a/> gc\   =   0)octal> gbl   =  (7)octah 
gc2 = (4)oclal. The resulting code has 16 states with two inputs and 
four outputs. The second code is identical to the first one but not using 
the systematic bits. BER=10-5 was obtained at bit SNR=0.2 dB. 

N=4096 
Code Rate=1/4 

E^o.dB 
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Abstract - The performance of the 'turbo' coding scheme is 
measured and an error floor is discovered. These residual errors 
are corrected with an outer BCH code. The complexity of the 
system is discussed, and for low data rates a realizable system 
operating at Eb/N0 below 0.2 dB is presented. 

I. INTRODUCTION 

Recently it has been discovered that a very good performance can be 
achieved with iterative decoding of a parallel concatenation of small 
convolutional codes [1]. This coding scheme is named 'turbo' coding. 
The basic idea is to encode the information sequence twice, the second 
time after a pseudo-random interleaver, and to do iterative decoding 
on the two encoded sequences in two decoders. The system can be 
regarded as a kind of product code. Due to the information exchange 
among the two decoders the decoding algorithm must provide soft 
output. We use the MAP algorithm [2] which actually calculates the 
a posteriori probability of each information bit. The convolutional 
codes are used in a recursive systematic form since it gives an im- 
proved performance with this system. 

II. THE ERROR FLOOR 

The first simulations were based on the recursive systematic code 
(1,1+D4/1+D+D2+D3+D4). We use the same code for both 
encoders but for the second one the information sequence is not 
transmitted. This gives an overall rate of 1/3. We use a block length 
of 10384 information bits. For all simulations presented in this paper 
all numbers including the channel input are represented as floating 
point values. 
As seen from Figure 1, the results achieved with this system are very 
promising since the Bit Error Rate (BER) after 18 iterations is close 
to 10" already at 0.2 dB. Unfortunately the BER decreases very 
slowly for improved SNR. What we see are many frames with only 
a few bit errors. This is due to the low free distance of this coding 
scheme. The free distance of this system might be as low as 10. The 
actual profile depends on the specific interleaver. 
A search for better interleavers might give improved performance. 
However, the main problem is combinations of two low weight words 
for the basic code. Consequently the performance with interleaver 
structures like block interleavers is quite poor, and a search among 
the random interleavers can only remove a couple of the worst low 
weight patterns. 

III. THE EXTENDED 'TURBO' CODING SCHEME 

An obvious way to remove the error floor (or saddle) is to use an outer 
code. Since the bursts consist of very few bit errors, we will use a 
(10384,10000) BCH code capable of correcting 24 errors. This outer 
code corrects all the residual errors, but we loose 0.16 dB due to the 
decreased rate. With this system the Probability of Frame Loss (PFL) 
is below 10"4 at 0.4 dB. 

Improved performance can be achieved with a system based on rate 
1/3 codes with only 8 states. This gives rate 1/5 for the 'turbo' coding 
scheme. In this case we have also used the outer BCH code. 
With this system we have simulated 25,000 frames without frameloss 
at 0.1 dB. This means that the 90% confidence level for the PFL is 
below 10~4. The BER is shown in Figure 1. 

IV. COMPLEXITY 

The performance must of course be compared to the complexity. We 
have estimated the number of operations needed in the MAP algorithm 
for recursive systematic codes and conclude that this is about 4 times 
the number of operations in a Viterbi decoder. This means that the 
number of operations for 18 iterations with M=3 codes is in the order 
of 212. We believe that with a logarithm quantization an 8 bit represen- 
tation is sufficient for the internal representation in the MAP decoder. 
With this quantization and channel input quantized in 16 levels we 
expect a performance degradation about 0.1 dB. 
For low data rates the 'turbo' coding scheme can be implemented with 
only one MAP decoder (used 2x18 times), and the decoder for the 
BCH code can be implemented on a DSP. Further the calculations 
inside the MAP decoder can be serialized, using the same hardware 
for each state. 
This means that for data rates below 100 kbit/s the complexity of this 
system is moderate, and the extended 'turbo' coding scheme might 
be an alternative to ordinary concatenated systems. 
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Abstract—A new bandwidth efficient interleaver is de- 
scribed for turbo codes when used to decode short frames 
of data using the MAP algorithm. Applications in rate 
compatible turbo codes and encryption are presented. 

I. INTRODUCTION 

It is well known that the interleaver design is the key to 
achieve the best performance for turbo codes [1J . For very 
large frame sizes, random interleavers are near optimum. For 
small frame sizes - for which the interleaver depth is less than 
ten times the constraint length of the component convolu- 
tional code - a random interleaver is not the best choice. In the 
following, we consider a three dimensional turbo-code 
(3D-TC) shown in Figure 1 which has the feedback poly- 
nomial equal to all ones. 

II. DESIGN CRITERIA 

In order to use a maximum a posteriori (MAP) decoding 
algorithm [2], the initial and the final state of each one dimen- 
sional encoder should be fixed for all three coded sequences. 
This could be achieved by appending three different "tails", 
one for each coded sequence which will reduce the bit rate. A 
new interleaver type called a "simile" interleaver was de- 
scribed in [3] for a two-dimensional turbo-code which needs 
only one "tail" to be appended. A similar method will be used 
to create a "simile" interleaver for a 3D-TC. 

We denote v the encoder memory size of each one dimen- 
sional encoder. We can rearrange the whole block of N in- 
formation bits in mod (v + 1) sequences. The important ad- 
vantage in doing this is that from the point of view of the final 
encoder state, the order of the individual bits in each sequence 
does not matter as long as they belong to the same sequence. 
The "simile" interleaver has to perform the interleaving of the 
bits within each particular sequence in order to drive the en- 
coder into the same state as without interleaving. In [3] we de- 
scribed a particular block helical interleaver. This can be ex- 
tended to 3D-TC by assuming that the number of columns is 
a multiple of (v + 1). The information sequence is stored row- 
wise and the two interleaved sequences start from the left 
corners: bottom left corner and up the diagonal for interleaver 
P and top left corner and down the diagonal for interleaver lh. 

A second criteria is needed if the coded bits are punctured: 
each information bit should have associated with it, after 
puncturing, one and only one coded bit. In this way the correc- 
tion capability of the code is uniformly distributed over all in- 
formation bits. This type of interleaver was introduced in [4| 
for a two dimensional turbo-code and was called an "odd- 
even" type of interleaver. 

Using a block helical interleaver, if the number of columns 
is a multiple of the dimension order, which is 3 for3D-TC. we 
can multiplex the coded bits of the straight sequence whose 
index in time modulo 3 is zero with the interleaved Ia coded 
bits whose index in time modulo 3 is one and with the inter- 

leaved Ih coded bits whose index in time modulo 3 is two. In 
this way all information bits have associated with them one 
and only one coded bit. 

III. APPLICATIONS 

The coding gain can be varied without changing the con- 
volutional code. In a good channel a rate half turbo code com- 
posed of the uncoded sequence {x} and the punctured se- 
quence (y/ya( can be used. If the channel becomes noisier a 
rate third code can be obtained by transmitting {x}, {y} and 
(ya) sequences. It was shown in [5] that the probability of 
error is proportional with N~'. For an even worse channel a 
rate quarter code can be used by transmitting the {yb} se- 
quence which would make the probability of error propor- 
tional with N~2 and so on. As in the case of rate compatible 
convolutional codes, the same turbo decoder can be used in all 
cases. 

In Figure 1 we use the sixteen state turbo code (v=4) [1]. 
Each interleaver is made from five pseudo random inter- 
leavers with different generator polynomials which can start 
from different states produced by a long pseudo random gen- 
erator. The outputs of the turbo encoder are buried in noise 
whose variance is known and can be changed each frame or 
even in each interleaved sequence. The long pseudo random 
generator which generates the starting states of the inter- 
leavers together with the variance of the noise are the keys to 
the proposed encryption system. We assume these keys to be 
secret and known at the receiver end. This principle is similar 
with that for CDMA transmissions. 
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Figure 1. Three dimensional turbo encoder 
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Abstract — An optimal interleaving between two 
component encoders of a turbo-code is proposed. For 
any real constructable interleaver the optimality crite- 
rion is given. For component codes (CC) with known 
weight distribution (WD) the WD of the turbo-code 
with perfect interleaving is calculated. As CC's the 
random codes and terminated convolutional codes 
are considered. It is shown that the often observed 
"break" in the performance curves for turbo-codes is 
a result of their "broken" WD. 

I. INTRODUCTION 

Any codeword of the recently introduced turbo-codes [1] has 
the following structure: [T|JA|I'A], where I is the fc-tuple 
of the information bits, A is the k x r binary matrix, and 1' 
is a version of I with interleaved (permutated) coordinates. 
As CC's both systematic block codes and convolutional codes 
with terminated encoders have been in use until now. The 
rate of the whole code in both cases is R = k/(k + 2r). The 
linearity of turbo-codes is shown in [2]. 

II. OPTIMAL INTERLEAVING AND WD OF WHOLE 

CODE WITH KNOWN WD's OF COMPONENT CODES 

Dispose all 2k — 1 nonzero codewords of one CC into k groups 
so that each ith (i = 1, k) group consists of ( J codewords of 
weight i in the information part. Note, that if the information 
vector T belongs to the ith group, then the permutated vector 
1' will be in this group too. 

The aim of interleaving is to produce (by manipulating the 
weights of the second redundancy part) the whole codewords 
with the overall weights as large as possible. It means that 
within each group the first redundancy part with small weight 
should be associated after interleaving with a second redun- 
dancy part with large weight and vice versa. 

Let the WD of CC be known in the form A(i,j), which 
denotes the number of codewords with Hamming weight i of 
the information bits and weight j of the redundancy bits. Wi- 
thin each group dispose the codewords with non-decreasing 
weights of the redundancy part so that for any I holds: 

j{i,l + l) > j(i,l), where j(i,l), I = l,(f), is the weight 
of the redundancy part of the Ith. codeword in the disposed 
ith group. Note, that for any i and I the numbers j(i, I) are 
determined by A(i,j). The Ith. codeword of the turbo-code in 
this group has then weight 

W(i, l) = i + ;(«'. 0+i(«'.(;)-< + !)• (1) 

III. TURBO-CODES WITH RANDOM CC'S 
The random (it + r, k) code has the WD A{w) = C=+r) /2r, 
which is obtained from the equation between the probability 
of occurrence of (k + r)-tuple and of codeword both of weight 
w. However, for applying (1) the WD in the form A(i, j) is 
required. From a similar equation for each group we get: 

Mi,3)={%)£- (2) 
Because of Vandermonde convolution:     ^2    (j n) = ( + r), 

i+j = w 

the code with WD (2) is a random code too. 
Combining (2} and (1), we see that for each group i (due to 

the symmetry (r) = LI,)) each parity-weight j is associated 
after f.o.i. with a second parity-weight r — j. Thus, Vi, I : 
W(i,l) = i + r. Furthermore, A(i,r) = (*), A(i,j / r) = 0 

and the WD of the whole code is: A(0) = 1, A(w) = (w
k_r) for 

r < w < k + r, and A(w) = 0 otherwise. Hence, the minimum 
distance is r + 1, which increases with increasing k. 

IV. CONVOLUTIONAL CODES AS CC'S 
WD of these terminated codes for great k and rate R = 1/2 
can be written as A(i, j)/Q) = (^)p3

it(l - Pi,t)r_J, where 

piit = (1 - (1 - 2i/k)J<-t))/2, for feed-back encoders J{t) is a 
linear function of the time t = l,k and for feed-forward en- 
coders J(t) it is a constant J equal to the number of nonzero 
terms in the generator polynomial (p;,t = p; in this case). Ac- 
cording to the DeMoivre-Laplace theorem the right-hand side 
of the last WD can be approximated by a Gaussian distribu- 
tion: A{i,j)/ß) » exp(-(i-|iOa/(2ff?))/0WäF). with 

mean m = rpi and variance a\ = rp,(l — pi), where for feed- 
back encoders p; is the time average of p;,t. 

Due to the symmetry of the Gaussian distribution around 
its mean, one sees that after applying the f.o.i. rule (1) all co- 
dewords of the turbo-code within the ith group have weight 
W(i, I) fa i + 2/f,, while the total number of codewords in this 
group is (*). In case of feed-forward encoders W(i, I) « i+2Ji 
for small and large i and W(i, 1) « i+r for i near to fc/2 (which 
corresponds to random codes). Hence, the minimum distance 
is 1 + 2J. For feed-back encoders the minimum distance incre- 
ases with increasing k and W(i, I) « i + r for all i except very 
small ones. Codes with these encoders are thus near to ran- 
dom codes. The great distinction between values W(i, I) and 
between number of codewords for small and central i results 
into a "break" in the performance curves. 

Using the proposed WD's, one can obtain the bounds on 
error rate for turbo-codes like union bounds in [2]. 

Counting all codewords, from (1) we immediately obtain the 
WD of the turbo-code in the form A(i,j), which yields also     [^ 
the number A(w) of codewords with weight w. 

An interleaving, which leads to the same WD of the turbo- 
code as can be obtained from (1), will be called a fully optimal 
interleaving (f.o.i.). W 

Viewing W(i, I) for each i as a random variable of /, the 
criterion for the optimal interleaving can be formulated as a 
problem of minimizing its variance: crf{W(i, 1)} —► min. 
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Abstract — The idea of iterative decoding of two- 
dimensional systematic convolutional codes — so- 
called turbo-codes — is extended to threshold deco- 
ding, which is presented in "Soft-In/Soft-Out" form. 
The computational complexity of the proposed deco- 
der is very low. Surprisingly good simulation results 
are shown for the Gaussian channel. 

I. PRELIMINARIES 
We restrict ourselves to binary data. A convolutional en- 
coder with rate Rc = k/(k + 1) produces the output bits 

iL  io at time u = 0,1, 2,  During the transmissi- 
on the noise sequence eL ,..., ei ' corrupts the coded bits. 
This sequence is statistically independent from digit to digit. 
Thus, we receive the sequence x\!' = x\!' © ei'% 1 < i < k +1, 
where © denotes the modulo-two addition.  We assume that 
an error has occurred, if e£' = 1, and e„   = 0 otherwise. 

For threshold decoding it is important to provide informati- 
on about the error symbol e„ . The a posteriori log-likelihood 
ratio  for  this  symbol  can  be  calculated   as   L(e„  |j/u )   = 

ln Pyit°uhl = 4%a • l»«°l +L(£])> where y™ is the mat- 

ched filter output associated with the binary value xL' , Es/No 
is the signal-to-noise ratio, a is the fading amplitude, and 
L(e\i ) is the a priori log-likelihood ratio for symbol e« . 

Following [1], we shall use a special operation EB, which 
denotes L(vi) EB L(v2) = L(v\ © V2) for log-likelihood ratios of 
statistically independent binary random variables v\ and «2. 

II. SOFT-IN/SOFT-OUT THRESHOLD DECODING 
Soft-In threshold decoding is well-known as A Posteriori Pro- 
bability (APP) decoding [2]. The objective of Massey's deco- 

der is to maximize the probability P(e\>'
) = £\{A,}) that the 

error symbol ey, 1 < i'. < k, has a certain value £ G {0,1} 
under the condition that we have a set {A.l'}, 1 < j < J, 

of parity checks orthogonal on e^.   Each parity check Ay 

a special selec- 
',,aJ   associated 

can be calculated as modulo-two sum of ey, 
tion of error symbols e;,   , 1 < a < k, s € S^ 

with the information bits xy', and the error symbols t\,    ', 

s' g Sy      ' C Ua=i •*}      > associated with the parity check 

bits Xj      . The sets Sj'a> and Sj' consisting of integers 
are depending on the generator polynomials of the code. The 
soft output of the decoder can be written as 

L(4')i{^°}.4,')) = D1-^-f0,jS' Vl-° + 4 
3 = 1 

No vP 1+£(4°), 

where 

J 

The 

extrinsic 
channel a priori 

ffl     ^H  L{e^\y^)m L{eT%T\ 
=s(i,fc+i) 

operation can be approximated by sign and minimum 
operations. The value 1 — 2A^' is equal to +1 or —1. Thus, 
we need only compare operations and additions to calculate 
the extrinsic term. 

III. ITERATIVE ("TURBO") DECODING 

We can split the soft output into three terms, namely into 
the so-called extrinsic information representing the influence 
of the error bits orthogonal on the current bit e^ , the soft 

output of the channel, and the a priori value £(eQ ). If a 
priori information about the error bits is available, it is also 
used in calculating the weights vrp. Only the extrinsic value 
(the information produced by the previous decoder) should 
be passed on as new a priori value to the next decoder. The 
structure of the codec (with a random interleaver between two 
encoders for self-orthogonal codes) corresponds to [3]. 

IV. SIMULATION RESULTS 

The plots in the Figure show the achieved bit error rates using 
up to 20 iterations over a Gaussian channel (code rate w 1/2, 
length of interleaver 9990, two component codes with J = 3). 
16 EB operations and 8 additions are needed per information 
bit and iteration for calculating the soft output. 
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The "break" in the curves after enough iterations is the re- 
sult of the weight distribution of the used feed-forward com- 
ponent codes [4]. 
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Abstract— The Efficient Reservation Virtual Circuit (or 
ERVC) protocol is a novel connection control protocol 
designed for constant-rate delay-insensitive traffic in 
gigabit networks. In the ERVC protocol, session du- 
rations are recorded and capacity is reserved only for 
the duration of the session, starting at the time it is 
actually needed. The protocol also has the "reserva- 
tion ahead" feature, which allows a node to calculate 
the time at which the requested capacity will be avail- 
able and reserve it in advance, thus avoiding wasteful 
repetition of the call setup phase. In addition, the 
protocol is robust to link and node failures, and al- 
lows soft recovery from processor failures. 

I. INTRODUCTION 

The ERVC protocol is one of the two candidate protocols that 
we are considering for implementation in the 40 Gbit/s ATM- 
based fiber-optic Thunder and Lightning network currently 
being developed at UCSB. In designing the connection and 
flow control algorithms for this network our objectives were 
to ensure lossless transmission, efficient utilization of capac- 
ity, minimum pre-transmission delay for delay-sensitive traffic, 
and packet arrival in correct order. To meet these objectives, 
we have proposed the ERVC protocol for constant-rate traf- 
fic, and the Ready-to-Go Virtual Circuit (or RGVC ) proto- 
col for best-effort traffic and traffic with little delay tolerance. 
The RGVC protocol, described in [1], uses back-pressure and 
requires buffering at intermediate nodes, whereas the ERVC 
protocol, described in [2], uses reservations and requires little 
buffering at intermediate nodes. 

II. WHY THE ERVC PROTOCOL ? 

In standard reservation schemes (abbreviated SRVC) the ca- 
pacity required by a session at an intermediate node is reserved 
starting at the time the setup packet arrives at the node. This 
is inefficient since the capacity reserved will actually be used 
at least one round-trip delay after the arrival of the packet at 
the node. This is because the setup packet has to travel from 

the intermediate node to the destination, an acknowledgement 
has to be sent to the source, and the first data packet of the 
session has to travel to the intermediate node. Over long 
transmission distances, the round-trip propagation delay may 
be comparable to, or even larger than, the holding time of a 
session. In particular, if a typical session requests capacity 
r bits/sec, and transfers a total of M bits over a distance of 

L kilometers, then the maximum percentage of time that the 
capacity is efficiently used in a SRVC protocol is 

(1) 2Lc    .    M ' 
rj      '     r 

Research supported by ARPA under Contract DABT63-93-C- 
0039 

where cjt] = 5 /is/km is the propagation delay in the fiber. 
Typical values of these parameters for the Thunder and Light- 

ning network are r = 10 Gbit/s, M - 0.5 Gbit, and L = 3000 
km (coast-to-coast communication), which yields e = 0.625. 
In contrast, the efficiency factor e for the ERVC protocol can 

be as large as e = 1, independently of the parameters r, L, 
and M. 

The "reservation ahead" feature of the ERVC protocol al- 

lows sessions to reserve capacity in advance for use at a later 
time. Thus, if capacity is available for a session starting at 

a time that is within the delay that the session can tolerate, 
the call is accepted on its first attempt. This feature, there- 
fore, avoids unnecessarily prolonged call setup phases, reduces 

a session's susceptibility to blocking, and leads to efficient uti- 
lization of the available capacity. 

III. BASIC DESCRIPTION OF THE PROTOCOL 

In the ERVC protocol, each network node keeps track of the 

utilization profile of each outgoing link, which describes the 
residual capacity available on the link as a function of time. 
The utilizatio profile is stored as a linked-list of records, and 

is updated efficiently. Each intermediate node reserves the 
required capacity starting at the time at which this capacity 
will actually be used (which is at least one round-trip delay 
after the arrival of the setup packet at the node), and for time 

equal to the session duration. If the session duration is un- 
known, it is treated as infinite, and capacity is reserved for 
that session for an unspecified duration (as in standard reser- 
vation schemes). If the capacity is not available at the time 
requested, the setup packet may make a reservation starting at 
the first time the capacity becomes available, if the session can 
tolerate the delay. Since, capacity is blocked for other sessions 
only for the duration of the call and is available for the remain- 
ing time, this allows a considerably greater number of sessions 
to be served. It also avoids the wasteful repetition of the call 
setup process, because it enables a session to reserve the re- 
quired capacity in its first attempt, possibly at a time later 
than the requested time. If adequate capacity is available at 
every intermediate node, the source eventually receives an ac- 

knowledgement from the destination and begins transmitting 
data. If the time at which adequate bandwidth first becomes 
available is exceeds the delay tolerance of the session, the call 
is blocked and is reattempted later, probably via a different 
path. The ERVC protocol requires a pre-transmission delay 
at least equal to the round-trip propagation delay between the 

source and the destination (as all reservation protocols do). 
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Abstract — We introduce the spatial coherence 
quality of service requirement for real-time point- 
to-multipoint communications in distributed systems. 
The notions of multicast end-to-end delay and global 
jitter are denned and their relationships with the spa- 
tial coherence are described. 

I. Introduction 
As there is an increasing effort among communications system 
designers to provide communications applications with more 
and more elaborate services, coming to a real-time multicast- 
ing application in which a message sent from a source to a set 
of sinks is required to meet specified time and geographical 
(spatial) constraints, the underlying communications systems 
should allow spatial coherence quality of service requirement. 
We improve the steadiness and tightness metrics, defined as 
functions of maximum and minimum individual point-to-point 
delays [1], to provide spatial coherence guarantee. The next 
section introduces the notions of multicast end-to-end delay 
and global jitter and then gives their relationships to the spa- 
tial coherence. In section III, three deterministic schedul- 
ing policies for point-to-point real-time communications are 
graded with respect to their suitability to spatial coherence. 

II. Multicast End-to-end Delay, Global Jitter 
and Spatial Coherence 

Given a data packet transmitted over a multipoint connection, 
the multicast end-to-end delay is defined as an N-dimensional 
vector d= (d1,d2,...,dN), where N is the number of elements 
in the recipient set, and di is the ith individual end-to-end 
delay.  The scalar value of the multicast end-to-end delay is 

derived form the modulus of vector d as d = -)= \/Y^k-i(dk)2 ■ 
It is a scalar function of variables di, d2,..., dN. The infinites- 
imal variation in the value of d is then derived as : 

AT 

1    \"^ dk 1 
"-.8dk (1) 

*=i 

In the above equation, the term 8dk of the righthand part 
is the individual delay jitter for sink k {jk). The lefthand 
part, 8d, is the global delay jitter that takes into account all 
the individual delay jitters of the multicast connection. It 
will further denoted as js. Equation 1 is then rewritten as 
3s = -^J2k=i ~<t-Jk- The spatial coherence is defined as a 
measure of the skew among the time instants at which a mes- 
sage transmitted over a real-time multicast connection is re- 
ceived at the different sinks. The spatial coherence is achieved 
when individual end-to-end delays have an equal value, in 
which case fracdk,d = 1 for all k, 1 < k < N. Hence, in 
order to guarantee spatial coherence, the ratio fracdk, d must 
be kept as close a possible to unity. In other words, the fol- 
lowing double inequality should hold : 

i-C<£<i + C   (2) 

1This work was done in the framework of the IMAG project 
RACINES 

Where ( is a positive scalar very close to zero. From the above 
definition of the global jitter, and imposing a bound Js on it, 
we derive equation 3. 

-^(i-o£;*<^<j=(i + c)£; 
y/N 

(3) 
*=1 ' " k=l 

Assuming that ( is close to zero, the above equation sim- 
plifies to: 

N 

Jsy/N=Y^jk (4) 
k=l 

From which the bounds on individual delay jitters can be 
solved. 

III. Deterministic Scheduling Policies 
We consider three deterministic scheduling policies for point- 
to-point real-time communications : 1)- the Earliest Due Date 
for Jitter (EDD-J) [2], 2)- the Stop & Go (S & G) [3] and, 
3)- the Hierarchical Round Robbin ($]em HRR) [4]. Each 
mechanism is graded, in the range 0 to 3, according to three 
criteria: a)- the suitability to guarantee throughput or bit 
rate, b)- the suitability to guarantee end-to-end-delay and, c)- 
the suitability to spatial coherence as a result of the previous 
two criteria. The scores are presented in the following table. 

EDD-J 
S & G 
HRR 

Throuput Delay Spatial Coherence 

IV. Conclusion 
From three examples of real-time point-to-point scheduling 
techniques, we showed how spatial coherence is achievable 
form the observance of individual end-to-end delay and jitter 
bounds. Thus the research results in real-time point-to-point 
communications can easily be extended to address the issue 
of spatial coherence quality of service requirement of real-time 
mult-casting applications. The case of statistical traffics and 
statistical multicast real-time requirements can be dealt with 
in an approach similar to the one we used for deterministic 
traffics and requirements. 
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Abstract — Peakedness was originally developed by 
teletrafflc engineers as a tool for characterizing call 
arrival processes at a trunk group. We generalize 
the peakedness theory to include a class of stochas- 
tic models used in studies of high-speed networks and 
apply it to the approximate analysis of a statistical 
multiplexer. 

I. INTRODUCTION 

In networks based on the Asynchronous Transfer Mode 
(ATM), information is transmitted asynchronously over high- 
speed links in the form of 53-byte units called cells. Accurate 
traffic characterization is a crucial step in performing network 
resource allocation and dimensioning. 

II. GENERALIZED ARRIVAL PROCESS 

Define a rate process {Rt,t > 0} to be a strictly stationary 
random process with finite, nontrivial first two moment mea- 
sures. The process {Rt,t > 0} is to be understood in the 
generalized function sense with the interpretation that Rtdt 
represents the amount of work arriving in the infinitesimal in- 
terval [t,t + dt). The generalized arrival process is then defined 

by 

Nt= f 
Jo 

Rrdr, (1) 

where Nt represents the amount of work arriving in the inter- 
val (0,*]. 

The standard arrival process defined as a stationary point 
process is a special case with 

Rt = Y\bi S(t-Ti), 
=i 

(2) 

where bi is the number of arrivals at the ith arrival epoch, Ti, 
and 6(t) is the Dirac delta function. Another special case is 
the discrete-level fluid process with 

Rt ±*-*{£$s)- (3) 

where /; is the fluid flow rate, Ti is the epoch of the ith tran- 
sition and rect(t) = u(t) - u(t -1), where u(t) is the unit step 
function. 

III. GENERALIZED PEAKEDNESS 

We introduce a concept of peakedness for a general arrival 
process as defined by (1). The arrival process is offered to an 
infinite server system which is represented by an i.i.d. process, 
{Dt, t > 0}, with marginal cdf F. Define 

/   ^{D^t-uyRudu, 
Jo 

with the following interpretation: In the interval [u,u + du), 
Rudu units of work are offered to a new server, introduced at 
time u, which removes this work from the system after a du- 
ration Du- Then St represents the amount of work present in 
the system at time t. The peakedness functional with respect 
to the service time cdf F is defined by 

(4) 

1The first author has been supported by an NSERC Postgradu- 
ate Scholarship. 

rpn      ..      Var[5t] 
(5) 

For the case of an orderly point process, the definitions (4) 
and (5) reduce to the standard concept of peakedness. 

The following result of Eckberg [1] extends to our general- 
ized notion of peakedness: 

z[F] = 1 + [k(x)-XS(x)]F*(x)dx. (6) 

Here, F* is the autocorrelation function of Fc = 1 — F, 
ji-1 = J°° Fc(x)dx is the mean service time, A = E[Rt] is 
the mean arrival rate, and fc(r) = Cov(Rt+r,Rt) is the co- 
variance function of the rate process. 

IV. APPLICATION 

The generalized peakedness can be obtained in closed form 
via (6) for a large class of stochastic traffic models, including 
the popular Markov modulated fluid models. In particular, 
the peakedness function of a Markov on-off fluid with peak 
rate r, mean on time /3_1 and mean ojfftime a-1 with respect 
to constant service time distribution is given by 

Zconst\P) — 
2rß 

(a + /3); 
.[«+/3 + ^(l-e-(-+«/")]. (7) 

Peakedness can also be estimated empirically through mea- 
surements of an actual traffic stream and then used to con- 
struct a stochastic traffic model. 

Lee and Mark [2] propose a method for approximating a 
general arrival process with a more computationally tractable 
superposition of two types of on-off Markov fluid sources by 
matching central moments of the rate process Rt and an in- 
dex of dispersion measure. Since the peakedness function con- 
tains strictly more information about the arrival process than 
the index of dispersion, a more accurate traffic characteriza- 
tion can be achieved by using the peakedness function (7) to 
perform the match. We demonstrate the effectiveness of our 
approach with an application to the analysis of a statistical 
multiplexer. 

REFERENCES 

[1] A. E. Eckberg, "Generalized Peakedness of Teletraffic Pro- 
cesses," Proc. 10-th International Teletraffic Congress, Mon- 
treal, Canada, 1983. 

[2] H. W. Lee and J. W. Mark, "ATM Network Traffic Character- 
ization Using Two Types of On-OfT Sources," INFOCOM '93, 
pp. 152-159, 1993. 

42 



Fault Detection in Communication Protocols using Signatures 
G. Noubir, K. Vijayananda, P. Raja 

Swiss Federal Institute of Technology, Lausanne, 
Computer Engineering Department, EPFL-DI-LIT, 

noubir, vijay, raja@di.epfl.ch 

Abstract — Run-time fault detection in communica- 
tion protocols is essential to detect faults that cannot 
be detected during the testing phase. In this paper, 
we use a polynomial-based signature function to de- 
tect run-time faults in communication protocols. 

I. INTRODUCTION 

Signature Analysis [2] and FSM methods [4, 1] are two pop- 
ular methods that are used to verify the control flow of pro- 
grams. Run-time fault detection in communication protocols 
is essential to detect faults that arise due to coding defects, 
memory problems and external disturbances. In this paper, 
we summarize the results presented in [3]. We propose a new 
signature function which is based on polynomials, to detect 
run-time faults in communication protocols. Every state has 
a signature which represents the signature of all paths leading 
to that state and this is stored in a static signature table. The 
run-time path is transformed into a number (signature) using 
the signature function and compared with the static signature 
table for its correctness. While the FSM table has at least two 
dimensions, the static signature table has only one dimension. 

II. SIGNATURE GENERATION 

Let A = (Q, E, 6)be a FSM with a state 50 such that it has 
a predefined signature equal to zero and all the other states 
are reachable from S0. The signature function is a polyno- 
mial with the values of states and events as coefficients and 
maps every path beginning at state 50 into a value from an 
algebraic field F. For any two paths Cx and C2, the signa- 
ture function must satisfy: 3p < 1; Prob[Signature{Cx) = 
Signature(C2)\Ci ^ C2] < p, where p is defined as the alias- 
ing probability of the signature function. We use three kinds 
of signature depending on the availability of the state and 
event information. They are full-path, event, and state 
signatures. The polynomials associated with these signatures 
are given below. The signature is computed by evaluating the 
polynomial at a given point x0. 

Full-path: Pc(x) = J27~o(»i^n~i) + ^"-'M) + sn 

State: Pc(x) = J^"1 ,iS»-' + Sn 

Event: Pc{x) = J™"1 e,-s' 
where:   Si\   state value, e,:   event value, n:  length of the 

state path and x:   a number from a given Galois field F. 
The following theorem gives an upper bound on the aliasing 
probability of the signature function. 
Theorem 1  Prob[Signature(C1)=Signature(C2) | d # C2] 
= w\ 

Corollary 1   The probability that an illegal path is undetected 
is equal to -rpr 

S:  state value 
Sg: Signature before 

entering the state 

Fig. 1: Event-State assignment example. 

When many paths lead to the same state, they are called par- 
allel paths. Parallel paths should result in the same signature. 
This will reduce the complexity of signature verification. This 
constraint is used in generating the system of linear equations 
which can be used to assign values to the states and events 
(state-event assignment problem) [3], 

III. EXAMPLE 
We explain the fault detection technique using the FSM shown 
in Fig. 1. Solving the state-event assignment problem for x = 
2, we have Sj = 1, S2 = 2, S3 = 3, 54 = 4, a = 1, fj = 2, c = 
-21, and d = -7. The initial state (Si) has a signature value 
equal to 0. The signature is computed for x = 2. Consider 
the path S16S4cS2aS3. The step-wise computation of full- 
path signature is shown in Tab. 1. 

Path Computation Signature 
S^ (0*2 + l)*2 + 2 4 
Si 6S4 c ((4*2 + 4)* 2 + (-21)) 3 
SibSicS2a ((3*2+ 2)* 2 + 1) 17 

"This work was partially supported by the Swiss PTT project 
F& E N°309. 

Tab. 1: Full-path signature 

IV. CONCLUSION 
We have presented a signature-based method for detecting 
run-time faults in communication protocols. This technique 
has been applied to detect faults in protocols like ABP and 
TP4 [3]. 
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Abstract — Message arrivals encountered in digital 
transmission over most real communication channels 
are not independent but appear in clusters. We pro- 
pose a model of such a bursty K-ary source using a 
Markov chain with two states. It is shown that the 
protocol information of this sporadic source can be 
drastically reduced on the one hand by not encoding 
intermessage information (e.g., the starting point of 
a packet) and on the other hand by buffering and re- 
ordering messages. Trade-offs between reduced pro- 
tocol information and message delays are also consid- 
ered. 

SUMMARY 
Messages such as commands, inquiries, file transmissions, and 
the like, traveling through a network, are extremely bursty. A 
model of a bursty if-ary source using a Markov chain with 
two states "quite" (or "idle") and "busy" (sometimes also 
called "active") is proposed as a sufficiently realistic model 
for many such sources. In the "quiet" state, the source trans- 
mits no (message) information, while in the "active" state, 
the source acts as a (K - l)-ary discrete memoryless source 
(DMS). The transition probabilities between states describe 
the sporadic nature of the source. Let p and q denote the 
probability of changing from the quiet to the busy state and 
from the busy to the quiet state, respectively. With this, the 
information rate in the steady-state, defined as the entropy 
per source letter [bits/time unit], U, can be calculated to be 

HcoiU) = 
P     log(K-l)    +-E-h(q) + 

p + q > + <? p + q 
h(p)  (1) 

message information      protocol information 

where 

h(p) = -plogp-(l-p)log(l-p) 

is the binary entropy function. 
Since each message symbol contains \og(K - 1) bits of in- 

formation and since the source is producing message symbols 
during a fraction p/(p + q) of time, the first term on the right 
side of (1) may be interpreted as the entropy of the messages. 
Similarly, the second term may be viewed as the entropy in 
the message length and the third term as the entropy in the 
length of the quiet periods. The information in the source 
output consists of two parts: a message part and a protocol 
part. Although such a separation seems reasonable intuitively, 
it is by no means entirely apparent that message information 
and protocol information can be separated completely from 
one another and considered independently. We show that a 
significant fraction of the channel capacity must be used for 
protocol information when either the expected message length 
is short (q > 0), or the quiet sequences are much longer than 
the message sequences (q/p > 1), or the signalling alphabet 
is small. 

Whereas message information must generally be encoded 
losslessly, it is usually not necessary to encode all protocol in- 
formation. For instance in a packet-switching network, mes- 
sages are generally delayed by varying amounts in passing 
through the network in different ways and their arrival or- 
der may be changed. One can save protocol information by 
not resolving intermessage time delays. If we are not inter- 
ested in "full-reconstructability" of the entire source output 
including the messages in their original order and/or the exact 
length of quiet periods, then we can use less than an average 
of h(q) = H(L)/E(L) bits per message symbol to indicate 
the length L of the messages and/or less than q/p ■ h(p) bits 
per message symbol to indicate the lengths of the quiet peri- 
ods. It is precisely the possibility of reordering and buffering 
the messages that permits a decrease in the amount of pro- 
tocol information to be transmitted. We present both coding 
strategies that maintain messages in their original order going 
through the network and coding strategies that ignore mes- 
sage order. Unfortunately, the reduction in protocol informa- 
tion by the latter strategies is gained mostly at the cost of an 
enlarged message delay. One of the most important perfor- 
mance measures, however, is the average (or the maximum) 
delay required to deliver a message from the origin to the 
destination. We analyze the trade-off between the maximum 
tolerable delay and the amount of protocol information that 
must be sent. It is shown that the minimal necessary protocol 
information required to encode the message length decreases 
exponentially fast with increasing delay. Examples are given 
to illustrate and to compare the various strategies. Finally, 
certain generalizations of the concept of sporadic sources are 
devised for some related applications. 

ACKNOWLEDGEMENTS 

The author is very grateful to J.L. Massey for his help and 
many fruitful discussions. 

REFERENCES 

[1] Gallager, R.G., Information Theory and Reliable Communica- 
tion, John Wiley & Sons, Inc., 1968 

[2] Bertsekas, D. and Gallager, R.G., Data Networks, Prentice- 
Hall, Inc., 1992 

44 



An Analysis Approach for Cell Loss Rate of Shared Buffer ATM Switching 

Zhao Yu-biao, Yu Jian-ping, and Liu Zeng-ji 
National Key Lab. of ISN, Xidian University, Xi'an 710071, P.R.China 

Abstract — A novel approach is presented for an- 
alyzing cell loss rate of shared buffer ATM switching. It 
provides a new means to solve problems in more complex 
queueing system. It is an accurate alogrithm instead of 
conventional methods by employing a one-step transition 
matrix. 

SUMMARY 

ATM is a promising tansport and switch technique for 
a future B-ISDN. One of major areas under study of ATM 
switching system is switch architectures. Among various 
kinds of ATM architectures, shared buffer ATM switching 
is the best choice in terms of cell loss rate, throughput and 
swithching delay[1]. 

The relation between cell loss rate and shared buffer 
size is analyzed in some literatures. Those results are not 
accurate because the number of total cells that arrive at 
each time slot destined for the individual output ports are 
not independent. Since the total number of cells arriving 
at each time slot is no larger than switch input ports, those 
cells do not switch for the other output ports, if some cells 
destine for some certain output ports. The negative cor- 
relation causes the sum of the queues for the output ports 
to be stochastically smaller than what this sum would be 
were the queues to be independent. Based on this opinion, 
an accurate approach is developed for analysis of cell loss 
rate in shard buffer ATM switch. Outline of this analytic 
method is addressed as follows. 

The shared buffer switch has N input ports and N out- 
put ports. At each time slot, cells arrive at each input link 
according to a Bernoulli process with probability p < 1. 
Each cell is uniformly to be destined for any of the N out- 
put ports. And, at each input ports, successive cells that 
do arrive are independently destined for their respective 
output ports. 

Let at represent the probability of i arriving cells to 
the switching at each time slot. Based on the assumption 
above, a,- is a binomail -distributed. That is 

a; = &N p'(l - P)N-{ 

It is assumed that the state of Markov chain is respre- 
sented by the number of cells in the switching. Then the 
probabilty transition matrix of arriving cells regardless of 
leaving cells is 

a0 ai ■■■ aN 

a0 ai ••• aN 

a0 ai ••• ajv 
Pa = 

At each time slot, the number of cells which are trans- 
mitted to output links is that of output ports which have 
queueing cells. Let 6n, be the probability for i output 
ports which have queueing cells when the total number of 
cells is n in the switching. Therefore, the following equa- 
tion can be derived by using Markov chain. That is 

Ki 

EcU-iyii-jT 
i=o  

(i-l)! 

N\ 
Nn(N -i)\ 

The leaving cells probability transitoin matrix regard- 
less of arriving cells is 

1 
611 

&22 hi 

bNN      f>NN-i ■ ■ ■ bNi 

l>NN        bNN_i       ■■■      bNi 

From the analyzing above, we can derive the realis- 
tic probability transtion matrix for the switching system. 
That is 

P = PbPa 

In order to solve the steady probability from this ma- 
trix, let the biggest number of state be large enough such 
that the difference, due to the finite state instead of the 
infinite state, is negligibly small, then the steady proba- 
bility distribution can be easily obtained by formal ways. 
That is the accurate relation between cell loss rate and 
buffer size in the switching. 
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Abstract — Automatic Repeat_Request(ARQ) has been widely used for 
its high reliability and convenience in implementation. But its low performance 
is shown when channel is in noisy state. This paper presents an adaptive error 
control scheme with combination of FEC and ARQ. An encoder and a decoder 
for large constraint length convolution codes are constructed by TMS320E25 
microprocessors to implement error control. Based on channel condition, the 
system can modify diffuse convolution codes constraint length automatically. 
Such an adaptive error control system combined with an ARQ system based on 
HDLC protocol is efficient to transmit data in high speed under bad radio 

channels. 

I .FEC/ARQ ADAPTIVE ERROR CONTROL MODE 
The adaptive error control system block diagram is shown in Fig. 1, where the 
CCU(Communication Control Unit) implements HDLC protocol and system 
control. 

O 

U 

TxD 
AJM 

FEC encoding IB. 

~JZ. 
if 

RxD 

2B 
FEC decoding 

2A 

Fig. 1 System block diagram 

Assuming the employed codes are denoted as Cj, C2, — Cg, where C2, 

C3, — , Cg are self-orthogonal diffuse convolution codes (2,l,4X+2), X is 

scaled as 32, 64, 128, 256, 512 and Cj can be expressed as CRC implying 

that the transmitting data is encoded only by cyclic redundant check bits and 
ARQ protocol is employed. The C2, C3, •■• „ Cg can correct 2X bits burst 

errors and 2 bits random errors. The rate is 0.5 only, and the decoding operation 
brings about delay. With the growth of the diffuse length, the decoding delay and 
the protection bits will rise, and the throughput will decrease. Thus, the focus 
problem is to determine dynamically which of the available codes to achieve the 
highest throughput for each channel status. 

The system uses two frame structures: one is named as special frame, Fs, which 
begins with a special frame flag OFFTL followed by diffuse length index; the other 
is named as data frame, F^, which begins with a data frame flag 00H, and 

followed by encoded data 

In the scheme, the channel condition is indicated by the probability of error frame. 
The procedure of the scheme can be described briefly as follow: suppose now that 
the Ck is used and the data packet(raw data) length is L bits, the transmitter 

counts the successful transmission frames per M frames(including the 
retransmission frames, but excluding Fs frames), let the result is denoted as V, if V 
< N(N is threshold), then the channel is in worse condition, and the transmitter 
attempt to adopt Ck+1 and transmits a Fs frame to the receiver, then makes 

statistics of the successful transmission from the beginning; if N < V < M, C^ is 

suitable for the channel condition; if V=M, the transmitter checks whether or not 
the 3 x M transmission is successful without retransmission continuously, if not, 
Ci^ can be employed without changing, else the transmitter will attempt to adopt 

Ck_, and transmits a Fs frame to the receiver. In this way, the code can be 

selected dynamically to achieve the highest throughput. 

n. THE FEC BOARD AND OPERATION PRINCD?LE 
The encoding and decoding is accomplished by a single board(FEC board) which 
contains two TMS320E25 and peripheral interface unit. Because the algorithm is 
executed by software, so the circuit is simple, the board size is small and it is 
convenient to change code from one to another. The 4<x16EPROM on chip is 
sufficient to  contain five  subroutines corresponding to the  available  codes 

C2- Cg. When CCU interrupts FEC board and then sends a code index to 

FEC board, the TMS320E25 executes the corresponding subroutine. The ARQ 
protocol is accomplished by CCU, simultaneously, the CCU makes statistics of 
successful frame and takes a selection of codes, and then conveys the index 
number of the selected code to FEC board. 

The convolution code synchronization is achieved by use of frame synchronization. 
The Barker(ll) is used as synchronization code, and five Barker(ll) construct a 
synchronization code group to ensure at least one of the five codes not disturbed. 
The TMS320E25 on the FEC board makes correlation calculation to decide 
whether the receiving frame is in synchronization or not. Followed the 
synchronization code group, a NOT Barker(ll) is arranged to indicate the end of 
synchronization head, the continued is encoded data. At the last part in 
transmitting frame, several protection bits is added to ensure the data remained in 
buffer(corresponding to shift-registers in hardware design) to be decoded 
completely. 

in. DISCUSSION AND TESTING RESULT 
The system performance depends on the parameters L, M, N. With the growth 
of L, the probability of frame failing transmission will rise on fading channel 
condition. The larger M is, the slower the system sensitivity to channel condition 
is. The larger N(N < M) is, the more frequent code adjustment is. By practices, we 
have obtained some valuable data about the optimal parameters over mobile 
channel. 

For testify the whole efficiency of this system, we make some practices on the 
following condition: Rc(channel data speed)=32Kb/s, L=1024, M=5, N=3. Let 
burst error probability be denoted as Pr Pr= T /2T, where T : burst error lasting 

time, T : burst error appearing period. Let P express probability of random error 

and P=P + P express probability of burst and random error combination. We 

transmitted a file sized 1920K bits in several simulative channels and obtained 
some practice data listing in Table 1, Table 2, and Table 3. hi the following 
tables, Tj expresses the consumed time in ARQ mode without error-correcting; T2 

expresses the consumed time in the mode described in this paper. From the result, 
it can be seen that the system performance is equivalent to ARQ system on 
unmixed burst error channel, while on other feature channels, the system is much 
superior to ARQ system . 

Tabel 1      T=1S Table 2 

T Pr T,(s) T2(s) ps T,(s) T2(s) 

2 1 x 10"3 80 80 1 x 1 0-4 90 91 

5 2.5 xlO"3 82 83 1*10~3 375 141 

10 5xl0"3 83 83 5 xlO"3 827 166 

30 1.5 xlO-2 85 87 1 x10"2 00 170 

Table 3    T=1S 

Pr P* Tj(s) T2(s) 

1 x 10-3 1 x 10-4 96 99 

1 x 10-3 1 x 10'3 438 154 

2.5 x 10"3 1 x 10"3 557 172 

5 xlO-3 1 x 1 0-2 OO 188 
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I. INTRODUCTION 

Some error probability estimation methods of a trellis-coded 
modulation (TCM) scheme using importance sampling have 

been proposed [l]. However, these methods are not suitable 
for an additive non-Gaussian noise channel case. The main 
problem is how to design the probability density function in 

importance sampling. We propose a new design method of 

the probability density function related to the Bhattacharyya 
bound. 

II. PROPOSED METHOD 

Let si and S2 be transmitted signals, and r be the received 
signal. Now, we consider a decision system which decides that 
the transmitted signal is whether Si or S2 from the received 
signal r. When the transmitted signal is Si, the indicator 
function of the error region <&(•) is expressed as 

$(r) Al: f(r\ai) < f(r\s2) 
/(r|ai)>/(r|«2) (1) 

where /(-|-) is the conditional probability density function. 
The ideal probability density function for importance sam- 
pling is propotional to <b(r)f(r\si). The bound of the func- 

tion $(•) is very complex for most conditional probability 
density function cases. In Bhattacharyya bound, we evalu- 
ate the error probability from the upper bound of $(•), that 
lsi V f(r\a2)/f(r\ai)- The proposed probability density func- 
tion /*(r|si) in importance sampling is designed almost the 
same idea with the Bhattacharyya bound and given by 

f*(r\si) oc x//(r|si)/0|s2). (2) 

When the noise is an AWGN, the probability density function 

of the proposed method is reduced to that of mean translation 
method in [3]. The detail of the proposed method is in Ref. [5]. 

III. NUMERICAL EXAMPLE 

A. NOISE MODEL 

As an additive non-Gaussian noise model in the examle, an 

additive combination of an AWGN of variance <r2g and an im- 
pulsive noise of Gaussian distribution of variance of which 
is observed with the probablity 7(< 1) per symbol interval 
is used [4]. By taking the convolution of the two probabil- 
ity density functions, the probability density function of the 
additive non-Gaussian noise is rewritten as 

f(x,y) 
1 
2ircr 

1 
Texp f   *2 + y2} 

I     2,2   / 

+ 2r (ffg + o\ 
■ exp < - 

x2 + y 
2(<ri + (3) 

Since it is difficult to make random numbers following the 
probability density function designed by the proposed method, 

we approximate the probability density function /*(-|-) de- 
signed by the proposed method. 

B. SIMULATION RESULTS 

The encoder used in the example is (9, 2, 4) Ungerboeck code 

in [2]. As noise parameters, 7 = 0.01 and a; = 10(T9 were used. 
We selected 50 error events for the simulation based on the 
measure of the smaller Bhattacharyya distance. The number 
of simulation runs per error event were 1000. To compare with 

the proposed method, the ordinary Monte-Carlo simulation 
was tried. It was continued till 200 error bits were observed. 

Figure 1 shows BER and variance performance. When 
BER < 10-4, the proposed method approximates more than 
95% of bit error rate of the ordinary Monte-Carlo method. 
The necessary CPU time of the proposed method is about 
1/85 at BER of 10-6. The variance of the simulation result 
of the proposed method is almost half of that of the ordinary 

Monte-Carlo method for all Eb/No- Under the condition of 
same variance, the reduction of simulation time of the pro- 
posed method is estimated about 1/170 at BER of 10~6. 

[1] 

[2] 

[3] 

M 

[5] 
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Fig. 1: BER and variance performance. 
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Abstract — This paper describes the extended 
LFSR(ELFSR) and the extended BRM(EBRM) 
based on the field GF(2n). We claim that those pre- 
sented generators are efficient and suitable for S/W 
implementation. We also claim that the EBRM can 
be used as a good non-linear logic for stream cipher 

systems. 

I. INTRODUCTION 

A binary rate multiplier (BRM) sequence generator, consisting 
of two linear feedback shift registers(LFSRs) of length m and 

11 respectively, has cryptographically good properties[l]. Un- 
der some constraints, it produces binary sequences of period 
(2m-l)(2"-l) and linear complexity m(2"-l). The LFSR 
is well known to have good properties[2], however, it is not 
suitable for DSP implementation. 

In this paper, we propose the extended LFSR(ELFSR) 
based on the field GF(2S), which can be efficiently and eas- 
ily implemented by the general purposed DSPs. And then, we 
present the extended BRM(EBRM) sequence generator, which 
consists of two ELFSRs of length in and u respectively and 
based on the G.F(28). It produces byte sequences of period 

(28,"-l)(28"-l) and linear complexity ?n(28n-l). 

II. THE EXTENDED LFSRS 

An ELFSR consists of m memory cells, which together form 
the state (so, si, • • •, sm-i) of the registers. The function f(x) 

is mapping of {GF(2")}m to GF(2n). 

f(x) = Co © (ci®x) © (C2®X2) © ■ ■ • ■ ffi(c,„-l®S,u-l) © Xm 

(C0<S)S0) © (C]®Sl) © • •• ffi (cm_l®S,n-l) 

output 
«1 •Sm-1 

Fig 1. An ELFSR: © and (g> denote the operations of addition and 
multiplication, respectively, in the ground field GF(2n). 

Property. The period of an ELFSR over GF{2n) with a prim- 

itive polynomial f(x) of degree in is 2"m —1. 

If we denote a and ß in GF(2n) by a = (yi, 1J2, • ■ • , yn) and 

ß = (zi, 22, • • • i 2n), then the addition of two elements is de- 
fined by cr (B ß = (?/i Vzi, 2/2V22, • • • , !/nV2„), where V means 
the XOR of two binary integers. Hence the operation © can 
be simply computed by the bitwise XOR of two binary blocks. 
However, in general, it is not easy to compute the multipli- 
cation of two elements in GF(2n). We adopt the method of 

multiplication introduced in [3]. 

Definition. A polynomial over GF(2") is simple provided that 

all of its coefficients but the constant term are' either 0 or 1. 

Input. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Algorithm 1: The ELFSR 
A simple primitive polynomial /(x) of degree m 
and two tables defined by the preprocessing. Let 
c[k] be the coefficients of f(x) for all 0 < k < in—I 
For k = 0, •■-,771 — 1, initialize s[k] by a random 

byte. 

Compute 7 = C[0]®A[0]. 

For k = 1, • • •, m-1, if c[k] is 1 then t = <0s[fc]. 

For k = 1, • • • ,m — 1, set s[k] = s[k—1]. And then, 

set s[0] = t. 
Repeat Step 2 - Step 4 to produce sufficiently 

many random bytes. 

'e-mail: goh@dingo.etri.re.kr 

III. THE EXTENDED BRM 

Now we present an extended BRM sequence generator, which 
consists of two extended LFSRs of length 7n and n respec- 
tively and based on the G'-F(28). It produces byte sequences 

of period (28m-l)(28n-l) and linear complexity ?7i(28"-l). 

Algorithm 2:  The extended BRM 

Input.       Two extended LFSRs SRI and SR2 of length m, 

71 respectively. 
Step 1.      Initialize   all   arrays  of two  ELFSRs  by  random 

bytes. 
Step 2.     At time = t, the two LFSRs are both clocked 
Step 3.     If the output of SRI is odd, SR2 is then clocked 

one more time. 
Step 4.     Repeat  Step 2 - Step 3  to produce sufficiently 

large number of random bytes. 

IV. CONCLUDING REMARKS 

In this paper, we proposed the ELFSR based on the field 
GF{2n), which can be efficiently and easily implemented by 
general purposed DSPs. And then, we presented the EBRM 
sequence generator, which consists of two ELFSRs of length 

771 and 11 respectively and based on the GF(2S) so efficiently 
implemented by DSPs. We are now examining the security 

and efficiency of the proposed generators. 
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Shift Register Synthesis For Multiplicative Inversion Over GF(2m) 

M. A. Hasan1 

Elect, fe Comp. Eng. Dept., Univ. of Waterloo, Waterloo, Ontario, Canada 

I. SUMMARY 

Galois or finite fields have applications in cryptography and 
coding theory. For example, both encoding and decoding of 
Reed-Solomon codes require computations in the field over 
which the code is denned. Among the different arithmetic 
operations in finite fields, multiplicative inversion (hereafter 
called simply inversion) has been identified as the most compli- 
cated operation. Recently, several approaches have been made 
to compute the inverse efficiently. The approaches which have 
been given considerable attention in the literature are based 
on either Euclid's algorithm [1], or Fermat's theorem [2] or 
solution of a set of linear equations [3]. The latter approach 
is used in our present work to compute inverses. 

m 
Let /(x) = VJ fix' be a monk irreducible polynomial of 

degree m over GF(2) so that GF(2m) = GF(2)[X]//(E). Let 
a be an element of GF(2m) and satisfy f(a) = 0. GF(2m) 
can be viewed as a vector space of dimension m over GF(2) 
and the canonical basis (1, a, •••, am_1) is a vector A over 
GF(2m). Let M = [Mi,j] with 

Mi, 
I       ° 

0<i + j<m- 
m<i+j<2m■ (1) 

Then B = AM is the vector of the triangular basis corre- 
sponding to the canonical basis [4]. Any element c GGF(2m) 
can be written uniquely as c = cAAT = cBBT, where cA and 
CB being the vectors of coordinates of c with respect to the 
canonical and triangular bases, respectively. 

Let a be any nonzero element of GF(2m) and b be the 
inverse of a. Then it can be shown that 

to realize efficient finite field arithmetic operations [4]. A basis 
change, if required, can however be performed using simple 
linear feed-back and feed-forward shift registers. 

The area-time complexity for the inverter is 0(m2 log m). 
For an arbitrary field GF(2m) the inverter has the least cir- 
cuit complexity compared to the recently proposed ones, for 
example, [l], [2] and [3]. 
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2_/ Si+i (bA)i = s. 3,m-l 0, !,-••,m- 1, (2) 

where <5;,j is the Kronecker delta function which is equal to 1 
when i = j and 0 otherwise, and 

r (»B)( 

Si =   < 

i = 0, !,••-,m — 1 

X3 s3Jri-m.fi    i = ro, m + 1, • • ■, 2m — 2. 

Let h = b — am. Then it can also be shown that 

(3) 

z2 si+j (hA)i 

s3+" 

j+m 

j =0,1,-.. 

j = m - 1, 

,m — 2 

(4) 

where st+m = 3j+m + 1. Now the shift register synthesis 
algorithm of [5] can be used to solve (4) and hence to compute 
the inverse of a. 

While the coordinates of a are taken with respect to the 
triangular basis, those of b are obtained with respect to the 
canonical basis. The use of these two bases has been exploited 

'This work was supported by an NSERC Research Grant 
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On the Probability of Undetected Error and the Computational 

Complexity to Detect an Error for Iterated Codes 

Toshihisa NISHIJIMA, and Shigeichi HIRASAWA 

Abstract — We discuss on practical and 

asymptotic capabilities of iterated codes used as 

error detecting codes. Throughout this paper, 

we assume that the codes are the binary linear 

block codes, and channel, the binary symmetric 

channel with cross-over probability e. 

I.   ITERATED CODES 

T et ® be the direct product, then (No,Ko) it- 

-*-^ erated codes C\ are constructed by c\ ® C2 ® 
••• ® cs, where Cj is the i-th stage (rii,ki) code, 
and integer s > 2. The method for detecting any 
errors is the same method for correcting any er- 
rors of Cj . The decoding of the component code 
is only to detect any errors. If all syndrome of all 
component codes are zeros, the received sequence 
of length No is regarded as a transmitted code- 

(s) word of Cj    and is accepted by the receiver. Un- 
(s) der the below condition, C\ ' are asymptotically 

bad codes. 

Lemma 1 For s —>■  oo, any e  >  0, and some 
J < i,j, the necessary and sufficient condition to 

(s) construct C\    whose code rate Ro, 0 < Ro < 1 
is given by |-^- - 1|   <  e, where R{  = fl^ri, 

Rj = ri;=ir*> and Ro No 

II.   ESTIMATION OF ITERATED CODES 

Definition 1 We define the complexity of the op- 
eration required to detect an error by the product 
of the total number of shifts and the number of 
stages of the shift register to divide the polyno- 
mial of a received sequence. 

°T. Nishijima is with Department of Industrial and Sys- 
tems Engineering, College of Engineering, Hosei University, 
3-7-2, Kajinocho, Koganei-shi, Tokyo, 184 JAPAN. E-mail 
nishiQnishi.is.hosei.ac.jp 

°S. Hirasawa is with Department of Industrial Engineer- 
ing and Management, School of Science and Engineering, 
Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo, 
169 JAPAN. 

Theorem 1 Let Xj   be the complexity of the op- 
(s) eration required to detect an error for C\   . Then, 

«mm (No - Ko)< Xi < «max (No - Ko), where 
«max = max(ni, n2, • • •, ns), and nmin = min(nx, 
«2, ■■■, ns). 

Corollary 1 For c\s) as 0 < R0 < 1, and s -> 

oo, we have  0(N0) < X? < 0(N%). 

Let Pj(e) be the probability of undetected er- 
(s) ror for C\   .   Then, by utilizing the structure of 

(s) Cj constructed by direct product of s codes a 
whose n-i is very small, comparing with No, we 
are able to calculate the exact value of Pj(e). 

Theorem 2 By iterating the recurrent calcula- 
tion until the stage s — 1, finally we can have 

Pis)(e) 
P(»-I) 

(s-1)^    .Mi. _n -£,_a)^, where 

*I (£s-l)  -  Ej^O^sJ^-ll1 ~ £s-l)ns      ;   ^-s'j 
is the number of codewords of Hamming weight 
j in code cs, es-\ is the average error probabil- 
ity per bit at stage s — 1, Ns= nsks-i- ■ -/ci, and 

Corollary 2 For 0  <   Ro   <   1,  and s 

P\s)(eu)^ 0. 

oo, 

III.   CONCLUSION 

The complexity of that for C) is more simple 
than that for the conventional single stage codes 
c under the same probability of undetected error, 
code length, and code rate. Also, the complexity 

(s) ofthat for C\ asymptotically is more simple than 
that for c. 

The exact value of the probability of undetected 
(s) error for C\ can be always calculated. Further- 

more, it is explicitly shown that the value of that 
for Cj    converges to zero for s —> oo. 
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Wavefront Decoding of Trellis Codes 
Torbjörn Larsson 

National Semiconductor Corp., 2900 Semiconductor Dr.; Mail Stop A1500, Santa Clara, CA 95052, USA 

Abstract - A novel reduced-complexity trellis 
decoding algorithm is described. The new algorithm, 
called Wavefront Decoding (WD), avoids the through- 
put bottleneck caused by metric and state-infor- 
mation feedback, which characterizes previously 
known breadth-first decoding algorithms. The error 
performance of WD for trellis-coded 8PSK on AWGN 
and Rayleigh fading channels is investigated by 
simulation. The results indicate that for a given 
number of survivor paths, the performance of WD is 
comparable, although necessarily inferior, to that of 
the M-algorithm. However, in contrast to the M- 
algorithm, WD exhibits a high degree of temporal 
parallelism, rendering it suitable for high speed 
applications. 

I.  INTRODUCTION 
The well-known M-algorithm [1] [2] is optimal in the 

sense that it minimizes, for any given number of survivor 
paths, the probability of rejecting the transmitted path [3]. 
However, the M-algorithm suffers from two structural 
deficiencies. First, the cost of survivor selection in terms of 
cycle and gate count will always be high. Second, due to the 
existence of a feedback loop in the decoder, in which the 
metrics and states of recursion n are fed back to be used in 
recursion n + 1, the M-algorithm is incapable of simul- 
taneously processing paths over several trellis stages. This 
excludes the use of the M-algorithm in high-speed 
applications, which require extensive pipelining. In this 
paper, we show that by generalizing the concept of 
breadth-first decoding, the feedback loop in the decoder 
may in fact be broken up to support pipelining over several 
trellis stages. Moreover, we find that for the decoding of 
short blocks, the survivor selection can be carried out at a 
cost significantly lower than in the M-algorithm. The price 
paid is a modest deterioration of error performance. 

II.  WAVEFRONT DECODING 

Consider first a breadth-first trellis decoder operating 
with C search paths selected from C state-classes. To 
proceed forward, the decoder first stores all successors of 
the old survivor paths in C lists associated with the C 
state-classes. Next, the best path from each list is extracted 
to become a new survivor. We shall refer to a group of C 
paths that propagate through the trellis in this fashion as a 
wavefront. Hence, in our notation the reduced-state 
sequence decoder (RSSD) considered in [3] and by several 
other authors is a single wavefront decoder. Consider next 
a decoder operating with 2C search paths divided in two 
wavefronts, each one consisting of C paths. The two 
wavefronts walk in file through the trellis, with the second 
one following immediately behind the first. To advance 
from time n to time n + 1, the decoder first generates and 
stores all successors of the C paths in the first wavefront. C 
survivors are then extracted from the lists. These paths 
constitute the first wavefront at time n + 1. Next, the 
successors of the C paths in the second wavefront are 
appended to the lists and C additional survivors are 
extracted to become the second wavefront at time n + 1. 
Notice that the second wavefront selects its survivors both 
from its "own" successors and from those that were left 
over by the first wavefront. By introducing additional 

wavefronts in the same fashion, we obtain a decoder 
which, in the general case, operates with BC search paths 
divided into B wavefronts. We refer to this decoding 
principle as Wavefront Decoding (WD). Characteristic of 
WD is the fact that a wavefront, having arrived at stage n 
in the trellis, may directly select its survivors and then 
proceed forward to stage n + 1 without waiting for the 
arrival of those paths that follow behind. Hence it can be 
seen that feedback of metrics and state-information only 
appears internal to each wavefront. The processing of the 
wavefronts may now be pipelined over several trellis 
stages to obtain a linear speedup. 

Assuming that the correct path starts out in the first 
wavefront, it will eventually, as a result of channel noise, 
start to fall back in rank, from the first wavefront to the 
second, then to the third and so on, until it reaches the last 
wavefront where ultimate rejection awaits. The only way 
to escape from a certain loss of the correct path is to 
occasionally have the first wavefront stop and wait for the 
other wavefronts to arrive. Once the members of all waves 
have been accumulated in the C lists, B repeated selections 
are made from each list to produce B new wavefronts. The 
correct path now gets a chance to recapture its position in 
the first wave. Obviously, wavefront accumulation will 
reduce throughput, since the pipeline is broken up. 
Fortunately, it turns out that the time between accumu- 
lations LA can be made fairly large without seriously 
degrading error performance. In particular, when data is 
encoded in short blocks (< 100 symbols), the accumulation 
of wavefronts need only be carried out at the end of the 
block. Notice that for the degenerate case LA = 1, WD 
becomes the Generalized Viterbi Algorithm (GVA) [4]. 

The error performance of WD has been simulated for 
rate 2/3 trellis-coded 8PSK on AWGN and Rayleigh 
fading channels. In all cases, C = 4 and LA = 64 has been 
used. In general, it is observed that WD exhibits a certain 
performance degradation relative to GVA (with C = 4) 
and the M-algorithm with the same number of search paths. 
This is to be expected, since the selection of survivor 
combinations in WD (for EA>1 and C>l) is more 
constrained than in the two other algorithms. However, in 
all cases considered here, the degradation is within a 
fraction of a dB.+ 
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Potential-Decoding, Error Correction beyond the Half Minimum Distance for 
Linear Block Codes 
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Abstract — An error correction procedure for linear 
block codes is presented which corrects errors beyond the half 
minimum distance. The algorithm is based on minimizing a 
real valued function, called potential. Since the potential de- 
creases monotonously with decreasing weight of the error vec- 
tor, minimization of the potential can be done by local search. 

I. INTRODUCTION 

Beneath the well known algebraic decoding for linear block codes 
there exist several non-algebraic approaches for error correction. 
In [1] a maximum-likelihood algorithm for linear block codes was 
shown which has exponential complexity. In [2] the minimum 
weight words are used as decoding vectors for binary codes. 
The succeeding algorithm is applicable for all linear block codes 
and uses a statistical decoding approach based on the so called 
"potential". 

II. NOTATION 

The N-dimensional vector space over the q-element Galois field 
GF(q) will be denoted by GF(q)N. For two vectors a and b e 

GF(q)N the inner product S(a, b) is defined by S(a,b) :=XToaibi' 
The code vectors of the Code C are denoted by c, the error vector 
by e and the vectors of the dual code C by c'. Using r = c + e with 
r, c, e e GF(q)N and S(c, c') = 0, the qN"K - 1 parity-check 
equations are defined by Aj := S(r, Cj'). Furthermore wt(a) is the 
Hamming weight of a e GF(q)N and dmin the minimum distance. 

III. POTENTIAL-DECODING 

A model is presented which is capable of structuring the Galois 
field GF(q)N. In this model a function is defined - called potential 
- which can be regarded as a measure for the distance of any vector 
to its nearest code vector. Various decoding algorithms can be de- 
rived from this model. The potential U(r) of an arbitrary vector r 
is defined: 

1,  ifAj#0 
0, if Aj =0 (1) U(r):=5>j-Ii       h-= 

j=i 

I. stands for an indicator variable for the parity-check equation A., 
a is a weighting factor which depends on the parity-check vector 
c'. The characteristics of the potential U(r) are: 

U(c) = 0 (2) 
U(r ?C)>0 (3) 
U(r) = U(c + e) = U(e) (4) 
U(fi2)<U(e1),   if wt(e2)<wt(e1)<dmin/2, (5) 

Although eq. (5) holds only up to dnin/2 it can be shown that 
statistically this property is valid up to considerably higher error 
numbers. Assuming that ctj e R is only dependent on the weight 
L = wt(c') of the vector c' gives: 

<^:=a(£j'|wt(£j') = L). (6) 

With this assumption U(r) is separable into subpotentials UL(r). 
Every subpotential UL(r) consists of the mL parity-check vectors of 
weight L. 

UL(r) = aLXli,        U(r) = £UL(r). (7) 

It can be shown [3], that the mean value of UL is given by: 
~    f T \t " 

UL(e|wt(e) = t)=mL
i-^ 1- 

4   L 

q   L 

q-lN 
(8) 

For efficient decoding it is not necessary to use all qNK -1 parity- 
check equations. Table 1 shows the decoding performance for se- 
veral codes using only the two subpotentials UL with the maxi- 
mum and minimum weight vectors. 

Error 
Number t 

(31,11,11) 
BCH-code 

(63,24,15) 
BCH-code 

(113,57,15) 
QR-code 

<5 0% 0% 0% 
6 33.3 % 0% 0% 
7 87.3 % 0% 0% 
8 . 1.5 % 0.06 % 
9 . 9.5 % 0.6 % 
10 - 36.5 % 1.8% 
11 - 72.2 % 12.2 % 
12 - 95.0 % 29.2 % 

Table 1: Percentage of decoding errors of weight t. 

Figure 1 shows the performance of decoding with the subpotential 
U9g for a (113,57,15) QR-code compared with Bounded Minimum 
Distance (BMD) decoding and with a rate 1/2 convolutional code 
(K=7) with Viterbi decoding. Potential-decoding is very well 
suited to implementations into VLSI. To reach the decoding per- 
formance of U98, only 50 000 gates of an ASIC are necessary, up 
to data rates of approximately 10 Mbit/s. 

Viterbi, K=7, hard 

rUflH 

10 12 
Ei/No  in dB 

i=i 

Figure 1 Bit error probability of U98 for the (113,57,15) QR-code 
on an AWGN-channel with BPSK-modulation. 
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Abstract — General decoding algorithms for lin- 
ear codes that have less complexity than exponen- 
tial search have been studied by many researchers 
and exact complexities are known for the memoryless 
channel [1-4]. Among the various decoding strategies 
for linear codes, the information set decoding algo- 
rithm has complexity that is significantly lower than 
that for most other general algorithms over most code 
rates [3,4]. It is the purpose of this paper to derive 
the complexity for information set decoding used in 
channels where errors may occur in bursts, and to 
quantify the gain in complexity over the memoryless 
channel case. 

I. INTRODUCTION 

Errors encountered in many communication channels are 
not independent but appear in bursts. One way to effectively 
model bursty channels is to assume that the channels have two 
states with different probabilities of channel error [5]. The 
channels we consider have probability irg to be in the good 
state and probability Wb(= 1 — irg) to be in the bad state. The 
error probability for the good state is assumed to be r times 
the error probability for the bad state, where 0 < r < 1. The 
Gilbert-Elliott channels are described by a two-state Markov 
chain model, and state transitions depend on the transition 
probabilities. We define the complexity exponent F(R) of de- 
coding algorithms for binary linear codes of rate R as 

F(R) = lim - log2 M(n, R) 
n—*oo Tl 

where M(n, R) is the number of computations necessary. 

II. INFORMATION SET DECODING ON BURSTY 

CHANNELS 

For the bursty channel with deterministic state transitions, 
the complexity exponent FJO(R) of the information set decod- 
ing that gives error probability no greater than twice the error 
probability of maximum likelihood decoding is given by 

FD(R) = {1-R)-(1-R)H(^±^1) 

when R > 7rs(l — r), and 

FD(R) = -K9H(rp) - {-Kg - R)H (-= 
grp 

\TVg   -   R 

otherwise, where H(•) is the binary entropy function and p is 
the value satisfying 

l-R = icbH(p) + TrgH(rp). 

The obtained complexity is shown to be strictly less than the 
complexity exponent for the memoryless channel for the en- 
tire range of code rates and channel parameters Tb,irg, and 
r. When r = 1, FD(R) becomes identical to the complexity 
exponent for the memoryless channel. The gain in complexity 
gets larger as r gets closer to 0, i.e., when the channel error 
probabilities for two states differ by a larger amount. The 
optimal way to select information sets is to choose ßnR bad 
state symbols and (1 — ß)nR good state symbols, where ß is 
given by 

ß_*b(R-*g(\-R)) 
(ft + Kgr)R 

when R > 7rg(l — r), and ß = 0 otherwise.   Bounds on the 
complexity exponent FGE(R) for Gilbert-Elliott channels can 
be achieved by modifying the result for the channel with de- 
terministic state transitions. We obtain 

FD{R) < FGE{R) < FD{R) + A(b, g) 

where 6 is the transition probability from the good state to the 
bad state, g is the transition probability from the bad state to 
the good state, and A(Z>, g) = H(-^) +-^H(g). The bounds 
become tight when the channel transitions take place slowly; 
we have A(&, g) « 0 for small b and g. 

It is possible to improve the bounds for FGE(R) when side 
information such as soft-decision information is available to 
the decoder. The extra complexity in the upper bound on 
FGE{R), when compared to FD(R), is due to the state esti- 
mation of the received sequences. By using soft-decision infor- 
mation, we can effectively estimate which symbols are trans- 
mitted through either the good state or the bad state. One 
scheme for state sequence estimation is to choose the mrg most 
reliable symbols out of a given sequence of n symbols, and as- 
sume that these are the symbols that have been transmitted 
through the good state. For the Gilbert-Elliott channel with 
soft-decision information available, we achieve the complexity 
exponents very close to FD(R) even when state transitions 
occur frequently. 
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Abstract — Many algorithms for soft and near-soft 
decision decoding of block codes start by implement- 
ing hard decision decoding. In several instances it 
has been noted that simple tests of the hard decision 
result may allow the algorithm to terminate at this 
point. This paper explores this notion in detail. 

I. INTRODUCTION 

Consider the problem of decoding an (n, k, dmin) binary block 
code with codewords cj. Assume that antipodal signaling, 
Sj = \/E(2CJ - 1), and additive Gaussian noise (zero mean, 
variance a2) produce the channel observation 

x = Sj + n. 

To minimize the probability of error the two standard de- 
coding techniques are soft decision and hard decision decod- 
ing (with resulting codewords cs and c/> and performances 
Pe(soft) and Pe(hard), respectively). Soft decision decod- 
ing, while providing optimum performance, is computation- 
ally burdensome. Hard decision decoding has a significantly 
reduced implementation complexity at reduced performance. 
During the last 30 years many authors have searched the mid- 
dle ground for high performance, low complexity approaches. 

Many of these approaches start with hard decision decod- 
ing, searching the nearby codespace for a best choice of code- 
word. It has been noted that such algorithms can terminate 
early if the data x and the hard-decision result ch together 
satisfy certain conditions. We envision, then, a decoder with 
operation: 

1. Hard-decision decoding is implemented yielding Cfc. 

2. A test is performed to see Cfc matches cs (without, of 
course, directly finding cs). If the answer is yes, the 
decoding algorithm terminates at this point. 

3. If the test of step 2 fails, full soft decision decoding or 
some other strategy is implemented. 

Without actually implementing soft decision decoding, the 
test in step 2 has three possible answers: yes, no, and the 
data is inconclusive. A "yes" response is called a success for 
the test; conversely, a "no" or "data inconclusive" response 
is a failure in that additional processing would be required 
before decoding is complete. 

The motivation for such tests is that since hard decision 
decoding is correct a relatively high percentage of the time, it 
often matches the soft decision decoding result exactly. This 
idea can be made more mathematically formal. Specifically, 
it can be shown that 

Pe(hard) - Pe(soft) < Pr (ch ? c») < Pe(hard) + 2Pe(soft) 

Since Pe(soft) is typically much smaller than Pe(hard), then 
Pr (cfc # Cj) « Pe(hard). Thus, the failure probability for any 
test for step 2 is approximately lower bounded by Pe(hard). 
An efficient test should fail only about as frequently as hard 
decision decoding makes an error. 

As an example of a test of Cfc = cs, consider the following 
well known condition: 

The Codeword Test - // the hard decision decoder's input 
is already a codeword, then c/, = cs. 

Unfortunately, this result is far from the lower bound on the 
failure probability. Several tests for step 2 are described be- 
low with emphasis on the coherent Gaussian channel. Ad- 
ditional details, including tight upper and lower bounds to 
performance for these tests, are presented in [3]. 

II. TESTS FOR THE AWGN CHANNEL 

The first test has been mentioned previously [2]: 

The Hypersphere Test - If x. is within y/dmmE units (in 
Euclidean distance) of the hard decision decoded signal then 
Cfc = Cs. 

Realizing that the actual soft decision decoding region is a 
convex cone, the test region can be expanded from a hyper- 
sphere to the circumscribing right circular cone: 

The Circular Cone Test -Ifx satisfies 

x(2cfc - 1)T 

> 
Vnxx' 

then x falls within the aforementioned cone and Cfc = cs 

(1) 

While the cone test completely encloses the hypersphere test, 
the cone and codeword tests do have different support; hence, 
it seems reasonable to combine them: 

The Combined Test - If the hard decision decoder's input 
is already a codeword or if the received vector x satisfies the 
cone inequality in (1) then Ch = cs. 

Algebraic analysis of the soft decision decoding operation [1] 
yields a further test: 

The Polygonal Cone Test - Define Zi, i = 1, 2,... n, by 

_ \   +Xi    if   Ch,i = 0 
1 ~ \  -Xi    if   c-h,i = 1 

If the sum of the dmin largest Zi does not exceed zero then 
Cfc = cs. 

This set subsumes all of the above tests with some increase in 
complexity. The resulting performance can be quite good. 

REFERENCES 
[1]  H. T. Moorthy, Decoding of Linear Block Codes, MS thesis, 

Dept. Elect. Eng., Univ. Rhode Island, 1992. 
[2]  O.   O.    Olaniyan,    "Implementable   soft   decision   decoding 

schemes," Int'l. Jour. Electronics, 66(3), pp. 321-332, March 
1989. 

[3]  P. F. Swaszek, "When is hard decision decoding enough?" sub- 
mitted to IEEE Trans. Inform. Theory. 

54 



First Order Approximation of the Ordered Binary Symmetric 
Channel 
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Abstract — In this paper, different results related to 
the ordering of a sequence of TV received symbols with 
respect to their reliability measure are presented for 

BPSK transmission over the AWGN channel. 

I. APPROXIMATION OF PE(ni,---,n,-; A/) 

For BPSK transmission over the AWGN channel, many max- 
imum likelihood decoding (MLD) algorithms of binary lin- 

ear block codes first reoder the received symbols within each 
block with respect to their reliability. In [l], the statistics of 
the noise after ordering are derived. These statistics allow to 
tightly bound the error performance of any suboptimum algo- 
rithm based on reordering. 

After ordering a sequence of N symbols, the probability 

Pe(«i, • • ■, Tij■; N) that an error occurs at positions nj, • • •, n} 

can be computed exactly. However, no close form solution 
has been found for N > 3. This is mostly due to the fact the 
the noise for which the statistics are derived is not the ordered 
random variable. Based on the central limit theorem, we show 
in this paper that for N large enough, the distribution of Wt, 
the restriction of the i' ordered noise value to the interval 
[l,oo), is well approximated by the distribution of a normal 
random variable that we specify. This approximation leads to 

4(1- 

Pe(i;JV)=Se    No (1) 

where  ra;   =   a  1(l—i/N),   after  defining,   for  n   >   1, 
a(n) =  Q(2 — n) — Q(n),  with the normalization  Q(x)  = 

(TNO)~
1/2

 f™e-n2/Nodn.   When  N is large enough,  Equa- 
tion 1 provides a tight bound. 

If Wi and Wj represent the ith and jth ordered noise val- 

ues, it is possible to show that W3\Wi has the density func- 
tion of the (j — t)' noise value after ordering a sample of 
size N — i from a population with distribution truncated to 
the interval [m(u>;), M(u>i)], where m(u>,) = min(2 — w;,w,) 
and M(wi) = max(2 — Wi,u>i). Combining this result with 

Equation 1, we show that, for i < N, 

Pe(i,j;N)9i(JL-^  Pe(i;JV)Pe(j;JV). (2) 

Generalizing Equation 2 to any ordered set of indices I3 = 
{n\, ■ ■ ■, rij} corresponding to positions in error after ordering, 

we compute, based on a chain argument, 

j-i 

Pe(n1,-.-,nJ;iV)^n(-r-^-)   Pe(n,; JV)-Pe(n>; N).  (3) 

Therefore, despite the fact that the random variables repre- 
senting the noise after ordering are dependent, their associated 
error probabilities tends to behave as if they were independent, 

for ./V >> nj-i and large enough. 

^his work was supported by NSF Grant NCR-91-15400 

II. FIRST ORDER APPROXIMATION OF THE ORDERED 

BINARY SYMMETRIC CHANNEL 
The value Pe(ni, • • • , n:; N) represents the probability that at 

least the bits in position m, • • •, n} are in error after ordering 
a sequence of length N. We now also define Pe^(ni, ■ ■ ■ ,n3) 
as the probability that only the bits at position ni,---,rij 
are in error after ordering a sequence of length N. While 
Pe(ni, • • •, rij-, N) is computed by integrating the joint dis- 
tribution of the n3 ordered random variables Wni, • • ■, Wnj, 

the computation of Pe^r(ni, • • ■, n3) requires to integrate 
the joint distribution of the N ordered random variables 
W\, ■ ■ ■, WN ■ It follows that the discrete time channel model 
after ordering is a 2w-state BSC with transition probabilities 
Pew(ni, • • •, n3)'s. We refer this channel as the Ordered BSC 

(OBSC). Based on Equation 3, we approximate 

Pe(n1,---,nJ;A
f)^]^[Pe(»i(;yV) (4) 

which expresses that after ordering, the events of having er- 
rors at positions ni,---,?ij remain independent. Therefore, 
the 2N-state fully connected OBSC is equivalent to N time- 
shared BSC's corresponding to each ordered position. We 
name this approximation the first order approximation 
of the OBSC. 

The capacity of the OBSC C^^ve requires the computation 
of 2N N-oider integrals and rapidly becomes too complex to 
evaluate as ./V increases. In contrast, the capacity of the first 
order approximation of the OBSC 

cN,ave = i-jjYsh(?<r'Nv 
1=1 

bit (5) 

is easily derived. For W = 1, C\iB.ve is simply the ca- 
pacity of the BSC with crossover probability Q(l), while 
lim^—oo Cn.ave should provide the capacity Cbpsk of the con- 
tinuous Gaussian channel for BPSK transmission. We observe 

that C/v.ave ~ CN.ave and that the convergence to this limit 
is very fast as TV increases, so that 

*^N,ave ^ C/v.ave a bpsk, (6) 

for ./V large enough. Equation 6 indicates that when con- 
sidering an ordered sequence of sufficiently long N, the first 
order approximation of the OBSC should provide a good ap- 
proximation of the continuous Gaussian channel, for BPSK 
transmission. Therefore, for a given SNR, knowing the posi- 
tion in the ordering instead of the exact received value should 
be sufficient from a performance point of view. 

REFERENCES 
[1] M. P. C. Fossorier and S. Lin, "Soft-Decision Decoding of Linear 

Block Codes based on Ordered Statistics," IEEE Transactions 
on Information Theory, to appear. 

55 



An Asymptotic Evaluation on the Number of Computation Steps 
Required for the Nearest Point Search Over a Binary Tree 

Hisashi Suzuki 
Dept. Info. & Syst. Eng., Central University 

1-13-27 Kasuga, Tokyo 112, Japan 

Suguru Arimoto 
Dept. Math. Eng. k Info. Physics, University of Tokyo 

7-3-1 Hongo, Tokyo 113, Japan 

Abstract — This paper analyzes the number of 
computation steps on a binary tree searching fast 
for one in some beforehand-given points that is 
the nearest to a query point in a Hamming space. 

I. INTRODUCTION 

{0,1}' denotes the whole set of binary sequences (called 
points) of a length / > 2.   We measure the distance be- 
tween points by the Hamming distance normalized by /. 

Suppose that n > 2 arbitrary points x\, ■ • •, xn (called 
samples) in {0,1}' are given, where duplications are al- 
lowed. We consider arranging the samples into a binary 
tree and, over it, searching fast for some x G {x%, ■ • •, xn} 
that is the nearest to any querried point x 6 {0,1} . 

The authors' last paper [2] mentioned a KM tree [1] 
that could search for the nearest point fast but the search 
time was neither clear in theoretical nor in experimental. 
The present paper evaluates theoretically the number of 
computation steps required for the nearest point search 
over an alternative tree. 

II. TREE CONSTRUCTION 

Fix a real constant 7  >  0 called a stopping threshold. 
Given an arbitrary sequence x = x\---xm of n samples, 
the following procedure constructs a binary tree T7(x) 
each leaf of which stores at most ■yn samples. 

Procedure 1 (tree construction procedure): 
Step 1: Construct a tree comprising only a root that stores 
x. (Regard this root also as a leaf to start (a)-(b).) 
Step 2: While the present tree has at least one leaf N 
storing a sequence z = z\- ■ -z^ of points such that |z| > 

771 and all of Zi,"-,Z|z| are not the same, do (a)-(b). 
Otherwise, answer the present tree. 
(a) Let c = z\. Discover one of r-values that make |ZL| 

and |ZR| as equal as possible, where ZL and ZR denote the 
sequences composed of &s respectively for which d(c, &) < 
r and d(c,£;) > r. 
(b) Store (c, r) on N. Store ZL and ZR respectively on the 
left and right child nodes of N. Next, remove z from N. O 

III. THE NEAREST POINT SEARCH 

Let an arbitrary subtree T* of T7(x) whose vertex is a 
nonleaf or leaf node of T7(x) be given with a supposition 
that the total length of zs stored on all leaves of T7(x) is 
< I/7. Let <5 denote the set of all points stored on leaves 
of T*. Fixed a real constant A > 0 called pre-bounding 
parameter, the following recursive procedure /A(T"*, a;) for 
an arbitrary query point x G {0,1}' tries to answer one of 
points ys in S that achieve d(x, y) = min^gs d(x, y) < A. 

Procedure 2 (search procedure f&{T*,x)): 
Step 1: If T* is a minimal tree, then do Step 3, else do 2. 
Step 2: For the pair (c,r) of point and nonnegative real 
stored on the root N of T*, execute one of (a)-(c). 

(a) In case of d(c, x) < r-A, compute J/L = /A(T£, X) and 
answer yi, as the output of f&(T*,x), where T£ denotes 
the subtree of T* whose vertex is the left child node of N. 
(b) In case of d(c, x) > r+A, compute #R = f^(T^,x) 
and answer i/R. 
(c) Otherwise, compute both of yi, and £R. If d(x, yi) < 
d(x,yii), then answer yi,, else answer J/R. 

Step 3: Now T* coincides with a leaf of T7(x) that stores 
a finite sequence z = z\- ■ -z\z\ of points (Note that z\ = 

• • • — z\%\ provided that 7 < 1/n). Answer z\. D 

The branching into (a)-(c) based on the triangle in- 
equality cuts off wasteful traversal over T7(x) efficiently. 
The nearest point is searchable by initializing T* as T7(x) 
provided that 7 < l/re. 

IV. COMPUTATION STEPS FOR A POINT SEARCH 

Lemma 1: Selected n i.i.d. samples x\, ■■■ ,xn in {0,1}, 
the depth of T7(x) is almost surely < log2(l/7) if / and 
n are sufficiently large. □ 

For each nonleaf node N of T7(x), let (?N (called a 
gray zone) denote the set of all query points that activate 
Step 2(c) in Proc. 2, i.e., GN = {x\ x G {0,1}', r-A < 
d(c,x) < r+A}, where (c,r) is one stored on N. 

Lemma 2: Fix an arbitrary real constant 7j>0. Se- 
lected a query point x uniformly in {0,1}', the probability 
that x may belong to GN on condition that a node pointer 
latches a nonleaf node N of T7(x) at Step 2 in Proc. 2 is 
< 77 if / is sufficiently large. □ 

In applying Proc. 2 on T7(x), let M7(x) denote 

E 
xe{o,iy 

the number of the latched nodes 
for a query point x 

P(x),  (1) 

where P(x) = l/|{0,1}'| = 2"' Va; G {0,1}'. We can 
regard this /x7(x) as the mean number of the latched nodes 
in once application of Proc. 2. 

Lemma 3: Selected n i.i.d. samples Xi,---,xn in 
{0,1}', M7(X) is almost surely < log2(l/7) + 2 + l/r) if 
/ is sufficiently large. □ 

Corollary 3: ^7(x) with 7 < 1/n is almost surely of 
O(logra) if / is sufficiently large. □ 
Thus, the mean number of computation steps of Proc. 2 
is almost surely of C(log n) if / is sufficiently large. 
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Abstract— We obtain the upper bound on the 
probability of undetected error which is valid 
uniformly on choosing the probability of the 
symbol invertion. This bound is better than 
previous known bounds 
Let F$ — Hamming space of binary sequences of length n 
with metric d(x,y) = £"=1 | Xi - y» |; x,y e F$.  Let 

Cn(y>r)   =   E«€F,»,d(«,y)=r *"  SPhere  °f **&**   r  with 

center in y € Pf. For arbitrary linear code Ank C P? 

of dimension k(\ Ank |= 2*) define the set Ax = {Ax\r = 

0,l,...tt},ar € Ank where AT
X =| Ankf)Cn(x,r) | - 

numder of vectors from A^k which distance from x € An\ 
is equel to r. It is easy to see that AX) A

T
X does not depends 

on I € Ank 80 we ommit the index a; in the notations 
AX,A'X. The set A is called the spectrum of the code Ank- 
Fbr arbitrary p € [0,1] the probability of undetected error 
Pue(p,Ank) is defined by the equality 

P..CP,J4.O«I>V(I-*)"-'• 
r=l 

We are interesting in the value 

Pin. k) =   min max P„(p, A»*). 
7 P€[O,I] 

It is easy to show that 

P*e{-,Ank) = — -1 

so 
P(>,Jfe)>2*-B-2-\ 

The best known upper bound on P(», k) which is valid 
for all n, k was obtained in [1] and is the follows 

P(n,fc)<Cix/»2*-* 

where Ct is constant (Ci < -y*72(l + o(l)), n -+ oo). 
This bound was obtained by the estimation of the RHS 
of the following inequality offered earlier in [2] 

i>,*)<2»-£c; (i) (i_:p. 
Here we present the result which is the statement of the 
following theorem. 

Theorem 1 For some constant Cj and for aUntk the 
following estimation is valid 

/»(«,*) < (Cav/Inn + 1)2*-«. 

♦Supported by Runian Foundation of Fundamental Research 
Under Grant 93-012-468 

During the proof of this theorem we show that at least 
for sufficiently large n the estimation C% < 1\\pH is valid, 
but it can be improved by the more precise calculations. 

To prove this theorem we divide the spectrum A into 
six parts and prove the existence of the code Ank which 
spectrum satisfying the following relations 

r=l 

»a-1 

'£AY(i-pT-'<]l^2k- 

Ü>'p'(i -p)-r < (i+-M 2*-*, 

2 xy(i-pr< 
l-«2+l 

2 jiya-io-'-o 

Inn. 

T=M—»2+1 

rssii—»i+l 

for some 1 < *i < «a < ra/2. Note that if k > C$ In3 n for 
some constant C4 > 0 then using the same arguments as 
in the proof of the theorem it is easy to prove the more 
strong upper bound for P(ra, k): 

P(7i,A)<C42*-*t 

where C5 > 0 come constant. We conjecture that in 
order to prove the last estimation for all values of k and 
n it is necessary to use some additional nonprobabilistic 
arguments. 
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Abstract — This contribution is concerned with bit 
parallel inverters over finite fields. Two alternative 
approaches for inversion with low complexity will be 
reviewed. Both methods are based on multiple field 
extension ofGF(2). It will be shown that one architec- 
ture is a generalization of the other's architecture core 
algorithm. As an impressive example, the complexity 
of an inverter in the field GF(28) will be computed. 

I. INVERSION IN EXTENSION FIELDS OF DEGREE TWO 

The first architecture was proposed in [2] in 1989 and rein- 
troduced in [3] in 1991. The core part of the architecture is 
the following. Let us consider an element A = üQ + a\x from 
GF((2*/2)2), where a0,ai € GF(2k/2). There exists always a 
field polynomial of the form P(x) = x2 + x + p0, where p0 € 
GF(2k/2). If the inverse is denoted as B = A"1 = bo+hx, the 
equation A ■ B = [ao&o + poai&i] + [ao&i + ai&o + aih]x = 1 
must be satisfied, which is equivalent to a set of two linear 
equations in b0,h over GF(2k/2) whose solution is: 

?°    =     a.
A       I , where A-ao(a0+oi)+poa?-     (1) 

oi    =     -A J 

The advantage of this algorithm is that all operations are per- 
formed in GF(2k/2). The algorithm can be applied recursively. 

II. INVERSION IN COMPOSITE FIELDS 
The second architecture was proposed in the last section of 
Itoh-Tsujii's paper from 1988 [1, Section 6]. It is based 
on so-called composite fields which are finite fields with two 
extensions GF((2n)m). We start with the trivial notation 
A-1 — (Ar)~1Ar~1. If the auxiliary parameter r is defined as 
r ■- 2^"_-i = 1 + 2n + ■ ■ ■ + 2^m-1)n, we obtain the important 
property: Ar 6 GF(2n), VA G GF((2n)m). We are now able 
to state a four step algorithm for computing the inverse of A: 
Step 1 Compute A1""1 

Step 2 Compute Ar~lA = AT 

Step 3 Compute (Ar)_1 = A~T (Inversion in GF(2")) 

Step 4 Compute A~TAr~1 = A'1 

III. A RELATION BETWEEN THE ARCHITECTURES 
For the development of a relation between the two architec- 
tures, we consider [1] with composite fields GF((2n)2) and 
P(x) — x2 +X+P0- An arbitrary field element is represented 
by A(x) = aix + ao, its inverse by B := A-1 =bix + bo. The 
parameter r is now r = 2n + 1. By denoting xr_1 = six + so, 
Step 1 of the algorithm is: Ar_1 = [aisi]x + [aiso + a0]. The 
computation in Step 2 is: AT = [aosi +aiSo + ao + aiSi]a\x + 
[oooiso + a2, + a2sipo]- Since Ar is an element of the subfield 
its coefficient at x is zero, and thus oiso+io = (ao+a\)si. In- 
serting this relation in the expressions for Ar~x and Ar yields: 

a\x + (oi+oo) B(x) = AT-1{Ary1 

ao(ai + ao) + a\po 
(2) 

1The research was done while the author was with the Institute 
for Experimental Mathematics, University of Essen, Germany. 

Equation (2) is the same as the Equations (1). [1] can thus be 
viewed as a generalization of the core algorithm of [2]. [1] is, 
however, not a generalization of the architecture of [2], since 
the latter allows multiple field extensions of degree two. 

IV. EFFICIENT BIT PARALLEL INVERSION IN GF(28) 
For the application of the architecture [2] the decomposition 
of GF(28) into GF((24)2) is considered. Let Q(y) = yA + y + l 
be the primitive polynomial generating GF(24) with Q(u>) = 0 
and P(x) =x2 +x + L014 the primitive polynomial generating 
the composite field. For computing Equations (1) in hardware, 
the following GF(24) arithmetic modules must be provided: 

• A direct approach allows inversion with not more than 
15 XOR/10 AND gates [4, Appendix A]. 

• Three multiplications require 45XOR/48AND [5]. 

• The two additions require 2-4 = 8 XOR gates. 

• Constant multiplication with w14 requires 1 XOR gate. 

• Squaring of an element requires 2 XOR gates. 

The resulting over-all gate count of 71 X0R/58 AND is re- 
markably low. It is interesting to compare this complexity 
with bit parallel multiplication. For instance, the multiplier 
[5] has a gate count of 84 XOR/64 AND. 

V. CONCLUSIONS AND FURTHER RESEARCH 
Decomposition of Galois fields GF(2 ) can lead to area- 
efficient inverters. In general, this approach seems promising 
since multipliers over composite fields can also be realized ef- 
ficiently [3] [6]. For certain fields, in particular for GF(28), 
and inverter can be realized with a gate count smaller than 
that of a multiplier. This result is contrary to common belief. 

For technical applications it will be helpful to provide gen- 
erators x2 +x+po for tower fields with multiple field extensions 
of degree two. Lists with irreducible polynomials over non- 
prime fields are very rare in literature. The zero coefficients 
po of these polynomials should be optimized. 

REFERENCES 
[1] T. Itoh and S. Tsujii, "A fast algorithm for computing multi- 

plicative inverses in GF(2m) using normal bases," Information 
and Computation, vol. 78, pp. 171-177, 1988. 

[2] M. Morii and M. Kasahara, "Efficient construction of gate cir- 
cuit for computing multiplicative inverses over GF(2m)," Trans, 
of the IEICE, vol. E 72, pp. 37-42, January 1989. 

[3] V. Afanasyev, "On the complexity of finite field arithmetic," 
in 5th Joint Soviet-Swedish Intern. Workshop on Information 
Theory, (Moscow, USSR), pp. 9-12, January 1991. 

[4] C. Paar, Efficient VLSI Architectures for Bit-Parallel Compu- 
tation in Galois Fields. PhD thesis, (Engl. transl.), Institute 
for Experimental Mathematics, University of Essen, Essen, Ger- 
many, June 1994. ISBN 3-18-332810-0. 

[5] E. Mastrovito, "VLSI design for multiplication over finite fields 
GF(2m)," in Lecture Notes in Computer Science 357, pp. 297- 
309, Springer-Verlag, Berlin, March 1989. 

[6] C. Paar, "A parallel galois field multiplier with low complex- 
ity based on composite fields," in 6th Joint Swedish-Russian 
Workshop on Information Theory, (Mölle, Sweden), pp. 320- 
324, August 22-27 1993. 

58 



Multilevel Coding with the 8-PSK Signal Set 

Joakim Persson 
Department of Information Theory, Lund University, Box 118, S-221 00 LUND, Sweden 

email: Joakim.Persson@dit.lth.se 

Abstract - Simulation results for concatenated outer Reed- 
Solomon and inner convolutional codes used in multilevel 
schemes are presented. Different high-rate inner convolutional 
codes are considered, viz., punctured codes and partial unit 
memory (PUM) codes. Best results are obtained for PUM codes, 
since they have a better extended row distance profile. The effect 
of channel and block interleaving at the different levels is also 
studied, and iterative decoding is tried1. 

I. INTRODUCTION 

A multilevel code uses some signal set 50 which is a finite subset 
of a lattice or a set of points with some group structure. This set is 
partitioned into a fe-level partitioning chain, S0/Sl/.../Sk, which 
can be described as a rooted tree with k + 1 levels (the root is level 
zero). Every node at level i is partitioned into disjoint subsets which 
are cosets. Each partition at level i, S._j/5., is determined by a 
component code C;. In general these component codes may be of 
any type, but for this work we have only considered convolutional 
component codes and concatenated component codes with inner 
convolutional and outer Reed-Solomon codes. Using multilevel 
codes one can achieve arbitrarily large squared Euclidean free dis- 
tance. 

The structural properties of multilevel codes make them attrac- 
tive for code constructions. Unfortunately, the decoding will be car- 
ried out in a way which is not maximum likelihood, otherwise the 
computational efforts become far too large even for small systems 
(i.e., systems with not very complex component codes). The compu- 
tational complexity of the preferred multistaged decoding procedure 
from [1] is proportional to the sum of the complexities of each com- 
ponent code, but it suffers from error propagation. In order to mini- 
mize the errors at each level, a concatenated scheme with outer 
Reed-Solomon and inner convolutional codes was considered. The 
errors of the inner convolutional decoders occur in bursts, and the 
idea is that the inherent burst error correcting capability of the outer 
RS code will correct these errors. 

Our system transmits signals over the AWGN channel. The used 
signal constellation is 8-PSK. This implies three levels in the sys- 
tem. Since the partition chain is 8-PSK74-PSK72-PSK/1-PSK, the 
minimum squared Euclidean distance among the signal points in the 
subsets at the different levels increases for each partition. Therefore 
the encoder of level 1 must be protected by a more powerful code 
than that of level 2, et cetera. 

II. SIMULATION RESULTS 

The simulations show that there is no need for a concatenated 
code at level 3. In order to retain as high overall rate as possible, the 
rate of the inner code at level 2 must be quite large. Due to its simple 
decoder implementation, a punctured convolutional (PC) code was 
tested. Simulations then show that the bit error rate (BER) perfor- 
mance of level 2 bounds the overall code BER. This is caused by the 

bad extended row distance profile of punctured codes, i.e., error vec- 
tors e of small weight are enough to result in quite long bursts. As an 
alternative, a PUM code was tested. There exist decoding proce- 
dures for these codes [3] that are not more complex than decoding 
of PC codes. The simulations show that a PUM code with overall 
constraint length one less than the previously used PC code, per- 
formed only negligible worse (< 0.05 dB). From a practical point of 
view the reduced decoding complexity is far more important. 

We need to minimize error propagation at each level (between 
the inner and outer code) as well as the error propagation between 
levels. The first is accomplished by reducing the length of error 
events from the inner decoder by applying block interleaving. The 
simulations confirmed a theoretical result from [2] on how many 
rows the interleaver matrix need in order to maximize the free dis- 
tance of the concatenated system. One idea how to decrease the 
error propagation between levels is to interleave the coset labels of 
different levels in time (channel interleaving). However, this seems 
to be of little help. Comparing simulations of our system without 
channel interleaving with simulations of a theoretical system with- 
out any error propagation at all (a genie between every level), shows 
a difference of less than 0.05 dB already at a BER of 10~4. 

Finally we studied iterative decoding and its influence at the dif- 
ferent levels. There is no immediate way of extracting the error 
probability of individual decoded bits because of the hard decoding 
of the RS codes. It turns out that only the first level benefits from 
'hard' iterative decoding. The improvement on the whole system is 
only marginal (the asymptotic error performance follows level 2 
instead of level 1). The total BER is not changed more than a few 
tenths of a dB. 

Bit error probabilities 

1. This work was supported in part by the Swedish Research Council for 
Engineering Sciences under Grants 92-661 and 94-83. 

Fig. 1. Simulation results for the concatenated system vs. uncoded 4-PSK. 
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Abstract -A simple method is presented for performing soft-de- 
cision demodulation and decoding of trellis-coded phase-dif- 
ference modulations. Results are given for trellis-coded M-ary 
differential phase-shift keying and M-ary double-differential 
phase-shift keying, each with soft-decision demodulation and 
decoding. The performances of these combinations of coding, 
modulation, demodulation, and decoding are presented for 
channels which may introduce a phase ramp in the modulated 
signal. 

SUMMARY 
Phase-difference modulation, such as M-ary differential phase- 

shift keying (M-DPSK) and M-ary double-differential phase-shift 
keying (M-D2PSK) [1], is desirable for some mobile radio systems 
and channels in which it is difficult to obtain an accurate phase 
reference. Either M-DPSK or M-D2PSK may be coupled with a 
trellis code to decrease the probability of bit error for a given sig- 
nal-to noise ratio (SNR). As the rate of the code is decreased, the 
number M of points in the M-ary PSK (M-PSK) signal constella- 
tion must be increased in order to transmit the same rate of infor- 
mation in the same bandwidth. As M is increased, the probability 
of symbol error increases, even for a channel with perfect phase 
stability. However, even greater degradation results if there is Dop- 
pler shift in the channel or phase drift in the system's oscillators. It 
is therefore of interest to investigate modulation and coding sys- 
tems that can tolerate such a phase variation in the carrier signal. 
To avoid trivialities, it is assumed in all that follows that M>4. 

Trellis coding provides coding gain to offset the increase in 
symbol error probability that results from increasing M. Optimal 
trellis demodulation and decoding may be too complex to imple- 
ment in a mobile radio system. An alternative method which per- 
forms nearly as well and is much less complex is to perform the 
demodulation and decoding separately. For example, it has been 
suggested that the pragmatic trellis code be demodulated in this 
way, with hard or soft bit decisions at the output of the demodula- 
tor being input to a convolutional decoder modified to correct par- 
allel branch errors [2]. 

The decision regions for standard hard-decision demodula- 
tion of M-PSK signals correspond to equal-length intervals for the 
phase of the received signal. As a consequence, standard hard- 
decision demodulation is easy to implement, but it does not pro- 
vide information on the relative reliabilities of the bit decisions 
that result from a symbol decision. Because some bit decisions are 
more reliable than others, soft-decision demodulation and decod- 
ing should be employed. 

The natural generalization of the standard method for soft- 
decision demodulation and decoding of binary signals (e.g., binary 
PSK) is not effective in M-PSK demodulation, in part because the 
reliabilities of the bit decisions do not depend only on the received 
signal strength. The optimum method for soft-decision decoding 
for a channel with perfect phase stability is too complex for most 
applications; in particular, it requires an accurate measurement of 
the SNR in the front end of the receiver. In addition, this method 

This research was funded in part by the Army Research Office under grants 
DAAH04-93-G-0253 and DAAH04-94-G-0154 and in part by a grant from 
ITT Aerospace and Communications Division. John M. Shea is the recipi- 
ent of a National Science Foundation Graduate Research Fellowship. 

may perform very poorly if there is any phase drift in the carrier. 
We propose a suboptimal method to generate quantized soft 

information for each bit associated with an M-PSK symbol. This 
method exploits the way bits are assigned to symbols in the 
M-PSK constellation, and it is simple to implement in the last stage 
of the demodulator. Simulation results show that the proposed 
method provides a significant performance improvement over hard- 
decision demodulation and decoding. The method is based on 
dividing each hard-decision phase interval into subintervals, using 
phase as the only criterion. The weights for the individual bits are 
constant throughout each subinterval, but they vary among the sub- 
intervals, even within the same hard-decision interval. The length 
of the subintervals can be adjusted to optimize performance. 

A simulation was employed to obtain numerical values for 
the additional coding gain for soft-decision decoding over hard- 
decision decoding. The bit error probability is shown in Figure 1 
as a function of ED/No, the energy per information bit divided by 
the one-sided spectral density of the white Gaussian noise. The 
dashed curves illustrate that the simple two-bit quantized soft-de- 
cision decoding scheme for 8-DPSK with the rate 2/3 pragmatic 
trellis code provides up to 1.5 dB additional coding gain over the 
hard-decision system on the additive white Gaussian noise channel 
with a stable phase. The solid curves show that the simple two-bit 
quantized soft-decision decoding scheme with 8-DPSK performs 
up to 3.5 dB better than the hard-decision system for a system with 
a 10 degree phase rotation. The phase rotation is defined as the 
phase change over the duration of one M-ary symbol due to a lin- 
ear phase drift in the carrier. The two-bit soft-decision decoding 
scheme used with M-D2PSK provides up to 2.2 dB coding gain 
over hard-decision decoding for channels with stable phase and 
channels with phase ramps. 
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Figure 1. Comparison of hard- and soft-decision decoding 
for two channels 
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Abstract — Punctured convolutional codes allow an 
easy implementation of variable-rate encoders/decoders. In 
this paper, the puncturing technique is used to generate new 
QAM trellis codes from a rate-1/2 code. These codes are true 
high-rate codes, without parallel branches in the trellis. A 
simplified decoding technique is also presented. It is shown 
that the advantages the puncturing technique provides with 
binary convolutional codes are essentially maintained with 
Trellis-Coded Modulation. 

Summary 

Trellis-Coded Modulation (TCM) can yield significant 
coding gains of 3 to 6 dB over uncoded modulation without 
bandwidth expansion [1]. Unfortunately with Ungerboeck's 
usual TCM, each signal constellation requires a different 
code. For example, a code for 8-PSK is different from a 
16-PSK code. As a consequence, implementing a system 
with various spectral efficiencies (e.g., 2, 3 and 4 bits/s/Hz) 
would necessitate several distinct encoders/decoders. In 
addition, since there are 2m branches converging onto each 
trellis state for a rate R=m/(m+l) TCM! code, decoding 
such a code with the Viterbi algorithm requires (2m-l) 
binary comparisons per state. Hence, Viterbi decoding 
in the usual manner becomes quickly impractical as the 
number of states and the coding rate increase. A pragmatic 
approach to this problem has been proposed by using a rate- 
1/2, 64-state convolutional code and adding (m-1) uncoded 
bits to the output to produce a rate R=m/(m+l) code [2, 
3]. The disadvantage of this approach is that the trellis 
exhibits parallel branches. For some codes, limiting the free 
distance to the distance between parallel branches leads to 
suboptimality. 

It has been shown that the puncturing technique can 
be applied to TCM [4]. Using extensive computer searches, 
8-PSK and 16-PSK punctured codes have been found with 
free squared Euclidean distances that are either equal to or 
almost as large as the distances of the best known codes 
discovered by Ungerboeck. The puncturing technique can 
also provide codes with uncoded input bits and parallel 
branches in the trellis. Furthermore, variable-rate punctured 
TCM codes have also been found using computer search. 
Families of QPSK, 8-PSK and 16-PSK codes, which are 
quite good in the sense of Euclidean distance as compared to 
the best known codes, have been obtained from a single rate- 
1/2 convolutional code and a varying puncturing pattern [5]. 

This research has been supported in part by the Natural Sciences and 
Engineering Research Council of Canada 

The advantage of using a single rate-1/2 code is that variable 
bandwidth efficiencies and hence, variable throughputs can 
be achieved with a single encoder/decoder. 

The puncturing technique presented here is quite flex- 
ible, allowing either a true high-rate code or a code with 
parallel branches. In this paper, new 8-QAM, 16-QAM and 
32-QAM punctured trellis codes are presented. These codes 
are true high-rate codes without parallel branches. The free 
Euclidean distance is not limited by the distance between 
parallel branches and hence, when the number of states is 
large, these codes can provide a larger free distance than 
codes with parallel branches. Furthermore, over Rayleigh 
fading channels, the absence of parallel branches in the 
trellis is beneficial since codes without parallel branches 
yield a better error performance than codes having parallel 
branches. 

By using the fact that these QAM codes are generated 
from a rate-1/2 code, decoding can be performed on the 
low-rate trellis. Hence, the reduction in the number of 
binary comparisons the puncturing technique provides with 
convolutional codes is essentially maintained with TCM at 
the cost of a slight degradation in the error performance. 
These decoding techniques and simulations results will be 
presented. 
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Abstract — New design rules for multilevel codes 
with finite codeword length are derived from infor- 
mation theory leading to digital transmission schemes 
with high power and bandwidth efficiency. 

I. INTRODUCTION 
Multilevel coding (MLC) is a well known approach to cre- 

ate power and bandwidth efficient communication schemes. 
Usually, the component codes are designed for balanced Eu- 
clidean distance for all levels, see e.g. [2]. But this rule does 
not take into account the tremendously increasing number of 
nearest neighbour error events for low levels due to the mul- 
tiple representation of code symbols by signal points, cf. [3]. 
Thus, in multistage decoding a predomination of errors in low 
levels can be observed which leads to a serious degradation in 
power efficiency. Therefore, we propose to design the compo- 
nent codes using parameters from information theory of the 
equivalent channels at the individual levels. 

II. MULTILEVEL CODING 
MLC for a M = 2^-ary digital modulation scheme is based 

on a binary set partitioning of the signal constellation A = 
{am\m £ {0,1,..., M - 1}} defining a mapping ro « c of 

where the conditional pdf's fy{y\am) characterize the discrete 
memoryless channel. From this equation, the random coding 
exponents E'r(R') for the equivalent channels at levels i of a 
MLC scheme can be calculated in a straightforward way. 

A suitable representation of the random coding bound for 
the rate design are isoquants 

Eiw) = - 
log2 pe — const. V ff (3) 

where a1 denotes the noise variance per dimension. We pro- 
pose the design rule: 

For a maximum toleiable block error rate pe and given 
codeword length n at all levels, choose the rates R' 
of a MLC scheme from the corresponding isoquants of 
the random coding exponents E'r(R') for given noise 
variance <r2 or given total rate R = £^ R*. 

IV. SIMULATION RESULTS 

Simulation results for digital PAM transmission with MLC 
over the AWGN channel are presented. Turbo codes [1] with 
rates designed from random coding bound are employed as 
component codes.    For 16QAM with total rate R = 3 and 

binary labels c = (c , c ,... 
The subsets of signal points at level i are denoted by the path 
to the subsets in the set partitioning tree, i.e. 

Aeo...e« = {am\m ~ (c°,..., c\ xi+1,..., x*'1), x1 £ {0,1}}. 

At each level i equivalent channels can be considered for 
the transmission of binary symbols c\ The sum of capacities 
C" of these equivalent channels yields the capacity C of the 
communication scheme ([4], [3]). Consequently, we proposed 
to choose the rates R' of long codes at levels i equal to the 
capacities C" [3]. 

III. RATE DESIGN FOR FINITE BLOCKLENGTH 
The blocklength of MLC schemes is limited due to restric- 

tions like delay or decoder complexity. Therefore, a design 
rule for MLC with finite and uniform length n of the compo- 
nent codes at each level is presented in this paper. 
The tool to consider codes with finite length n is the random 
coding bound 

pe < 2-
nE^R\ (1) 

where pe denotes the probability of block errors and Er(R) 
the random coding exponent. 

For transmission of a symbol c' at level i in a MLC scheme a 
point of the subset Aco...c; is selected equiprobably. Thus, the 
probability density function (pdf) of the continuous channel 
output y for given c* reads 

fy(v\ci)= ul    .i      £      fvivWm), (2) 

J) to the signal points am.     blocklength  n   =   2000  a bit  error rate  (BEB.)  <   10       is 

|Aro.. 

1 The work was supported by Deutsche Forschungsgemeinschaft 
under contract Hu 634/1-1 

achieved only 1.4 dB above capacity limit. For n = 20000, 
BER < 10~5 only 0.8 dB above capacity has been observed. 
For 8PSK with total rate R — 2, simulation results are simi- 
lar. The results for 16QAM can be extended to M > 16-ary 
QAM schemes by imposing further uncoded levels. Further- 
more, these uncoded levels can be employed to achieve an 
additional shaping gain. 

V. CONCLUSION 

The benefits of powerful binary codes can be transferred 
to any digital transmission scheme via the multilevel coding 
approach, if the individual rates are well chosen, e.g. accor- 
ding to the random coding bound criterion for the individual 
levels. Application of Turbo codes to MLC schemes offers di- 
gital communication close to capacity limit for a wide range 
of trading power for bandwidth efficiency. 
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Abstract - Trellis coding of Gaussian minimum shift keying (GMSK) 
is considered. The structure of combinations of rate 1/2 and 2/3 binary 
convolutional encoders and GMSK modulation with several values of 
the parameter BTis studied by means of the so called "matched coding 
approach" [4,5]. It is shown that in such connections up to 3 distinct 
classes of codes can be identified each with different receiver 
complexity. The results of the optimization procedure for codes 
combined with GMSK are given. The results show that significant 
coding gains (over 6.5 dB) are obtained. Power-bandwidth performance 
of the best coded schemes is presented where it is demonstrated that 
variation of BT offers another degree of freedom in the design of 
communication systems. 

I. INTRODUCTION 

Demand for spectrally-efficient modulation techniques for use in various 
communication systems and the inherent properties make Gaussian 
minimum shift keying (GMSK) [1] an attractive scheme for prospective 
applications. In recent years, trellis coding of modulations with memory has 
gained much attention since it usually offers significant coding gains and 
hence, improved power efficiency what is especially important in power- 
limited systems [2, 3]. In this paper, we study application of trellis coding 
technique to GMSK schemes with selected values of the normalized 
bandwidth of the premodulation filter BT. The first objective is to analyze 
how convolutional codes interact with the memory of the GMSK modulator 
and how it influences the trellis of the combined receiver for the coded 
scheme. We also give quantitative results of coding gains over the uncoded 
signals that can be achieved due to trellis coding. Finally, we present the 
performance of the best coded GMSK schemes in terms of power- 
bandwidth tradeoffs and compare them to other binary systems. 

The considered system consists of a convolutional encoder followed by a 
GMSK modulator, AWGN channel and the optimum Viterbi receiver which 
uses a combined encoder-modulator trellis for joint demodulation and 
decoding. The GMSK signal is a constant envelope RF phase-modulated 
signal where the information carrying phase is given by: 

«*,£)= *[£J8,S(T-IT>/T+0O (1) 

where ß{ is the transmitted symbol, and g(t) is the frequency impulse of the 
form: 

,     Z7\     1 _,  2KB ,     TA    J litB ,     7\ (2) 

The values of L which determine the duration of the impulse g(t) depend on 
the particular GMSK scheme. For a finite length LTofg(t) a modulator can 
be represented as a finite-state sequential machine. Following the approach 
of [4], a precoder T(D)= \+D was used in our system which precodes the 
input to the modulator making it a feedback-free one. 

II. CONVOLUTIONAL CODES COMBINED WITH GMSK 

We consider combinations of noncatastrophic convolutional codes of 
rates 1/2 and 2/3 and precoded GMSK modulators. We assume that when 
concatenating convolutional encoders with modulators the initial state of 
both circuits is a zero state. Let SQ denote the number of an encoder states 
and Sy the number of states in the combined Viterbi receiver. The 
following lemmas can be formulated for these schemes. 

Lemma I: For the GMSK, 57=0.5 and BT=0A modulators combined with 
the rate 1/2 and rate 2/3 convolutional codes and for every Sy>4, there are 
exactly two distinct classes of codes (A and B) producing the required value 
of Sy, namely: 

A:    S^MASy (3) 
B:    %=l/2 Sy (4) 

Lemma 2: For the GMSK, .07=0.3 and 57=0.25 modulators combined 
with the rate 1/2 convolutional codes and for every Sy>4, there is exactly 
one class of codes (A) producing the required value of Sy, namely: 

A:    S^lMSy (5) 

Lemma 3: For the GMSK, BT=03 and 57=0.25 modulators combined 
with the rate 2/3 convolutional codes and for every Sy>8, there are exactly 
three distinct classes of codes (A, B and C) producing the required value of 
Sy, namely: 

A:    S(j=VS Sy (6) 
5:    Sg=\IA Sy (7) 
C:    S^mSy (8) 

Codes of (4), (5) and (8) arc called matched codes (encoders) [5] for the 
respective GMSK modulators. The remaining codes are mismatched ones. 

III. NUMERICAL RESULTS 

A systematic search for best matched and mismatched short convolutional 
codes maximizing minimum squared Euclidean distance of the coded 
GMSK schemes has been performed. Table 1 contains the distances of the 
best connections of GMSK signals and rate 1/2 codes. All schemes 
presented in the table were obtained using matched codes. The results show 
that matched codes usually outperform mismatched codes by 0.5 to 1 dB. 
Coding gains over uncoded signals range from 1.3 to 6.6 dB for all 
considered GMSK signals and code rates, increasing with the receiver 
complexity. 

The comparison of the coded GMSK with other binary systems has been 
done in terms of the power-bandwidth performance. In particular, it turned 
out that best rate-2/3 coded GMSK with 57=0.5 found by us perform nearly 
the same as rate-1/2 coded TFM schemes of [4] for Viterbi receivers with 
more than 16 states. 

Table 1 
Normalized minimum squared Euclidean distances of the best rate-1/2 
coded GMSK schemes with optimum receivers of up to 128 states. 

B5r\Sy 4 8 16 32 64 128 

0.5 3.00 4.00 5.91 5.97 7.91 8.87 
0.4 3.00 4.00 5.83 5.95 7.83 8.77 
0.3 1.12 3.00 4.88 5.77 6.77 7.67 
0.25 1.19 3.00 4.82 5.64 6.64 7.52 
0.2 ... 3.00 3.92 5.19 5.68 7.04 
0.15 — 1.56 3.02 4.56 5.07 6.10 
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Abstract — It is shown that the use of Gray scram- 
blers and Gray mapped signal sets are equivalent. A 
search is performed for better scramblers, including 
a search for scramblers with memory. Memoryless 
scramblers are found to give best performance and an 
explanation for this is given. 

I. Introduction 
Recent authors have suggested ways in which the BER of 

trellis codes can be reduced. In [2] the scrambling of the infor- 
mation bits with a Gray coder prior to encoding is discussed, 
while in [3] and [4] the use of a Gray coded signal set mapper 
is examined. We will show that these two methods are equiva- 
lent. We also present a systematic technique based on bounds 
for Pe and Pb for finding the best scrambler to be used with a 
given trellis code. This search is not limited to combinatoric 
circuits, we also search for scramblers with memory. 

II. Algebraic Relation Between Gray Coded 
Scrambler and Signal Mapper 

The Gray coded 8-PSK signal set mapper used in [3] can 
be represented as a naturally mapped 8-PSK signal set map- 
per preceded by an n x n matrix transformation C. The Gray 
coded scrambler considered in [2] precedes the generator ma- 
trix and is represented by the A; X k matrix transformation 
S. In general, the algebraic relation between an 8-PSK trellis 
code with a Gray scrambler and a natural signal mapper, and 
an equivalent 8-PSK trellis code based on a Gray coded signal 
mapper is 

SGn = GgC (1) 

where Gn and Gg are the generator matrices for the code with 
the naturally mapped signal set and the code with the gray 
coded signal set, respectively. This relationship does not hold 
between all the 8-PSK codes in [1] and [3], because in [3] the 
authors have found codes with a better Pe than those in [l]. 
However, it is possible to use (1) to transform the codes of [3] 
to equivalent naturally mapped codes which will have a better 
Pe than the Ungerboeck codes. Preceded by a Gray scrambler 
the BER performance of the new code will be identical to the 
Gray mapped code. 

III. Search Method 
The union bound on Pb is used as a cost function to choose 

the best scrambler, so that the effect of the scrambler on an 
error path is weighted by its probability. Consider the effect 
of some scrambler s(-) on a sequence of correct data c; the 
input to the encoder will be s(c), and if an error e occurs the 
output of the decoder will be s(c) + e, and the output of the 
descrambler will be s""1(s(c) + e). If the scrambler is linear we 
have 

s-'isic) + e) = «_1(a(c)) + a_1(e) = c + s_1(e)       (2) 

so the scrambling does not affect the correct path. Thus we 
wish to find a scrambler s which minimises 

(3) A = £y(s_1(e.))Pr(<.) 

where e is a subset of the set e of all error paths, consisting of 
only the error paths which have a significant effect on the cost 
function A- W(-) is the Hamming weight of the error path. 

For any code G there exists an equivalent systematic en- 
coder matrix G3ys such that Gsys - TG. G3y3 has a trivial 
right-inverse of degree 0 whereas G generally does not. This 
means that the error paths produced by Gjys will have lower 
degree than those produced by G-1, hence, while scramblers 
Si and S2 give identical performance with generator matrices 
Gsys and G, respectively, scrambler Si will have lower degree 
than S2. Thus the search for the best scrambler for the code 
generated by G should involve first finding the error paths for 
Gsys. The best scrambler S for Gsys can then be found, and 
the best scrambler for G will then be ST. 

IV. Search Results 
A search was performed for the best scrambler for v — 

3 systematic Ungerboeck codes with k varying from 2 to 5. 
In all cases a memoryless scrambler was found to give best 
performance. The reason for this can be seen if we look at 
a list of error vectors ordered according to probability. It is 
clear that the best memoryless scrambler found will reduce the 
Hamming weight of all vectors, producing an almost ideal list, 
i.e., vectors with high probability have low Hamming weight 
and vice versa. To get further improvement we must permute 
a small number of vectors, leaving most fixed. However for a 
fc-dimensional vector space there are at most k invariant sub- 
spaces, so it is clear that we cannot change a small number of 
vectors. If we were to use a nonlinear scrambler we could do 
this, but then (2) would not hold. 

The best scrambler in all cases was found to reduce the 
BER by approximately 1/3. This gain is only significant in 
applications where the gradient of the BER curve is small, 
such as low Eb/No operating points or on fading channels. 
For example, the Eb/No required to achieve a BER of 10~2 

with the v = 3 8-PSK Ungerboeck trellis code is reduced by 
0.25 dB when a scrambler is used. 
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Abstract — In this paper we focus on the issue of dis- 
tribution of dimensions in time, describing a method, 
suited to different types of envelope functions used 
for modulation, that can generate an almost arbitrary 
distribution of dimensions in time with spectral ef- 
ficiencies near the Nyquist limit. Subsequently, we 
propose a modulation scheme whereby the distribu- 
tion of dimensions in time is used to carry additional 
information in the same BandWidth (BW). 

I. INTRODUCTION 

The dimensionality theorem states that using shift orthog- 
onal functions for modulation with shift period A and band- 
width B, in a T seconds interval we can generate at most 2BT 
dimensions [1]. We are interested in how these dimensions are 
distributed in time. Classically we have had two options: (1) if 
A = T, the best basis functions to use are prolate spheroidal 
wave functions; (2) if A << T, it is natural to use shift or- 
thogonal functions such as the raised cosine shaping pulses, or 
the recently proposed scaling functions and wavelets [2]. The 
purpose of this paper is to present systematic methods based 
on the theory of wavelets and filter banks to generate almost 
arbitrary distributions of dimensions in time, achieving the 
highest spectral efficiency in a given BW. 

II. GENERATION OF DISTRIBUTION OF DIMENSIONS 

We describe here the basic steps of a procedure for the gen- 
eration of distribution of dimensions. In the proposed method 
we use two shift orthogonal frequency overlapping functions, 
q(t) and w(t), where q(t) is a lowpass function while w(t) is 
a bandpass function. Both q(t) and w(t) are shift orthogonal 
with period A. q(t) can be either a scaling function [2] or an 
even or odd shift orthogonal function [3]. w(t) will be, respec- 
tively, the function w(t) = \Z2q(t)sin(2irt/A) or the wavelet 
associated with the scaling function q(t). 
Step 1: the overlap space between q(t) and w(t) is isolated 
by filtering the portion of w(t) that falls on the BW of q(t). 
For this purpose, either wavelet packets or nearly ideal low 
pass filters can be used, depending on the characteristics of 
the modulation waveforms. This operation generates a func- 
tion o(t) which is shift orthogonal with shift period LA (L is 
an integer), spanning a space occupying the same BW as q(t) 
yet completely orthogonal to it. This function can be used to 
generate additional dimensions in the same BW as q(t). 
Step 2: the space spanned by q(t) can be split into orthogonal 
frequency channels using the combination of wavelet packets 
and multiplicity-M wavelets. The overlap space spanned by 
o{t) can be similarly partitioned. This orthogonal frequency 
channelization can be extremely flexible [2]. These results 
are subsequently used to introduce a novel coded modulation 
scheme based on the concept that the way the time-frequency 
plane is partitioned into orthogonal frequency channels can 
carry information. 

'This work was partially supported by M.U.R.S.T. 

III. APPLICATION TO CODED MODULATION 
Suppose we have a two-state modulator which can choose 

between the shift orthogonal function <£(<) with shift period A 
(state <r0) and two shift orthogonal functions <f>i(t) and 02(<) 
with shift period 2A (state <n). Then the dimensional rate in 
a given BW is fixed, but how the dimensions are distributed in 
the time-frequency plane differs for states <r0 and o\. Consider 
parsing the source symbols an into non overlapping blocks. 
The state of the modulator can be controlled by an extra 
binary data stream, whose rate matches the symbol 6/ocJfcrate. 

The switching of the basis for two adjacent blocks could 
lead to ISI at the boundary of the adjacent blocks. However, 
given the state of the modulator, this ISI is deterministic and 
can be remedied. 

The coherent demodulator at the receiver can either oper- 
ate following a Maximum Likelihood (ML) detection rule, or 
performing hierarchical (suboptimal) demodulation. 

The ML detection rule can be formulated to determine the 
state of the modulator from the observation of the received 
signal associated with the InterSymbol Interference (ISI) free 
portion of the blocks. Efficient search for the ML estimate of 
the a„ can be performed using the Viterbi algorithm with state 
complexity of V4°-5(L+1) (assuming that L is odd), where A is 
the alphabet size of the sequence o„ and L + 1 is the number 
of samples of the scaling and wavelet vectors [2]. Once the 
sequence a„ is detected, assuming that the receiver operates 
with very low error probability, we can use the ML estimated 
data vector 5 to estimate the modulator state. 

A practical alternative may be to use the correlation prop- 
erties of the sampled outputs of the Matched Filters (MFs) 
at the receiver. Suppose the receiver employs one set of MFs 
for each state of the modulator. Then only the outputs of 
the correct MFs will be uncorrelated. Hence, time-averaged 
auto-correlation of the output samples of the MFs can be used 
to determine the modulator state. Once the modulator state 
has been estimated for a given block, the output of the correct 
MF is sampled to demodulate the received sequence for the 
portion of the block that is not corrupted by ISI. The portions 
of the block that may experience ISI are demodulated from 
the knowledge of the modulator state in the previous and the 
present blocks. 

All the concepts presented above can be generalized to the 
case where there are other orthogonal channelizations of the 
available spectrum and can further be combined with channel 
coding. 
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Abstract — We show that the performance of an M- 
Algorithm detector for linear partial response coded 
modulation depends critically on phase and is charac- 
terized by the partial energy function of the encoder. 

I. INTRODUCTION 

Many practical communication channels may be adequately 
described by an equivalent discrete time model 

Tk hodk + \] hia*-i + nk (1) 

where ak represents the data symbol, hk represents an im- 
pulse response, n* an additive white Gaussian noise (AWGN) 
component and m represents the channel memory. The above 
discrete time model can be used to construct a trellis. Max- 
imum likelihood sequence estimation may be performed by 
searching this trellis with the Viterbi Algorithm (VA), but its 
complexity grows exponentially with the length of the channel 
impulse response. 

A number of reduced search techniques like the M- 
Algorithm (MA) have been developed to achieve near opti- 
mum performance at a fraction of the optimum receiver com- 
plexity. In applications like mobile communication, the phys- 
ical channel must often be characterized as a non-minimum 
phase channel. The purpose of this work is to characterize 
the effect of non-minimum phase channels on reduced search 
decoding complexity. 

One feature that distinguishes channels having identical 
spectra and free distance but different phase is the partial 
energy given by E(n) = ££,„ \h{k)\2. If E(n) represents the 
partial energy of any finite duration channel h(n), then 

EmaI(n) < E{n) < Emin(n) (2) 

where Emin{n) and Emax{n) represent the partial energies of 
the minimum and maximum phase channels having the same 
magnitude frequency response as h(n). 

II. DECODER SIMULATION RESULTS 

Channel phase effects were determined by performing MA de- 
coder tests on different channels with the same autocorrela- 
tion. The results for one representative 10 tap channel class[2] 
having one real zero and 4 pairs of complex conjugate zeros, 
are described here. The class is specified by the normalized 
99% bandwidth (NBW) and minimum distance loss (MDL) 

measured by MDL = 10log10 -
J
Y

S
-. 

The minimum phase channel, maximum phase channel and 
4 mixed phase channels belonging to this class were chosen for 
performing MA tests. The partial energy curves and column 

iThis work was partly supported by General Electric Corporate 
Research and Development Center, Schenectady, New York. 

Figure 1: (a) Partial energy curves (b) Distance profile for 
selected channels of 10 tap class (NBW=0.36, MDL=0.19 

dB). 

Channel a b c d e / 

Number of paths (M) 4 5 18 32 32 128 

Table 1: MA decoder results for 10 tap equivalence class. 

distance profiles of these channels are plotted in Figures 1(a) 
and 1(b) respectively. MA simulations were carried out on 
these channels and the complexity was measured in terms of 
the minimum number of paths (M) needed by the decoder at 
each tree level in order to achieve near-MLSE performance. 
The complexity required by each of the channels is summa- 
rized in Table 1 . The minimum phase channel (o) needs the 
lowest value of M (4 paths) while the maximum phase channel 
(/) needs the highest complexity (M=128 paths). Channels 
that have similar partial energy curves turn out to require 
the same complexity. The partial energy curves of any one 
channel class show groups of channels having similar curves 
and the complexity required by the MA decoder increases as 
we move from one group to another one lower in the partial 

energy picture. 
We have analyzed many channels (i.e., sets of {hk}) and 

all show a behaviour[l] similar to Figure 1, except that the 
number of partial energy groups varies from 1 to 8. A superior 
partial energy curve and distance profile guarantees lower MA 
decoder complexity, but we see that partial energy serves as a 
better indicator of performance than the distance profile. 

[1] 

[2] 
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Abstract -In this paper we investigate applicability of simplified 
decoders of convolutional codes to the case of multilevel coding 
[1]. System behaviour is examined by means of minimum 
distance analysis and simulation. 

I. PROBLEM STATEMENT 

The objective of our research is to investigate applicability of re- 
duced complexity algorithms for the decoding of multilevel codes 
combined with multi-resolution QAM, as proposed for the terres- 
trial transmission of HDTV signals in Europe. 
Multistage decoder shown in the Fig. 1 will be examined in the 
paper. In this figure only the inner level of coding and modulation 
is shown. Other elements of the system are omitted [3], 
Simplifications of the receiver are based on two different ap- 
proaches: on the M-algorithm [4], which is the optimum solution 
for searching a limited part of trellis, and RSSE algorithm which is 
not optimum but is easier to build in hardware than M-algorithm. 
Both of these solutions consist of using a smaller number of states 
than that of the Viterbi algorithm. 
The following benefits can be potentially achieved via the simpli- 
fied algorithms in the receiver: 
a) reduction of complexity of the decoder (reduction of the 

total cost of the system) 
b) additional performance gain, for the fixed receiver comple- 

xity by the proper choice of the code structure in the trans- 
mitter. 

The main purpose of the paper is to see if there is an additional 
coding gain achievable via the use of the multistage decoders based 
on the M-algorithm and RSSE [4] approach and if so, how large it 
is. Analysis is done on the basis of asymptotic coding gain 
(minimum distances). Numerical results of computer simulation are 
also provided. 

II. NUMERICAL RESULTS 

Firstly, we examine the degradation of performance due to simplifi- 
cations of decoding. It has been done by simulations. An example 
of numerical results is shown in the Fig. 2. These are simulated bit 
error rates for convolutional codes of rate >"Q=1/3 and rj-2/3 de- 
coded by RSSE algorithm, for the system of Fig. 1. Losses in this 
case are about 1 dB for reduction from 64 states to 32 states for 
Gaussian channel. Results for Rayleigh channel are also provided. 
Typically, it turns out that for Rayleigh channel and complexity 
reduction greater than 2, losses are significant (greater than 3 dB). 
For concatenated coding systems very important to investigate are 
the properties of error bursts at the output of the decoder. We have 
analyzed the distribution of the average value of burst length. 
Numerical results for different rates and complexity reduction are 
provided for Gaussian and for Rayleigh channels. Typically, the 
length of bursts at the output of decoders with reduced complexity 
increases with decreasing number of the decoder states. 
Additionally, for multistage decoding average value of burst length 
are up to 3 times greater than for the case of single stage coding. 

[1] 

[2] 

[3] 

[4] 
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Fig. 2. Simulated bit error rate for RSSE decoding of multilevel 
convolutional codes with rates 1/3 and 2/3 combined with 4 
QAM. 

Table 1. Comparison of the values of average burst length for 
simplified decoding of single level convolutional codes 
(r=l/3,r=2/3) with multilevel coding. Results for constant value of 
bit error rate (BER= 
decoder Vrec. 

=10"J) and different number of states of the 

Vrec [states1 64 32 16 8 

[bits] 
r=l/3    RSSE AWGN 10 20 50 150 
r=2/3     RSSE AWGN 10 60 150 300 
(1/3.2/3) RSSE AWGN 30 100 300 750 

11 This work was partially sponsored by the following grants: RACE R2082, KBN-8S50401905. 
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Abstract - A new general criterion for the optimal design of 
(possibly) time-varying and nonlinear trellis-codes for reliable 
transmission of digital information sequences over arbitrary 
(possibly) time-varying Discrete Memoryless Channels 
(DMCs) is presented. The criterion is derived on the basis of 
new tight generally time-varying analytical upper bounds 
developed for the performance evaluation of MAP decoders 
with finite decoding constraint-lengths which minimise the 
symbol-error probability. New procedures related to the 
proposed criterion are also presented, allowing a direct 
construction of good trellis-codes for any arbitrary DMC and 
for any assigned value of the decoding constraint-length. 

SUMMARY 

The common design criterion for trellis-codes requires the maximisation 
of the minimum Hamming distance (the so-called "free-distance") between 
codewords. Although this criterion is largely used in practical applications, 
its validity is not quite general. In fact it is well known that, almost in 
principle, it is optimal only in the case when the employed trellis-code is 
linear (i.e., it is a convolutional code), the assigned DMC is time-invarying, 
binary, symmetric and with a very small cross-over probability and a 
sequence Maximum Likelihood (ML) decoder with infinite decoding 
constraint-length A is present at the receiver site [1]. Barring for this case, 
the general issue of "good" trellis-code design for arbitrary noisy DMC 
channels seems not yet well explored in the literature. 

In this contribution a novel general criterion is presented for the optimal 
design of trellis-codes (in general, nonlinear and time-varying) for arbitrary 
noisy DMCs (in general, non-binary, non-symmetric, time-varying and 
characterised by an arbitrary error-rate) when a decoder which minimises the 
symbol-decoding-error probability (i.e., a symbol-by-symbol MAP 
decoder) with an assigned and limited value A of the decoding constraint- 
length is employed. 

The application environments of the proposed criterion are larger than 
that pertaining to the other criteria known in literature. In particular, the 
validity of the mentioned criterion is not restricted to the class of linear 
trellis-codes (i.e., of the convolutional codes) and of symmetric DMCs; 
moreover, it allows to take into account explicitly the value A assigned to the 
decoding constraint-length. The presented criterion is based on the 
following (generally) time-varying upper-bound derived in [3] as an 
application of the Chebyshev inequality to the performance evaluation of 
symbol-by-symbol MAP decoders: 

Pß(k)*lMAP(klk+A))<2Tr{S(klk+A)},   k>l. (1) 

In (1) the Markov chain {^(k), k > 1} is the so-called "state-transition 
sequence" of the trellis-encoder (defined as in [4,Sect.II]) and 

{^MAP(klk+A), k £ 1} is the corresponding (optimal) MAP estimate 
sequence (computed recursively as in [2]) when the decoding constraint- 
length takes on the value A. Moreover, Tr{ S(klk+A)} is the trace of the 
average covariance error matrix S(klk+A) of the so-called "fixe-lag basic 
smoother" [2] and the sequence {S(klk+A), k > 1} can be recursively 
computed with respect to (wrt) the index k on the basis of a Riccati-type 
equation (formally similar to the well-known equation employed for the 
computation of the mean square error performance of a conventional 
Kaiman filter), as shown in [2]. It must be remarked [3] that the sequence 
{Tr{S(klk+A)}J jointly depends on the sequence of the probability 
transition matrices of the assigned noisy DMC and on the set of the 
codewords of the employed trellis-code; therefore, the minimisation of the 
upper-bound sequence of (1) wrt the admissible sets of codewords gives a 

fully general criterion for the synthesis of good trellis-codes for any 
assigned value of A and for any arbitrary noisy DMC. 

Procedures based on the described criterion for the construction of good 
trellis-codes with assigned rate R=b/n and encoding constraint-length L 
(defined as in [1]) have been implemented via computer [3]; for illustrative 
purposes, the trellis diagrams of the best trellis-codes with rate R=l/2 and 
L=2 obtained by means of an application of the mentioned construction 
procedure are reported in the Figures for some simple cases of stationary 
binary DMCs with transition probabilities p=P(l II) and q=P(OIO). The two 
cases A=0 and A=2 have been considered in (a),(b),(c) and (d),(e),(f) 
respectively. In the Table the steady-state value of the sequence 
{Tr{S(klk+A)}} (denoted by Tr{S(°°l°°+A)}) is reported, together with 
the corresponding average bit-error-rate (BER) (evaluated by Montecarlo 
simulations) of the encoders generating the presented codes (the bold 
numbers denotes that the code has been optimized for A=0 or A=2). 

On the basis of our analysis [3], some conclusions can be drawn: 
- for an assigned DMC, the best trellis code for the case A=0 not always 
agrees with the best for A=2; in fact, in general, the topology and/or the 
labelling of the optimal trellis-code change with the value assumed by the 
decoding constraint-length; moreover, a value of A nearly equal to the 
encoding constraint-length L results in a negligible degradation wrt the 
optimum performance (ideally obtained for A—> <»); 
- the topology and/or the labelling of the optimal trellis-code strongly depend 
on the statistical properties of the assigned DMC. 
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a) 0.999 0.999 1.01   -3 3.86 -4 9.25  -4 3.60 -4 

b) 0.995 0.9999 4.42   -4 4.42 -4 1.00  -4 1.00 -4 

c) 0.95 0.98 4.01   -2 2.59 -2 2.71  -2 1.67 -2 

d) 0.999 0.999 1.02 -3 1.84   -5 9.30 -4 1.05  -5 

e) 0.995 0.9999 1.44 -3 8.34   -5 1.30 -3 3.50  -5 

«I 0.95 0.98 4.35 -2 1.95  -2 3.12 -2 7.60  -3 
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Identification via Compressed Data* 
Rudolf Ahlswede1, En-hui Yang2, and Zhen Zhang3 

I. INTRODUCTION 

In this paper, a combined problem of source coding and iden- 
tification is considered. To put our problem in perspective, 
let us first review the traditional problem in source coding 

theory. Consider the following diagram, where {X„}^L1 is an 

<*„> 
encoder 

binary data of 

rateR 
+■ decoder 

A> 

Figure 1: Model for source coding 

i.i.d source taking values on a finite alphabet X. The encoder 
output is a binary sequence which appears at a rate R bits 

per symbol. The decoder output is a sequence {Xn}f which 
take values on a finite reproduction alphabet y. In traditional 

source coding theory, the decoder is required to be able to re- 
cover {Xn}f completely or with some allowable distortion. 
That is, the output {Xn}f must satisfy 

~lY^p(Xi,Xi)<d (1) 

for sufficiently large n, where p : X x y —> [0, +oo) is a dis- 
tortion measure and d > 0 is the allowable distortion. The 

problem is then to determine the infimum of rate R such that 
the system shown in Fig.l can operate in such a way that (1) 
is satisfied. From rate distortion theory, this infimum is given 
by the rate distortion function of the source {Xn}™- 

Let us now consider the system shown in Fig. 2.  The se- 

{*,> 
encoder 

binary data of 

rate R 
decoder Oorl 

Figure 2: Model for joint source coding and identification. 

quence {Yn}i° is a sequence of i.i.d random variables taking 
values on y. Known {Yn}, the decoder is now required to be 
able to identify whether or not the distortion between {A'„} 
and {Yn} is less than or equal to d in such a way that two 
kinds of error probabilities satisfy some prescribed conditions. 

The problem we are now interested in is still to determine the 
infimum of rate R such that the system shown in Fig.2 can 
operate in this way. 

II. FORMAL FORMULATION OF PROBLEM 

Let {(Xn,Yn)}j° be a sequence of independent drawings of 
a pair (X, Y) of random variables taking values on X x y 
with joint distribution PXy. Fix 0 < d < Ep(X,Y). An 
nth-order identification (ID) code C„ is defined to be a triple 
C„ = (/„, B„,gn), where B„ C {0, 1}* is a prefix set, /„(called 
an "encoder") is a mapping from A"1 to Bn, and (/„(called a 

*This work was supported in part by NSF Grant NCR-9205265. 
1Fakultaet fuer Mathematik, Universitaet Bielefeld, 4800 Biele- 

feld 1, Germany 
2Dept. of Math., Nankai University, Tianjin 300071, P.R. China. 
Commun. Science Institute, Dept. of EE-Systems, University 

of Southern California, Los Angeles, CA 90089-2565. 

"decoder") is a mapping from yn x Bn —* {0, 1}. When Cn 

is used in the system shown in Fig.2, its performance can be 
measured by the following three quantities: the resulting av- 

erage rate defined by rn(Cn) = En~l(the length of f„(Xn)), 
the first kind of error probability defined by pei(Cn) = 
Pr{gn(Y

n,fn(X
n)) = 0\pn(X",Yn) < d], and the second 

of error probability defined by pe2 = Pr{g„(Yn, fn(X
n)) = 

\\pn(Xn,Yn)>d}. 

Let R € [0,+oo), a € (0, +oo] and ß £ (0,+oo]. A triple 
(R, a, ß) is said to be achievable if for any £ > 0, there exists 

a sequence {€„} of ID codes, where Cn = (/„, Bn, gn) is an 
nth-order ID code, such that for sufficiently large n, 

rn(Cn) < R+c ,   jJei < 2" n(a —c) 
and  pe2 < 2" "(ß-c) 

where as a convention, a = +oo(/J = +oo, resp.) means 
that the first(second, resp.) kind of error probability of Cn 

is equal to 0. Let 11 denote the set of all achievable triples. 
In this paper, we are interested in determining the closure 
H of H. Specifically, we define for each pair (a,ß), where 
a, ß€ [0,+oo], 

R*XY(a, ß, d) = inf {Ä|(Ä, a, ß) € H} . 
Our main problem is then the determination of the function 
RXY(a,ß,d). 

III. MAIN RESULTS 

Assume that X and Y are independent. For any 0 < d < 
Ep(X,Y), define ß(d) by ß(d) = inf D(P\\PXY), where the 
infimum is taken over all distributions P on X x y such that 
J2x P(x,y)p(x,y) < d. Let U be a random variable tak- 
ing values on some finite set U. Let PXy denote the joint 
distribution of X and U. For any a > 0, define 

£(Pxu,a,d) = hit{D(PY\\PY) + I(U;Y)} , 
where the infimum is taken over all random variables Y tak- 

ing values on y such that Ep(X,Y) < d and D(Py\\PY) + 
I(XU;Y) < ß(d) + a. Here we make use of the convention 
that the infimum taken over an empty set is +oo. For any 
ß > 0, let R(Px,PY,a,ß,d) be the infimum of I(X; U) over 
all random variables U such that £(PXu, a, d) > ß, and let 

R(Px,PY,a,0,d) =   lim   R(Px,Py,a,ß,d) . 
ß^o+ 

The    following     theorem    gives    a    general    formula    for 
RXY(a,ß,d). 
Theorem 1   For any 0 < d < Ep(X,Y), 0 < ß < ß(d), and 
a € (0, +oo], the folloiuing holds 

RXY(a,ß,d) = R(Px,PY>a,ß,d), 
where 

R(Px,Py,a,ß,d)=    lim    R(PX, Py, a, /?', d) . 
P'-ß- 

The converse part of Theorem 1 is related to the general 
isoperimetric problem. During the process of proving the con- 
verse part, we develop a new powerful method for converse- 

proving in multi-user information theory. For more details, 
please refer to [1]. 
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Abstract — An asymptotic expression is derived for 
the Fisher information of the sum of two independent 
random variables X and Ze when Ze is small, under 
some regularity conditions on the density of X and 
conditions on the moments of Ze. Using this result 
for the case Zc = eZ, some asymptotic generalization 
of De Bruijn's identity is obtained. 

I. INTRODUCTION 

The Fisher information of a random variable Y with absolutely 
continuous density fy is given by 

J(Y) = -f J —( 

My) 
Ms) 

fy{y)dy- (1) 

It plays an important role in information theory and statistics. 
Under certain regularity assumptions, the Fisher information 
of an additive noise random variable characterizes the main 
term in the asymptotic expansion of the Shannon mutual in- 
formation between the input and output signal of an additive 
noise channel when the input signal is weak [1,2,3]. Fisher 
information also appears in the well-known Cramer-Rao in- 
equality. 

II. PROBLEM FORMULATION 

If Y = X+Z, with X and Z independent random variables, 
an explicit calculation of the integral (1) is impossible in gen- 
eral. Therefore, it is of interest to investigate the asymptotic 
behavior of J(Y), when the perturbation Z of X is weak in 
the sense that Z = Ze and E(Z2) = e! -> 0. In this paper 
we derive an asymptotic expansion for the Fisher informa- 
tion J{X + Zc) in terms of the probability density function 
(pdf) of X and higher moments of Z€, if certain conditions 
are satisfied. The similar problem of deriving an asymptotic 
expression for the differential entropy h(X + Ze) of the sum of 
two independent random variables X and Z€ when Z€ is small 
has been investigated in [4]. 

III. MAIN RESULT 

Without loss of generality we assume E(X) = E(Ze) = 0. 
Suppose E(Z2) = i2, and £|Ze/e|n+7 < c < oo for some 
integer n > 2, some constant c and 0 < 7 < 1. Let X have 
a bounded pdf fx{x) = f(x), which has bounded continuous 
derivatives f^k\x) for k = l,...,n + 2. Then, under some 
additional conditions on f(x) (which hold for a large class 
of smooth densities), and if X and Ze are independent, the 
following asymptotic expansion holds as c —► 0 : 

J(X + Zc) = J(X) + Am(X, {E(Zk)}) + o(tm)       (2) 

for some integer m > 1.   Am(X,{E(Zk)}) depends on f(x) 
and E(Zk), k = 2,..., m. For m = 2, (2) becomes 

J{X + Z<) = J(X) + L(X)e2 + o(c2),     e 0, (3) 

where L(X) is an integral expression involving f(x) and its 
first three derivatives. For example, if X is Gaussian with 
variance a2, the above expansion yields : 

J(X + Zc)=-L-^ + o(e2). (4) 

IV. SOME ASYMPTOTIC GENERALIZATION OF DE 

BRUIJN'S IDENTITY 

For the special case Zt = eZ the asymptotic expansion (2) 
can be written as 

J(X + tZ) = J(X) + Bm(X, {E(Zk)}, {ek}) + o{tm)     (5) 

where Bm depends on f(x), the moments E{Zk) and the pow- 
ers ek, 2 < k < m. Also, when Z has a Gaussian distribution 
with unit variance, X has a pdf with finite variance, and X 
and Z are independent, De Bruijn's identity holds : 

dh(X + eZ)      l/fy,.^ 
(6) 

Thus, by using the expansion (5) if Z is Gaussian and substi- 
tuting it in the integral version of (6), we obtain an asymp- 
totic expansion for h(X + eZ). This expansion coincides with 
the expansion for h(X + tZ) obtained in [4] if Z is Gaussian. 
Moreover, by comparing both the asymptotic expansion for 
h(X + eZ) in [4] and the one derived here for J(X + tZ) for 
non-Gaussian Z, we obtain some asymptotic generalization of 
De Bruijn's identity to the case where Z is non-Gaussian. 
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I. INTRODUCTION 

The well known Brunn-Minkowski Inequality (BMI), is one of 
the basic inequalities in geometry. Its formal statement is the 
following. Let Ai and A2 be two sets in %d. Then, 

ß(A1 + A2)
1/d>ß(A1)

1'd + ß(A2)1/d (1) 

where ii(A) = f A dx is the (d-dimensional) volume of A , 
and Ai + Ai = {x + y : x S Ax, y € AN) is the Minkowski 
sum of Ai and Ai. This sum may be interpreted as the geo- 
metric convolution of the two regions. Equality in (1) holds if 
the two regions are convex and proportional, e.g., if they are 
balls or cubes (with parallel edges). For d = 1, this condition 
is reduced to the simple case where Ai and Ai are intervals 
(and not, e.g., a union of intervals). 

The BMI is dual in some sense to the Entropy-Power In- 
equality (EPI) [1], which lower bounds the entropy-power of 
the sum of independent random variables. In [2] a matrix 
form for the EPI was derived, and some of its applications 
have been pointed out. Analogously, we derive in this work a 
matrix form for the BMI, and discuss its applications. 

II. LINEAR TRANSFORMATION OF SETS AND THE 

MATRIX BMI 

We first introduce the matrix form of the Minkowski sum. 
Let AJ = {Ai... An) be a vector, whose n components are 
d-dimensional  sets.     We define  a linear  transformation  of 

TA = {Tx  : Xi€Ai for i = 1... n} , (2) 

where T is an m x n matrix. In particular, tA means scaling 
the coordinates of A by the scalar t. Note that TA is an 
mtZ-dimensional shape. Denote the volumes of the shapes by 
n(Ai) = m,i = l.-.n. Following simple laws of integration, 
the md-dimensional volume of TA, in the particular case m = 
n, is n{TA) = \T\" ■ u{A) = \T\d ■ nr=i M. , where | • | denotes 
the absolute value of the determinant. For the general case, 
we suggest the following matrix generalization of the BMI: 

Theorem 1 (Matrix-BMI): Let A = (Ai...An) be a 
vector of d-dimensional cubes whose edges parallel the axes, 
and whose volumes are the same as of Ai.. .An, i.e., p(Ai) = 
Hi,i = l...n.  Then 

u) 
i*(TA)1/d>ß(rÄ)    =£)|ii| (3) 

tn xm sub-matrices of T, obtained by choosing m out of the 
n columns ofT. 

For   m    =     1,    (3)   reduces   to   \i (J2"=i *'"4') ^ 

E"=i M/*i/d> ie> t0 the re8ular BMI (!)• Equality in (3) 
holds in each one (or in a mixture) of the following cases: if 
Ai... An are cubes whose faces parallel each other; if (after 

removing the all zero columns of T, if any) m = n; or if T 
does not have a full row rank, where then p(TA) = 0. The- 
orem 1 is proved via a double induction over the dimensions 
of T, using a conditional form of the BMI, analogously to the 
proof of the matrix-EPI in [2]. 

In order to appreciate the usefulness of Theorem 1, con- 
sider the following example. Let A = (Ai... An) and 
B = (Bi ... Bn)', where Ai... An, Bi...Bn are d-dimensional 
shapes of unit volume, and let Ti and Ti be n x n matri- 
ces. Consider the volume of the sum TA + TiB_. A direct 
application of the regular BMI (1) gives 

u(TiA + T2B)1/nd    >    n(TiA)1/nd + u(T2B)1/nd 

=    lüf'-' + ITal1'-. (4) 

On the other hand, we may view the sum T1A+T2B as a trans- 
formation of the 2n-dimensional vector (Ai.. .An, Bi... Bn) 
by the n x 2n matrix T = (Ti;T2). Theorem 1 may then be 
used to obtain 

where T = T ■ L, L is an n x n diagonal matrix whose diago- 
nal elements are p\/d ... pjd (the edges' lengths of the cubes 

Ai. ..An), and jfi, t = 1... (£) I is the set of all possible 

°This research was supported in part by the Wolf son Re- 
search Awards, administered by the Israel Academy of Science and 
Humanities. 

an) 
l*(TiA + T2B)1/d>u(TiA + TiB)      =£)|(T)i|.    (5) 

But, by Theorem 1, for Ai... Bn cubes of unit volume, (5) 
becomes an equality, while (4) remains an inequality (unless 
Ti and T2 are proportional). We conclude, then, that (5) is a 
tighter lower bound than (4). 

As in the case of other information-theoretic inequalities 
[1], the new matrix BMI can be used to derive interesting 
inequalities for determinants. One such example is the in- 
equality just discussed between the right hand sides of (4) 
and (5). To obtain another inequality, we apply the matrix 
BMI to a linear transformation of rectangular parallelepipeds 
while substituting the expression for its exact volume (which 
is computable in this case). Finally, we note that the matrix 
BMI can be used to lower bound the volume of a projection 
of a lattice cell, and so it can find applications in calculating 
the effective number of codewords of lattice constellations or 
lattice quantizers satisfying spectral constraints. 
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Consider the following model of a permutation channel. In 
each time unit two sources produce one bit each (0 or 1 with 
probability P(0) = P(l) = 0.5). These two bits arrive at an 
organizer, who in the same time unit has to output one bit. 
The other bit he may store in some memory device. If it is 
possible the output bit must be a 1. So if the arriving bits are 

11, 10 or 01, then the organizer will send a 1 for sure. If both 
sources produce a 0, then the organizer may send a 1, which 

is stored in the memory device (and the size of the memory 

will be reduced by one bit in this case). If this is not possible, 
then the organizer must send a 0. 

A natural question is: How much influence does the size 

of the memory have on the behaviour of the sequence of bits 
transmitted by the organizer? As a simple measure for the 

influence of the memory we consider the expected value of the 

first occurence of a 0 in this sequence. 

If there is no memory at all, then this expected value 

is 4, since in this case we have a geometric distribution with 
parameter 0.25 as probability that a 0 is transmitted in each 
time unit. 

If the memory device can store every incoming bit (i.e. , 
the size of the memory is linear in time), it turns out 

that this expected value does not exist. To see this, observe 
that the bits produced by the two sources yield a sequence 
(b(j))jl1 of l's and -l's, if we represent a 0 by a -1 and let 
the bits produced by the first source take the odd positions 
and the bits produced by the second source take the even 
positions in the sequence. Two necessary conditions for the 

occurence of the first 0 at time t are i)^ ' b(i) = 0 (i. e., 

the memory is exhausted at time t— 1) and ii) all partial sums 

Y2 -1^ b(j), i = 1,. . ., t — 2 are nonnegative (i. e., no 0 has 

been transmitted before). By the Ballot Theorem the number 

of {1, — 1}-sequences fulfilling i) and ii) is just the number 
J^J ■ it)- Since there are 4* possible sequences (6(j))jii until 
time t, the probability that the first 0 occurs at time t is 

^''       By Stirling's formula (2
(')  ~ -^ and the expected (t+l)?T 

value for the first occurence of a 0, ]»2°=1 (t+ll4i 

exist, since the single summands are about Vt. 

t does not 

If the size of the memory is limited by some con- 

stant k, the probability for the occurence of the first 0 at time 
t is o(0,t-l) 

where a(0, t — 1) is the number of all sequences 

produced by the two sources leading to the all-one sequence of 
bits transmitted by the organizer with memory size 0 at time 
t- 1. 

Analogously, a{m, t) is defined for every time t = 1,2,... 
and memory size m — 0,..., k. In each time unit the source 

outputs 01 and 10 do not change the size of the memory, 00 
decreases the memory by one bit (and is forbidden for m = 0), 
and 11 increases the memory size by one bit if m < k (and 
does not change the memory if m = k). So we obtain recur- 
sion formulae for the numbers a(m, t) which can be written in 

matrix form as 

a(0,t)  \ I   a(0,t-l) 

a(k,t)   I \  a(k,t - 1) 

/  2     1    0 
1    2    1 

where Ak = 

0 

\ 0 

0    0    0 \ 
0    0    0 

1 

3/ 
The behaviour of a(0, i) is essentially determined by the 

largest eigenvalue of the matrix Ak which can be calculated 

to be 4 -cos2(^g7r). 
So for size of memory bounded by k = 0,1,..., we obtain 

a sequence of expected values for the occurence of the first 0 

(Ek)tL0 with 

= £ q(0,fr- 1) 
Y^(cos2{ 

4k+ 6 *))' 
■ t ■ — < oo 

4 

In the special case k = 1 it turns out that a(0, t) = 5' • F2t, 
where F21 denotes the 2t-th Fibonacci number. 

Since the sequence (Ek)'kLo is divergent, it is immediate 
that the expected value for the occurence of the first 0 in the 
sequence of bits transmitted by the organizer does not exist, 
if the size of the memory is bounded by a function /(£) 
which exceeds every k > 0 from some to on. 

One might also consider the general case in which in each 
time unit s letters from a finite alphabet arrive at the channel 
and t < s letters have to be transmitted. For s = t = 1 and 
constant memory size this model has been discussed (under 

different aspects) in [l] (see also [2]). 
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Abstract — We have shown that if one invests in the 
outcome of a random variable X, where investment 
consists of gambling at any odds, then every bit of 
description of X increases the doubling rate by one 
bit. However, if the provider of the information has 
access only to V, a random variable jointly distributed 
with X, then this maximal efficiency is not generally 
possible. We find the increase A(R) in doubling rate 
for a description of V at rate R for the jointly Gaussian 
and jointly binary cases. We investigate the extension 
to multivariate Gaussian random variables. We prove 
a general result for the derivative of A(fi) at R = 0. 

We then consider the problem in which there are k 
separate encoders and each observes a random vari- 
able Vi correlated with X. We find how efficiently 
these encoders, without cooperation, help the investor 
who is interested in X. 

SUMMARY 

Suppose one gambles on the outcome of a random variable X. 
The investor distributes his wealth according to b{x) and the 
investment pays odds of o(x) for one. Also suppose that the 
description of another random variable V, which has a known 
joint distribution with X, at the rate of R bits is allowed. Let 
A(R) be the maximum increase in the doubling rate from no 
description to a description of rate R. It can be seen that 
A(Ä) is a concave and nondecreasing function of R. We can 
show [2] that 

A(fi) = max I(V;X). 
p(v\v,x):  I(V;V)<R,  V-jV-fX 

We define initial efficiency as the derivative of A(Ä) at the 
origin. Initial efficiency is the maximum possible increase in 
A(R) per bit of description. For V - X, A(R) = R; hence 
the efficiency is 1. However, for a general V, the efficiency is 
generally less than 1. We find A(Ä) and examine the efficiency 
of the jointly binary and Gaussian cases. 
Theorem 1 Suppose V and X are both Bernoulli^) ran- 
dom variables associated by a binary symmetric channel with 
crossover probability p.  The A(fi) curve is given by 

(Ä, A(Ä)) = (1 - h(a), l-h{a* p)) 

where 0 < a < 1, h is the 
the cascade operation. 

binary entropy function and * is 

We use a lemma by Wyner and Ziv, known as 'Mrs. Ger- 
bers Lemma' [4] to prove the optimality of the descriptions 
in the above theorem. The initial efficiency can be calculated 
as (1 - 2p)2. 

Theorem 2  Suppose X and V are jointly Gaussian with cor- 
relation p.  Then 

1 
A(R) = -\og(Y 

P2(l 

The proof of optimality in the Gaussian problem requires 
a lemma by Bergmans, which is a conditional version of the 
entropy power inequality [1]. We note that the initial efficiency 
is p2. 

A natural generalization of this theorem is to multivariate 
Gaussian. Suppose Vn ~ N{0,Kv), Zn - N(0,Kz), Vn and 
Zn are independent and Xn = Vn + Zn. By changing the co- 
ordinate system , we can obtain diagonal covariance matrices 
and hence transform the problem to one on parallel subchan- 
nels with a total rate constraint. The solution is given by 
water-filling in the entropy domain. We distribute the total 
rate so that the derivative of A(Ä) with respect to R at the 
operating point is the same for all the subchannels used. 

We note that in all the problems examined, the initial 
efficiency is related to the correlation between V and X. 
We define the maximal correlation between V and X as the 
supremum of Ef(X)g(V), where the supremum is over all 
functions / and g such that Ef(X) = Eg(V) = 0 and 
Ef (X) = Eg (V) = 1. Maximal correlation depends only 
on the joint distribution of V and X and is independent of 
the actual labeling. Conditions under which the maximal cor- 
relation can be attained have been investigated by Renyi [3]. 
Our next theorem examines the relationship between the ini- 
tial efficiency and maximal correlation. 

Theorem 3  Initial efficiency is equal to the square of the 
maximal correlation between V and X. 

Next we consider k separate senders. We are interested in 
the increase in the doubling rate, A, for gambling on X when 
sender i observes Vi correlated with X and the senders operate 
at respective rates Ri,...,Rk. We prove an achievable region 
for (Äi,..., Rk, A), and show that a Slepian-Wolf type of rate 
region is achievable for this investment problem. 
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Multi-way Alternating Minimization 
Raymond W. Yeung^nd Toby Berger2 

Abstract —   In a if-way minimization problem, we 
are interested in finding 

min •■■   min   /(an,..., Ur), 
x1es1      XK£SK 

where / is continuous and bounded from below, and 
Si is a compact convex set in ffi.n*, 1 < i < K. In a 
paper by Csiszar and Tusnady [2], a similar problem 
with somewhat less stringent conditions was studied 
for K = 2, where it was shown that an alternating 
minimization algorithm converges to the infimum pro- 
vided a certain geometric condition is satisfied. In 
this paper, we take an approach (also with strong ge- 
ometric flavor) different from theirs, which enables 
us to obtain a sufficient condition for an alternating 
minimization algorithm to converge to the minima. 
In particular, we show that it is sufficient for / to 
be convex. The Arimoto-Blahut algorithm for com- 
puting channel capacity is discussed as an example of 
application of our results. 

I. AN ALTERNATING MINIMIZATION ALGORITHM 

In a ÜT-way minimization problem, we are interested in 

/* =  min •••   min   /(xi,.. ■, XJC), 
116S1        *K€SK 

where Si is a subset of TRni, 1 < i < K. Here Xi is an n;- 
tuple. We assume that Si is compact and convex, and / is 
continuous and bounded from below. Let x = (xi,..., XJC) be 
a generic point in Ii.f=lSj. For each x, define for 1 < i < K 

x*(x) = xl*(xi,...,Xi_i,n+i,...,xÄ-) £ Si 

such that x*(x) achieves 

i /(an,..., xi-i, y, xi+i,..., xK) 
i 

when xi,... ,Xi_i, n+i,... ,XK are fixed, and let 

gi(x) = (xi,...,Xi_i,xt*(x),XM.i,...,xx). 

Let g(x) = gi* (x), where 1 < i* < K and 

/(#.(x))=   min   /(#(x)), 
V        K l<i<K 

and define 
A/(x) = /(x) - /GKx)). 

Since /(x) > /(ji(x)) for 1 < i < K, A/(x) > 0. 
Let Xo be any point in Uf^Sj, and X* = j(xfc_i) for k > 1. 

This paper is devoted to study of this "greedy" alternating 
minimization algorithm. We show that, under suitable condi- 
tions, /(Xfc) —> /* as k —> oo. Henceforth, we will abbreviate 

/(*>) to h-  
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min 
yeSi' 

II. SUFFICIENT CONDITIONS FOR CONVERGENCE 

Since fk is non-increasing and / is bounded from below, fk 
must converge to some value. We now state a condition that 
is sufficient for fk —» /*■ 

(SC-1) Let x* = (xl...,x'K) e nj^iS, 
achieves /*. For any x = (xi,..., xjr) € ^j=iSj 
such that /(x) > /*, there exists y which is a con- 
vex combination of x* and x; for some 1 < i < K 
(y G Si since z*,x; 6 Si and Si is convex) such 
that 

/(xi,...,Xi-i,y,XM-i,...,xjc) < /(xi,...,xjr). 

It is not difficult to show that if (SC-l) is satisfied, then 
A/(x) > 0 whenever /(x) > /*. Therefore, the algorithm 
cannot be trapped at a local minimum. Using the assumption 
that / is continuous and that Sj,l < j < K is compact, it 
can be shown that fk always converges to /*. 

We have further proved that (SC-1) is satisfied if/ is convex 
in an,..., XK- This condition is stronger than (SC-1), but it 
has the advantage that it is easy to check. In the next section, 
we will show how this condition can be used to prove the 
convergence of the Arimoto-Blahut algorithm for computing 
channel capacity. 

III. AN EXAMPLE OF APPLICATION 

Let {Q(k\j)} be the set of transition probabilities of a channel. 
Then the channel capacity is given by 

3        * 

(see Blahut [1]), which is equivalent to the negative of 

PU) 
tPVWs\J)i[Jli 

3        * 

mp^m«jnE£pww)log ^ffc)- 

Let 

The Arimoto-Blahut algorithm is a special case of the algo- 
rithm described in Section 1 with K = 2; it is easy to check 
that all the required conditions are satisfied. Using the results 
in Section II, in order to show that the algorithm converges to 
the channel capacity, we only have to show that / is convex 
in both p and q. This can be done by invoking the log-sum 
inequality on p. 29 of Cover and Thomas' textbook [3]. So, 
the algorithm does converge to the channel capacity. 
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I. INTRODUCTION 
We study the properties of a sequence of dependent random 

variables generated with the following scheme. A sequence of 
independent identically distributed random variables a arrives 

at the input of a fc-register; the random variables take values 
0 and 1 with probabilities not equal to 1/2. The sequence 

T) of random variables generated by the fc-register for fc > 2 
is a stationary random sequence with dependent components. 
The sequence 7/ is taken as the input to a memoryless binary 
symmetrical channel with input-independent noise, i.e. 77 is 
added coordinatewise modulo 2 to a sequence ß of indepen- 
dent identically distributed random variables that also take 
the values 0 and 1 with probabilities not equal to 1/2 and are 
independent with the sequence a. 

In this paper we derive upper and lower estimates for the 
entropy of the stationary non-Markov random source identi- 
fied with the channel output. The upper estimate is based on 
the well-known subadditivity property [1] of the entropy of a 
finite-dimensional distribution. The main result is the proof 
of nontrivial lower estimate of the entropy for two particular 
fc-registers: fc = 2 and fc = 3. If the probabilities of 0 and 1 
in the sequences a and ß are close to 1/2, this estimate shows 
that the entropy of the source increases when fc grows from 1 
to 3. Pre-transformation of a by the fc-register, fc > 1, yields 
the increase of the entropy of the additive source a + ß over 
the case fc = 1. This property of increase of the entropy is sig- 
nificant for constructing a strong random source from several 
"weak" ones. 

II. RESULTS 

Let a and b, 0 < a,b < 1, be real numbers. By a;, ßi for 
i = 1,2,..., we denote independent random variables that 
take the values 0 and 1 with probabilities 

P{c*i = x} 
l + a{-l)x 

nßi = x} = i+Mzir, x = 0>1. 

Take an integer fc > 1 and consider a stationary discrete ran- 

dom source T?(fc) = (T^', J?f \...), where -qf \ i > 1, take the 
values 0 or 1 and are defined as 

Vi     — ßi + 2J ai+i mod 2 
(1) 

j=o 

The symbol 

Qia'b\x(n)) = -P{ri(k\n)=x(n)} 

denotes the finite-dimensional distribution of source (1). The 
entropy of source (1) is defined as 

where 

Htfk\n)) ■= - J2 Qt"V(n)) In Q™(x(n)) 

is the entropy of finite-dimensional distribution. 
We define a binary entropy as 

h(6) = -6ln6 - (1 - 6)\n{l - 8). 

Theorem 1. For any fc > 3 

Hk(a, b) < min I h |  ) , h 

Theorem 2. For fc = 2, 

H2{a,b) >ln2-ln    1 + 
6V 
1-62 

Theorem 3. For fc = 3, 

g3M)>ln2-ln(l+       {1_a2b2\2_bi   
jj. 

Theorem 4. Assume that the probabilities of 0 and 1 in 

sequences a and ß are close to 1/2, i.e., the parameters a and 
b are close to zero. Then for fc = 1,2,3 the entropy Hk(a,b) 
increases with the growth o/fc. 
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Abstract — Various different definitions were inves- 
tigated in Random Multiple Access theory for capac- 
ity of the multiple-access collision channel. However, 
as it was pointed out by Tsybakov [4], almost nothing 
about the relations between the various definitions is 
known. In this paper we try to fullfil this gap showing 
about some widely used capacity definitions that they 
are equivalent. 

I. INTRODUCTION 
The study of collision channels, also called random-access 
channels, started with Abramson's ALOHA system [1] which 
uses only binary feedback (collision/no collision). Later on 
this channel model (and its modifications) became a special in- 
terest: it was investigated in numerous research articles. The 
goal of all such papers is to present good conflict resolution 
algorithms and to get bounds on the efficiency of the best pos- 
sible ones. For this reason one have somehow to measure how 
efficient an algorithm is. But different authors measured this 
quite often in different ways, getting by this different defini- 
tions for the throughput of an RMA algorithm which is nothing 
else as one of these measures. This led to the study of differ- 
ent capacity notions, since it is, raughly speaking, the best 
possible throughput which might be achieved. On the other 
hand it is not obvious at all, that an algorithm beeing efficient 
(i.e. having a high throughput) in one sense, is also efficient 
from another point of view as well. In [4] Tsybakov gave an 
excellent survey about the Random Multiple-Access commu- 
nication, where he wrote about this problem that "... we know 
almost nothing about the relations between the various defi- 
nitions of delay, throughput and capacity". In this paper we 
will show, that some of the most widely used definitions for 
the throughput and capacity of the multiple access collision 
channel are equivalent in the case when the feedback is the 
multiplicity of the collisions. 

II. SUMMARY OF RESULTS 
Assume that x% < xi < 13 < ... is a random process where 
Xi is the generating time of the i"1 packet. We will suppose 
that the instants of new-packet generations form a Poisson 
process, i. e. the differences (i;+i — Xi) are independent 
random variables with the identical distribution 

Pr{i •+i > 1} = 

A conflict resolution protocol (or random multiple access 
algorithm) is a retransmission algorithm / for the packets in a 
collision. The delay 6 of a packet is the time from its moment 
of generation until the moment of its successful transmission. 
Let Si denote the delay of the ith packet. The delay of a 
random multiple access algorithm / is 

Df =limsupE(£<), 

where E() denotes expectation, and its throughput is 

Rj = sup{A : Df < 00}. 

In the case of blocked access the number of active users in 
subsequent epochs forms a Markov chain M. This implies 
the following definition for the throughput of a blocked access 
algorithm: 

Rj — sup {A :  M is stable}. 

It is very natural to define the throughput as fraction of 
the number of generated messages and the time is needed to 
transmit them. More precisely, denote by X(t) the number of 
generated messages in the time interval (0, /) and by y(X(t)) 
the number of steps which are needed to transmit these mes- 
sages. Thus the throughput might be also defined [2] as 

R1 = lim inf 
EX(t) 

«-00   E(7(X(<)))' 

The above listed three different throughput notions imply 
three different capacity definitions in the following way. Let 
A denote the set of random multiple access algorithms. The 
capacity of the random multiple access collision channel is de- 
fined as 

C = sup{Ä, :   feA], 

which supremum can be taken over the different throughputs 
defined before. Thus we get C1, C2, and C3, resp. 

In 1981 Pippenger proved in probabilistic way [2], that 
there exist an algorithm /, for which Ä* = 1. Ruszinkö and 
Vanroose [3] constructed such an algorithm. Let us denote 
this algorithm by RV. We claim that the following statement 
holds. 

Theorem. 

thus 

R^RV) = R2(RV) = R3(RV) = 1, 

1This work was supported by OTKA Grant T016414 

Consequently these throughput and capacity definitions are 
equivalent. 
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Abstract — We derive upper and lower bounds on 
the number of all variants a rectangular M xN matrix 
can be partitioned into fragments. Next the problem 
of matrix partitioning is considered as a particular 
example of a more general problem of constructing 
two-dimensional Markov processes (fields) on discrete 
rectangular latices. We discuss a matrix- theoretical 
approach to the problem to explore the structure of 
discrete fields defined by a given matrix of local in- 
teraction. 

In this paper we continue to study the problem formulated 
in [1]. Let <f>(M;N) be a number of all variants an M x N 

rectangular matrix (with empty cells) can be splitted into frag- 
ments. Immediate calculations show that 

0(2; 2) = 12,0(2; 3) = 74, 0(3; 3) = 1442, 0(4; 4) > 1.7 x 106 

and so on. Each individual partition of the matrix is consid- 
ered as an output of a block source with block size 2MN — 
M — N and information rate 

R(M;N)=    k&'W)   , 
*■ ;      2MN -M -N 

The rate is measured in "bits per edge", because the denom- 
inator of R(M; N) is the total number of all internal edges 
between the cells of the matrix. So defined source is called 
form source, where "form" means the set of contours result- 
ing from an individual matrix partition [2,3,4]. The exponen- 
tial behavior of <j>{M;N) may present an interest in image 
processing [2], statistical mechanics [3] and other applications 
exploiting different models based on the conception of ran- 
dom fields. In [4] a special technique founded on the theory of 
Fibonacci numbers was suggested and some upper and lower 
bounds on <j>(M; N) were obtained. 

Now we develop a formal matrix approach to the prob- 
lem. This approach is based on Perron-Frobenius theory for 
nonnegative matrices [5]. We introduce special (0,l)-matrices 
describing a physical process of breaking down of an M x TV 
matrix into fragments. This four "splitting matrices" are 

Aon = 
10 
0 1 

,Aoi = Aio = 
0 1 
1 1 

,An = 
11 
1 1 

They define the splits allowed to run through a solid state 
matrix with unbreakable cells. In these terms we prove 

Theorem 1. For any integers M, N = 1,2,... 

where 

4>(M + l;N + l)=\\[\\AiNj 

AiNjN = ~[[Ainjn,i
N,jN£{0,l}N, 

and II.11 denotes the sum of all matrix elements. 

xThis work was supported by RFFI Grant 93-012-467. 

Then we prove the main result of the paper establishing an 
exact exponential behavior of 0(M; N). Let 

R(c =    lim    RIM; N) 
M,JV-»oo 

be asymptotical information rate of the form source. 
Theorem 2. 

Ä(oo;oo) = -^- = 0.8322611, 

where A = 3.1700865 is maximal eigenvalue of the matrix 

Aoo    AQ\ 

■A io    An 

/ 1001 
0111 
0111 
1111 

\ 

The second part of the paper is devoted to a probabilistic 
modification of the problem. We consider an 4 x 4 stochas- 
tic "splitting matrix" with the same zero elements as in 4 x 4 
matrix shown in Theorem 2 and with arbitrary positive proba- 
bilities substituted instead of ones. We show that the maximal 

entropy rate of the so defined probabilistic form sou asymptot- 
ically coincides with the information rate of the deterministic 
form source shown in Theorem 2. 

The 4x4 matrix shown in Theorem 2 reflects the demand 
of continuity of a contour. We present a more general form of 
lower and upper bounds on 0(M; N) defined by an arbitrarily 
given matrix of the local interaction [6] in the field and show 
some results of computational experiments. 

Finally some possible schemes of the form source coding 
are discussed. 
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I. Introduction 
During the last decades, quite new experimental 
approaches to the study of communication systems of 
animals have been developed including those based on a 
direct dialog with animals taught artificial intermediary 
languages. The use of simple grammatical rules as well 
as number - related skills at a level of pre - school 
children have been demonstrated in chimpanzee [1] and 
in grey parrot [2]. However, the question of existence 
of a developed natural language in social animals is 
still open for discussion. We have been suggested quite 
a different approach to the study of communication 
systems based on the ideas of the Information Theory.Our 
recent experiments allowed to evidence the presence 
of potentially unlimited number of messages in ant " 
language", and to show ants as being able to use the 
"text" regularities for information compression [3,4]. In 
this report we consider plasticity of ant language as well 
as their numerical competence. 

II. Methods 
Ants were kept in transparent nests in the laboratory 
arenas. Each worker was labelled with an individual 
colour mark. As soon as discovering ants found food, they 
informed the relatively constant teams of 5 - 8 foragers 
about it. During experiments ants were fed in setups, 
consisted of a long " trunk " with equally spaced 25- 40 
branches, made of thin plastic sticks.Each branch ended 
in an empty trough, except for one filled with syrup.To 
start the experiment, an ant scout was placed at the 
trough containing food. When it returned to the nest,the 
duration of the contact between foragers and the scout was 
measured. As soon as foragers began following the scout, 
the scout was removed from the arena with tweezers. To 
avoid odour tracks,the original maze was replaced by an 
identical one. 

III. Ant Numerical Competence and Plasticity 
of Ant "Language" 

It turned out that ants can count within several tens, and 
that in their " language" there are means of transmitting 
messages about the number of objects. In all experiments 
the teams abandoned the nest after they were contacted 
and moved towards troughs 130 times. In 90 cases the 
team immediately found the correct way. The probability 
of finding the food-containing trough randomly is less 
than 10-10. The relation between the number i of the 
branch and the duration t of the contact between scout 

and foragers is linear and described by the equation 
t = ai + 6.Note that in modern human languages with 
decimal numeration the length of the written form of 
a number i and the time to pronounce the number i 
are proportional to logi, but not to i. Archaic human 
languages are known to have used another system of 
numeration. The number "one" was encoded as the word 
"finger", "two" as "finger, finger" , etc. In this case , the 
time required to pronounce i is also proportional to i, as in 
ant " language". Such a large difference between modern 
human and ant languages does not necessarily show that 
the latter is primitive; as it is known that in a "reasonable" 
language the length of a word should correspond to its 
frequency of occurrence in communications. We then 
consider to which extent may ant "language" transform 
to keep this equation valid. In special experiments a 
horizontal trunk with 40 branches was used, however,the 
trough was placed on different branches with different 
frequencies: on two "special" branches ( N 10 and N 20 ) it 
appeared in about 2 cases of 3. At first the time required 
to transmit information on the number i of the branch 
i was proportional to i. But about halfway through the 
series, the time of transmission of information about the 
fact that the trough was on a "special" branch became 
much shorter than in the cases when the trough was on 
other, seldom used branches. It should be emphasized 
that the time ceased to be proportional to i, perhaps as a 
result of a transformation in the communication system of 
these ants, caused by a change in "numerical" frequency. 
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Fixed-Slope Universal Algorithms for Lossy Source Coding Via 
Lossless Codeword Length Functions* 

En-hui Yang1, Zhen Zhang2, and Toby Berger3 

I. INTRODUCTION AND ALGORITHMS 

Let A be an abstract source alphabet and A a finite repro- 
duction alphabet. If i = (z,) is a finite or infinite sequence 
of symbols from A or A (or of random variables taking their 
values in these sets), let x"n = (xm, ■ • •, xn) and, for sim- 
plicity, write x" as x". We denote the set of all 7j-tuples 

drawn from A(A) by An(Än). A lossless codeword length 
function(LCLF) / is a map from A", the set of all finite se- 
quences from A, to {1, 2, • • • , } satisfying ^T ^n 2~>(y) < 1 for 

any n > 0. Clearly, there exists a one to one correspondence 
between lossless codeword length functions and prefix codes: 
for any LCLF f, there exists a prefix code (/> : Ä* —► {0, 1}* 

such that for any y G A*, l(y) = the length of <j>(y), and vice 
versa. The well-known examples are the Lempel-Ziv codeword 
length function LZ(yn) and the k-th order arithmetic code- 
word length function LA,k(yn). Let p : A x A —> [0, +oo) 
be a single-letter distortion measure. For any stationary, 
ergodic source /*, let R(D,ß) and D(R,ß) denote its rate 
distortion function and distortion rate function with respect 
to the fidelity criterion {pn} generated by p, respectively, 

where pn(xn,yn) — n~l ^Z"=1 p{xi,yi) for any x" G An and 

yn G An. For simplicity, we shall assume that a reference let- 
ter a* G A exists for p and p such that Ep(X\,a*) < oo and 
that supx€/i miyeA p(x, y) = 0. 

Corresponding to any LCLF /, three universal lossy data 
compression schemes are presented in this paper: one is with 
fixed rate, another is with fixed distortion, and a third is with 
fixed slope. 

A fixed rate, universal lossy data compression scheme. Fix 
R > 0. Let N(R,l) be the smallest positive integer such 

that the set {yn G An : l(yn) < nR} is nonempty for all 
n > N(R,l). Let Bn(l)(n > N(R,l)) consist of all y" G A" 
such that l(y") < nR. In our fixed rate universal lossy data 
compression scheme, each source sequence x" G A" is quan- 
tized into a closest member yn of Bn{l). There are two dif- 
ferent ways for the encoder to encode x": (1) The encoder 
can transmit the index oft/" in Bn(l) using a binary string of 
length [nR\; or (2) the encoder can transmit the binary code- 
word associated with yn via the LCLF /, adding some dummy 
digits to ensure overall codeword length [nR\. 

A fixed distortion universal lossy data compression scheme. 
Fix D > 0. For each n > 1, we think of the entire set An as a 

codebook of dimension n and list the elements yn of An in or- 

der of nondecreasing lossless codeword length l(yn). For each 
xn G An, the encoder maps x" into the binary codeword as- 
sociated with yn via the LCLF I, where y" is the first element 
in Ä" such that pn{xn,yn) < D. 
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A fixed slope universal lossy data compression scheme. Let 
A > 0 be fixed. Our fixed slope universal lossy data compres- 
sion scheme works as follows: For each xn G An, the encoder 
first searches the first element y" in An which minimizes the 
cost function »i-1/^") + Xpn(xn,yn) over the whole set An, 

where An is assumed to be ordered in some order, and then en- 

codes xn into the binary codeword associated with yn. After 
receiving the binary codeword, the decoder can completely 

recover yn and output yn as a reproduction of xn. In this 
way, the resulting rate r„(x",l, A) in bits per sample is then 
n~1l(yn); and the resulting distortion p„(x",/, A) per sample 
ispn{xn,yn). 

II. OPTIMALITY 
The fixed rate or fixed distortion lossy data compression al- 
gorithm mentioned above is just the extension of the corre- 
sponding one in [l] to the case of any LCLF. Under some 
mild conditions on /, similar results to [1] can be proved. In 
the following, therefore, we focus only on the fixed slope lossy 
data compression algorithm. 

A LCLF / is said to satisfy Condition A if for any stationary, 
ergodic process {Yi}f taking values in A, n~1l(Yn) converges 
with probability one to the entropy rate of {Viji0. 
Theorem 1 Let A > 0. Let /t be a stationary, ergodic source 
with the random output X = {Xi}™. If I satisfies Condition 
A, then as n —<• oo, 

(i) r„(A"\/,A) + Xpn(X
n,l,X) — Rx(p) + \Dx(p) almost 

surely, where Dx(ß) = M{D\D > 0, R+(D,fi) > -A} 
andRxiß) = R(Dx{ß),n). 

(ii)  rn(X",l,X)(pn(X'\l,X)) converges al- 
most surely to R\{u)(D\{^)), provided (D\(fi), R\(fi)) 
is the only point on the. rate distortion curve such that 

RUDX(P),P) < -X < R'+(Dx{p)>ti). 

Particularly, Theorem 1 holds for the fc-th order arithmetic 

codeword length function LA.ki}- e. , I — LA,><) if k is allowed 
to go to infinity. During the process of proving Theorem 1, we 
also obtain a very strong sample converse theorem for variable 
length source coding which implies KiefFer's sample converse 

theorem and strong converse theorem as corollaries. 
The main advantage of this fixed slope universal lossy data 

compression scheme over the fixed rate(fixed distortion) uni- 

versal lossy data compression scheme lies in the fact that it 
converts the encoding problem to a search problem through 
a trellis and then permits one to use some sequential search 
algorithms to implement it. Simulation results with the fcth 
order arithmetic codeword length function as a LCLF and the 
Af-algorithm as a sequential search algorithm show that this 

fixed slope universal algorithm, combined with suitable search 
algorithms, might be implementable in practice. 
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A Lossy Data Compression Based on an Approximate Pattern 
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Abstract — A practical suboptimal (variable source 

coding) algorithm for lossy data compression is pre- 
sented. This scheme is based on an approximate 

string matching, and it extends lossless Wyner-Ziv 

data compression scheme. 

I. INTRODUCTION AND MAIN RESULTS 

We consider a stationary and ergodic sequence {Xk}kL-oo 
taking values in a binary alphabet E = {0,1}. We write X™ 
to denote XmXm+i ... X„. As a measure of fidelity we con- 
sider the Hamming distance (however, other fidelity criteria 
can be easily accommodated into our main results) denned 

as dn(x?,x?) = (l/n)Er=idi(s"^) where di(x'x) = ° for 

x = x and 1 otherwise (x,x £ E). We assume that the max- 
imum allowed distortion is D, and by R{D) we denote the 

rate-distortion (cf. [1]). 
We propose a practical suboptimal lossy data compression 

scheme that extends the Lempel-Ziv scheme. Our scheme re- 
duces to the following approximate pattern matching prob- 

lem: Let the "training sequence" or "database sequence" x" 

be given. Find the longest Ln such that there exists 1 < io < n 
in the database satisfying d(z'°-1+L", xn

n\[") < D. This nat- 
urally extends Wyner and Ziv [5] (cf. also [4]) idea to lossy 

situation (cf. also [3]) which is subject of this work. 

Actually, the real engine behind this study (and its algo- 
rithmic issues) is a probabilistic analysis of an approximate 
pattern matching problem which we discuss next. Our prob- 

abilistic results are confined to the stationary mixing model 
in which two random events defined on two u-algebra sepa- 
rated by g symbols behave like independent events as g —► oo. 
We denote by a(g) the mixing coefficient, and assume that 

a(g) —»■ 0 as g —* oo. 
It turns out that behavior of Ln is related to two other 

quantities, namely the shortest path sn and the height Hn 

defined in the sequel. The height Hn is the length of the 

longest substring in the database X™ for which there exists 
another substring in the database within distance D. More 

precisely: the height is equal to the largest N for which there 

exist 1 < i,j < n such that d{X\-1 + N,Xf1+N) < D. Let 
now Wk be the set of words of length k, and Wk € Wc- Then, 
the shortest path sn is the longest k such that for every wk € 

Wk there exists 1 < i < n such that d(Xp1 + fc, wfc) < D. 

The asymptotic behaviors of Ln, Hn and sn depend on 
generalized Renyi entropies rb{D) that we define below. We 
write BD(wk) for a ball of radius D of sequences from Wk, 

that is, BD{wk) = {>i : d(x^,wk) < D}. 

Definition: For any —oo < b < oo 

-log EP\BD{Xl)) 
rb(D) = lim bk 

where for 6 = 0 we understand r0(D) = lirnb-o rb(D), that is, 

-E\ogP(BD(X?)) 
r0{D) = km   7  - 

provided the above limits exist. 

Using the subadditive ergodic theorem, we can prove that 

the entropies rb(D) exist in a stationary mixing model. The 
main result of the paper is summarized below. 

Theorem. In a mixing model with the mixing coefficient tend- 

ing to zero the following holds: 

Ln 1 
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lim (Pr-) 
n—00 log n      ro(D) 

But,  Ln  does not  converge almost surely to any limit and 

actually the following is true 

..      .    ,    Ln 1 
Iim ml =  Tjrr 

n~<x>    log« T-aoylJ) 
lim sup ;  > in ou^ c-      1 n\      (a.s.) 

n_oo   logn       n{D) 

for the Markovian model.   In the Bernoulli model,  the last 

inequality can be replaced by equality. 

In a related paper Steinberg and Gutman [3] analyzed 

the so called waiting time, defined as the number Ni such 
that the beginning substring of length I reoccurs approx- 

imately in the string for the first time after Ni symbols. 
The authors of [3] proved that for a stationary ergodic se- 
quence limsupj^logAi/J < R(D/2) (pr.). As a corol- 

lary to our main result we show that in the mixing model 

limi-oologiVi/J = r0{D) (a.s.), which ultimately settles the 

problem of [3]. 
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The Gold-Washing Algorithm(II): Optimality for ^-Mixing Sources" 
Zhen Zhang1      and       En-hui Yang2 

Abstract — Two versions of the Gold-Washing data 
compression algorithm, one with codebook innovation 
interval and the other with finitely many codebook 
innovations, are considered. The corresponding op- 
timality results are proved for stationary, ^-mixing 
sources. 

I. DESCRIPTION OF ALGORITHMS 

In their recent paper [1], Zhang and Wei proposed a 
universal lossy data compression algorithm called Gold- 
Washing(GW) algorithm. Let A and A be our source alphabet 
and reproduction alphabet, respectively. Fix R > 0 and let 

L = [2nR\. For each n > 1, the GW algorithm acts like 
an adaptive vector quantizer when it is applied to encode a 

source sequence x = {z,}?° from A. It first parses the source 
sequence x = {xi}i° into non-overlapping source words of 
length n xn(t) = (x(e_))n+1, z(t_1)n+2, ■ • •, xtn), t = 1,2,---, 
and then uses a codebook Cn(t — 1) which changes slowly in 
time to quantize xn(t). Each codebook Cn(t — 1) consists of an 
ordered list of 2L entries. Each entry in the first half(denoted 
by Cn(t — 1)) of Cn{t — 1) is merely an ?*-length reproduction 
sequence called a codeword from A, whereas each entry in the 
second half of Cn(t — 1) consists of a codeword from A and 
a counter associated with the codeword. When the codebook 
C„(t — 1) is used to quantize the source word xn(t), the encoder 
maps xn(t) to a smallest index for which the corresponding 
codeword yields the smallest distortion among Cn(t — 1). Af- 
ter x"(t) is encoded, the codebook C„(t — 1) is innovated and 
changed to Cn(t). The innovation operation of C„(t — 1) is 
as follows. (Assume an index i is assigned to xn(i) by the 
encoder.) 

51 If i > L, the counter associated with the t-th codeword 
in C„(t — 1) is incremented by 1. 

52 If the counter associated with the (L + l)-th codeword 
in Cn(t — 1) is > n( prior to the execution of Si, then a 
randomly selected codeword from C\(i — 1) is discarded 
and, at the same time, the (L + l)-th codeword in C„(t — 

1) is promoted into C£(t - 1); otherwise, the (L + l)-th 
entry in C„(f — 1), including the codeword and counter, 

is discarded and the first L entries in C„(t — 1) remain 
unchanged. 

53 Each entry from the (L + 2)-th position to the 2i-th 
position is moved one step forward. 

54 Finally, a new randomly selected codeword according to 

a prescribed distribution occupies the 2L-th vacant po- 
sition and its counter is set to 0; the resulting codebook 
is denoted by Cn(t) and used to quantize xn(t + 1). 

In S2, n( is a threshold and C is an number > 2. Initially, 
the codebook C„(0) is selected arbitrarily and all counters in 
the second half of C„(0) are set to zero. Knowing the initial 
codebook, the new random codeword in S4, and the discarded 
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codeword in S2 when promotion occurs, the decoder performs 
the codebook innovation operation in the exact same way as 
the encoder does. 

It was proved in [l] that the above mentioned GW algo- 
rithm is optimal for memoryless sources. In this paper, our 
aim is to investigate the asymptotic optimality of the GW 
algorithm for stationary, ^-mixing sources. Accordingly, we 
shall consider the following two versions of the GW algorithm. 

GW algorithm with codebook innovation interval k: This 
version of the GW algorithm is similar to the original one 
mentioned above except that this time the encoder inno- 

vates its codebook only when t = (k + l)m, m = 1,2, ■■•. 
In other words, the time interval between two consecutive 
codebook innovations is k; during the time period from t = 

(k + l)(m - 1) + 1 to t - (k + l)m, the codebook is held fixed 
and used to quantize source words xn((k + l)(m — 1) + 1), ..., 
xn((k + l)m); only after the source word xn((k + l)m) is en- 
coded, the codebook is innovated according to the codebook 
innovation operation (S1-S4) and then is held fixed(including 
the counters in the second part of the codebook) and reused 
for the next time period of length k. 

GW algorithm with finitely many codebook innovations: 
This version is a variant of the GW algorithm with codebook 
innovation interval k where after finitely many codebook in- 
novations, the codebook is held fixed and reused to quantize 
the incoming successive source words. 

.   II. OPTIMALITY RESULTS 
Let p : A x A —* [0, +00) be a single-letter distortion mea- 
sure. Given a stationary, ergodic source a with random out- 
put {Xi}^, let D(R) denote its distortion rate function with 
respect to the fidelity criterion {pn}, where pn(xn,yn) = 

»i-1 YA=I P(x"2/') f°r x" € An and yn € Ä". If a stationary, 
ergodic source /( with random output X = {X,}f is encoded 
by the GW algorithm with codebook innovation interval k(n), 
the expected distortion per symbol is defined by 

T 

p(n, n) = lim sup - V Epn{Xn{t), Cn{t - 1)) ,        (1) 
T — 00     '    ■'-—' 

1=1 

where p„(Xn(t), Cn(t - 1)) is the minimum of pn(Xn(t), yn) 

over all y" £ C„(t - 1) and "£" denotes the expectation with 
respect to Xn(t) and Cn(t — 1). The following is our optimality 

result concerning the GW algorithm with codebook innovation 
interval k(n). 

Theorem 1 Let //, be a stationary, <j>-mixing source having 

the blowing-up property and whose (p-rnixing coefficients satisfy 
<j>(k(n)n)L~' —> 0 as n -+ 00, then 

p(n,fi) —> D(R)   as n —* 00. 

When /(. is a strong mixing Markov(or finite-state) source, 
Theorem 1 can be strengthened to almost sure convergence. 

Similar results hold for the GW algorithm with finitely many 
codebook innovations. 
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Abstract — Output probability distributions of the 
test channels play important roles in data compression 
of discrete memoryless sources with fidelity criterion. 
In this paper a universal algorithm for estimating the 
output probability distributions is proposed. Sample 
size required by the algorithm is evaluated under a 
criterion of estimation similar to that of PAC learning 
in the computational learning theory. 

I. INTRODUCTION 

Rate-distortion function describes a basic lower bound of com- 
pression efficiency asymptotically attainable by a data com- 
pression scheme with fidelity criterion. For a discrete memory- 
less source of finite alphabet A - {alt a2,... ,aj} it is defined 
as a minimum of the mutual information as follows: 

R(p,D)=      min      7(p; W), (1) 

where p = {p(a1),p(a2),... ,K°-0) denotes a probability dis- 
tribution of the source, W(p, D) is the set of J x J stochas- 
tic matrices each element of which causes average distortion 
per symbol within D under a single-letter fidelity criterion 
d : AxA -+ [0, oo) satisfying d(aj, ak) = 0 if and only if j = fc. 
The rate-distortion function is positive for all D € [0, Dmax), 

where Dmax = min* £,p(aj)d(aj, a*). Fix A € (0, Dmax) 
arbitrarily and denote by W* the test channel matrix achiev- 
ing the minimum in (1). The probability distribution on A 

defined by /(ak) = £/=iP(a;)W*(a*|a>),fc = 1,2,....J 
means the output probability distribution of the test chan- 
nel corresponding to the distortion level A. In this note a 
universal estimation algorithm of p* is proposed and sample 
size required by the algorithm is evaluated. 

Suppose that another discrete memoryless source with the 
same alphabet A as well as the source to be compressed 
is available to the estimation algorithm. Denote by q = 
(q{ai),q(a2),...,q(aj)) the probability distribution of an- 
other source called auxiliary source. Assume that q(aj) > 0 
for all aj € A satisfying p"(aj) > 0. For an arbitrarily fixed n 
let X = {XI,X2,...,XL} be L n-tuples drawn independently 
from the source and y = {yu y2,... ,yM} be M n-tuples 
drawn from the auxiliary source. By using the two sets X and 
y, the algorithm outputs p"* as an estimate of p* satisfying 

Prob (Z>(p*||p%) >e)<6 (2) 

for any given e > 0 and 6 € (0,1) if n is sufficiently large, 
where Prob means the probability with respect to X xy. The 
criterion of estimation (2) is deeply related to a data compres- 
sion scheme with fixed data-base proposed by Steinberg and 
Gutman [1] and analyzed in detail by Koga and Arimoto [2]. 

Moreover, imposing the criterion (2) is the first attempt to 
introduce a viewpoint of the PAC (Probably Approximately 
Correct) learning models proposed by Valiant [3] to data com- 
pression with fidelity criterion. 

II. MAIN RESULTS 
It is assumed that the estimation algorithm can use an esti- 
mate of p, denoted by pe, satisfying ||p - pe||i = 0(n~ß°) for 
any fixed ße € (0, §]. It estimates p* in the following manner: 
Algorithm 1       1)  Choose a > 0 and ß € (0, ße) arbitrar- 

ily.   Derive X = {xi,x2,... ,xi} from the source and 
y = {yj, y2, • • • ,yM} from the auxiliary source. Fix an 
integer m0 arbitrarily satisfying 1 < m0 < M. 

2) For all m = 1,2,..., M define A/"(ym, A) by 

Af(ym,A) = {x€*|<Ux,y)<A 

and    ||pe - t(x)||i < n-'}, (3) 

where dn denotes distortion between n-tuples defined by 
d, andt(x) denotes the type o/x. Search for the integer 
m* maximizing |A/'(ym,A)|. 

3) If[tf(ym.,A)\ > na, output t(ym.)-  Otherwise, output 

t(ymo)- ü 

Under the assumption that p* is unique, lower bounds of L 
and M guaranteeing Algorithm 1 to meet the criterion (2) are 
established in the following theorem. 

Theorem 1 Let Rx = £log2£ and Ry = £log2M. Then 
for any fixed A € (0, Dmax), if the two inequalities 

min min       7(q'; V) < Rx < R(p, A), (4) 
q':D(p*||q')<« vev(p,q',A) 

Ry>D(cic\\q) (5) 

are satisfied then there exists an integer n0 satisfying that 
Algorithm 1 outputs p* meeting the criterion (2) for all 
n > no, where I(q';V) denotes the mutual information, 
V(p,q', A) denotes the set of J x J stochastic matrices satis- 
fying J2J

k=1 q'(ak)V(aj\ak) = p{a3) for all j = 1, 2,..., J and 

£>=i E*=i ?'MV(a>*)<J(«>.Ofc) < A, andqc is a proba- 
bility distribution on A that achieves the minimum in (4) with 
a stochastic matrix V € V(p,q£, A). □ 
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Abstract — A data-base for data compression is uni- 
versal if in its construction no prior knowledge of the 
source distribution is assumed and is optimal if, when 
we encode the reference index of the data-base, its en- 
coding rate achieves the optimal encoding rate for any 
given source: in the noiseless case the entropy rate 
and in the semifaithful case the rate-distortion func- 
tion of the source. We construct a universal data-base 
for all stationary ergodic sources, and prove the opti- 
mality of the thus constructed data-base for a block- 
shift type reference and a single-shift type referrence. 

I. Introduction 
We consider the case where both a sender and a receiver have 
the same data-base on their respective sides. In this case, we 
can transmit a source output in the following way: the sender 
refers to the data-base for the data string which matches the 
given source output and then encodes the reference index of 
the data string to send it out. The receiver then decodes the 
encoded index to retrieve the data string from the data-base 
and then uses it to represent the source output. There are two 
typical conceivable methods of referring to the data-base: one 
is a block-shift type reference and the other is a single-shift 
type reference. Either method can achieve data compression 
if the number of bits needed to encode the reference index rel- 
ative to the data-base is smaller than that needed to represent 
the source output itself. Hereafter we refer to the number of 
bits divided by the sequence length of the source output as 
the encoding rate. 

We construct an optimal universal data-base for ergodic 
sources. The construction of our data-base sequence relies 
entirely on the basic concept of the complexity function (cf. 
[1]): it is constructed by ordering data strings according to the 
increasing complexity. The obtained data-base sequence can 
be applied for both the block-shift type and the single-shift 
type reference cases. 

It should be noted that this data-base can be proved opti- 
mal also for the fixed-rate universal code with distortion (cf. 

[3])- 

II. Block-Shift Type Reference Case 
Let A be a finite set and let L be a complexity function in the 
almost sure sense which is defined in [1]. 
Definition 1 Let elements of set An be ordered according to 
the increasing complexity (ties may be broken in^ an arbitrary 
order). The mapping which maps an element of An into its or- 
der is called an index function induced by L and is denoted by 
CL,U- A data-base sequence corresponding to the index func- 
tion £L,U is defined by 

un^ = ^„(l) * £Z,1
B(2) * ... * Cl^(\An\), 

where notation * is used to denote concatenation of strings. 

Next, let A be a standard space and let p is a distortion 
function which satisfies some conditions stated in [1]. 

Definition 2 A D-semifaithful index function CL,D,U is de- 
fined by 

C-L,D,n{xn)    = min      jO.L,n(xn) 
xn£Ä"(x") 

=    min{Z; i$,_1)+1 € Än
D(x

n)},    xn G An, 

where ü? = (üi:..., üj) and 

Än
D(x

n) =\xne Än; l^pixuxi) <D\. 

Theorem 1 For any A-valued stationary ergodic source X, 

lim — log2 CL,n(xn) = Hx    ßx-a.s.t 
n—»ooTl 

and for any A-valued stationary ergodic source X and D > 
Do, 

lim - log2 CL,D,n{xn) = Rx(D),    ßx-a.s., 
n—>oo7l 

where Hx and Rx(D) is the entropy-rate of the source X and 
the rate-distortion fucntion of the source X, respectively. 

III. Single-Shift Type Reference Case 
We now consider the case when a data-base sequence is ref- 
fered to by the single-shift type reference. 
Definition 3   We define a function SL,U be ginen by 

SL,U(X ) = mm{s; x   = us
T      },     x   G A 

and refer to it as the index function for the single-shift type 
reference. And we define a function SL,D,U be given by 

SL,D,n(xn)    = min      SL,n(xn) 

=    mm{s; us G AD(
X
 ))>    x   £ A 

and refer to it as the D-semifaithful index function for the 
single-shift type reference. 

Theorem 2 For any A-valued stationary ergodic source X, 

lim - log2 5t,„(s") = H%    ßx -a.s., 
n—»ooTl 

and for any A-valued stationary ergodic source X and D > 
Do, 

lim - log25z,,D,n(a;n) = Rx(D),    fix-a.s. 
n-»oo7l 
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Two practical universal source coding schemes based on 
approximate string matching are proposed. One is an 
approximate fixed-length string matching data compres- 
sion, and the other is an LZ-type quasi parsing method 
by approximate string matching. It is shown that in the 
former algorithm the compression rate converges to the 
theoretical bound of R(D) for ergodic and stationary 
processes as the average string length tends to infinity. 
A similar result holds for the latter algorithm in the 
limit of the infinite database produced by the former al- 
gorithm. The main advantages of the proposed methods 
are the asymptotic behavior of the encoder implementa- 
tion and the simplicity of the decoder. Practical results 
of image and voice compression will be presented. 

Definition 1. We look at the positive time at the se- 
quence uo,u\.... Let L be the first index such that 
the string UQ ... UL-I is not a substring of the data-base 
uZn- That L is equal to Ln{u). 

Definition 2.   Tie random variable Ni(u) for I > 0 is      lim Pr 
;     ' - - - /—kin 

the smallest integer N > I such that u0     = u .l-l-N 
■N 

Given alphabets U and V, a distortion measure is any 
function d : \U x V\ —► 7£+. Let pj(ü;v) denote 
the distortion for a block- the average of the per let- 
ter distortions for the letters that comprise the block, 

pi(ü;v)= yEfc=id(wfc;^)- 

Definition 3. For each sample sequence ü of length I, 
taken from the sequence u, we define a set D — Ball, 

D-Ball(ü) = <v\p(ü,v) < D 

Definition 4.  For each sample sequence u we dehne the 
random variable DLn(ü, vZn) =     max     Ln(v,vZn). 

Definition 5.  For each sample sequence ü we define the 

random variable DN]{ü,v~\) = _   min     Ni(v,vZk)- 
v:p(u,v)<D 

Data Compression Scheme A. 
1. Verify the readiness of the decoder. 
2. Take a string u = u0 

l of length 
3.    If ,.'-i can be approximately matched up to tol- 
erance D by a substring of v_n, encode it by specify- 

Hag to indicate that there is a match. Append string 
V
'-DN ' *° database in decoder and encoder at posi- 

tion 0. 
4. If not, indicate that there is no match and trans- 
mit to the decoder and append to the database in the 
encoder and decoder, the string v^~ , which is the best 
D-Ball center, obtained by blockcoding on the current 
MQ

_1
 string and is based on the accumulated empirical 

distribution in the past of u. Blockcoding algorithms 
are known in literature. The codeword is transmitted 
as is, without compression. 
5. Shift the indices by I to the appropriate values. Up- 
date n to n + I. Repeat the process from step 1, with a 
new string of length I and a database vZn- 

Limit Theorem A. Given is a D-semifaithful 
database iC^ generated by Scheme A from a station- 
ary ergodic process u. We assume that the system 
preserves ergodicity and stationarity. For all ß > 0, 

log DNi(ü, vZ 

I 
-R(D) > ß } = 0. The av- 

erage compression ratio attains the bound R(D). 

Scheme B. 
1. 1=1. 
2. Take the string of length I M0

_1
- 

3. If MQ
_1
 can be approximately matched up to toler- 

ance D by a substring ofvZn, store a pointer N to that 
substring and increment I. Go to step 2. 
4. If not, append to the data base track the string 

V
l~2-N at position zero and further, and append the 

letter D;_I - the reproducing letter which satisfies 
d(ui_i,i>f_i) = 0. The encoding is done by the pointer 
to the string vl~£~N, the length DLn(u) and the last 
reproducing letter associated to the last source letter. 
5. Repeat the process from step 1, where the database 
is appended with the chosen string denoted by v DL„ 

ing DNj(u, v_*) to the decoder. Add a bit as a header     n^co \ DLn(u, v 

Limit Theorem B. Given is a suffix vZ„ taken from 
an infinite database generated by an encoder - decoder 
pair as described in Scheme A. At time zero switch to 
Scheme B. As the memory size - n tends to infinity, 
for the new sample sequence ü encoded from the sta- 
tionary ergodic input u by Scheme B, in probability, 

]        log n 
lhix R(D). 
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Abstract — Upper bounds for certain exponential 
sums over Galois rings are presented. The bound 
may be regarded as the Galois ring analogue of the 
so called Kloosterman sums and related exponential 
sums with a Laurent polynomial argument. An appli- 
cation of the bounds to the design of large families of 
polyphase sequences with good correlation properties 
is also given. 

I. INTRODUCTION 

Let tp : GR(q, m) -+ C* be an additive character of the char- 
acteristic q = pe, (p prime) Galois ring of qm elements. Let T 
denote the subset of GR(q, m) consisting of the zero element 
and the powers of an element a of multiplicative order pm — 1. 

In [1] Kumar, Helleseth and Calderbank studied the expo- 
nential sums of the type 

£>(/(*)). 

where f{x) is a polynomial with coefficients in the ring 
GR(q,m). They apply the theory of the function fields of 
algebraic curves and their characters. The same technique 
will allow us to study such sums, where in place of the poly- 
nomial f(x) we have a Laurent polynomial, i.e. we allow neg- 
ative powers of x as well. Observe that this makes sense in 
T* = T \ {0} as all the elements in T* are units of the ring. 
Our technique difFers from the approach in [l] in the sense 
that we have utilized a Witt vector presentation of the Galois 
rings: For example we view the ring GR(4, m) as the ring of 
Witt vectors W2(F) of length two over the field F = GF(2, m). 
The elements of W2(F) are ordered pairs (ao, at\), cti € F and 
the ring operations of two such pairs are defined as 

(oo.oi)     +     (ß0,ßl) 
(ao.a'i)     *     (ßo,ß\) 

(ao + ßo, cti + ßi + a0ßo), 
(a0ßo,a1ßl +ßral), 

where the arithmetical operations between the individual com- 
ponents are the usual field operations. Our set T consists then 
of the pairs (ß,0),ß £ F. Similarly the rings GR(8,m) can 
be viewed as rings of Witt vectors of length three. For a de- 
scription of the arithmetic of Witt vectors of arbitrary length 
and characteristic we refer the interested reader to Jacobson 
[3, section 8.10]. 

II. RESULTS 

We have proven the following results: 
Theorem 1 Let q = 4 and a, ß £ GR(4, m) be arbitrary ex- 
cluding the case a = ß = 0.  Then 

EHM+0 
I6T- 

< 4\/2"\ 

Theorem 2 Let q — 8 and ct\,ß\ £ GR(S,m) and 0:3, #3 € 
4GR(8, m) be such that at least one of them differs from zero. 
Then 

5>(ttl,+ £+«„» + £) 
i€T' 

< 8\/2"\ 

As is the case with the usual Kloosterman sums, we have 
the additional result that the associated hybrid sums 

J2^(f(x))X(x) 
x€7~* 

have exactly the same bounds. Here f(x) is any of the Laurent 
polynomial appearing in the above results and \ \a) ~ w 

is a multiplicative character of the group T*,OJ = e27"'^v ~x>. 
Such hybrid sums can be used either to analyze the aperiodic 
correlation properties of the resulting family of sequences or 
to get an even larger family with a very large alphabet. After 
submitting this note I have learned that Helleseth, Kumar and 
Shanbhag have obtained more general versions of the above 
theorems [2]. However, they didn't consider the associated 
hybrid sums. 

III. APPLICATIONS TO SEQUENCE DESIGN 

The above character sums appear naturally as correla- 
tion values of certain families of sequences. To arrive at 
the families all one has to do is to select representatives of 
cyclically distinct classes of associated codewords of period 
L = \T*\ = 2m — 1. Our character sums yield families with 
the following parameters for all m > 1: 

• Quaternary family of size L3 and maximal correlation 
1 + 4VT+T, 

• Eight-phase family of size L7 and maximal correlation 
l + 8v

/m, 
• Polyphase family of size  L4  and maximal correlation 

1 + WL + 1 and 

• Polyphase family of size L6  and maximal correlation 
1 + 8v/TTI. 

Here the 'polyphase' families have alphabets of sizes 4L 
and SL respectively effectively filling in the unit circle of the 
complex plane. 
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Abstract-In this paper,  GMW sequences and fami- </>(2" — 1)   rj <t>(^m' — 1) 
lies of No sequences are generalized.  Generalized GMW *GMW — ^ ' 11        ^        ' V4J 
sequences have ideal autocorrelation properties and bal- ,=1 

ance properties and generalized No sequences also have where <^(-) is Euler's phi function, 
optimal correlation properties in terms of Welch's lower 
bound.   The linear spans of the generalized GMW se- rFTMFR ATT7 ATTniv nr lvn «FnTTFivrrp« 
quences and generalized No sequences appear to be large IIL GENERALIZATION OF NO SEQUENCES 
although we do not at present have a closed-form ex- 
pression for the linear span. A count of the numbers of The definition of a generalized No sequence family is 
cyclically distinct generalized GMW sequences and gener- given as follows: 
alized No sequences that can be constructed is provided. Definition 2 : Let n and m,-, i = 1,2,..., d, be inte- 

gers satisfying 

I. INTRODUCTION n = 2 • md and m,- \mi+1, for 1 < i < d - 1.       (5) 

In this paper, the generalization of GMW sequences A family of generalized No sequences 
and No sequences is introduced. In Section II, GMW se- , 
quences are generalized, those ideal full-period autocorre- ^9 ~ is» W | U < t < iv — 1,   1 < t < I   )        (bj 
lation properties are derived, and a count of the number of . ,    .      ... .   , . , „     . 
cyclically distinct generalized GMW sequences that can ls a set ^ multiple trace function sequences defined as 
be constructed is provided. It is also shown how the fam- _    mi/r. m2rr   m3i n      2t\ Ttir i     llr llr 
ilies of No sequences can be generalized in an identical *«'W ~ <ri   u'rmiUtrm2V • • \Wmi\

a   )+7«-a    J d) ■ ■ ■}] 2}\ 1}, 
fashion and optimal correlation properties are described (7) 
in Section III. Here, the number of distinct families of gen- where N = 2" - 1, 7t- is in GF(2m*), T = 2m* + 1, and 
eralized No sequences of given period is described, too. tor 1 < i < d, 

gcd(n,2mi - 1) = 1,   1< n < 2mi - 1. (8) 
II. GENERALIZATION OF GMW ~ 

SEQUENCES The full-period correlation function of No sequences 
are the same as that of Kasami sequences. Counts for the 

We can define generalized GMW sequences as follows: number of cyclically distinct generalized GMW sequences 
Definition 1 : Let n and m,, i = l,2,...,d, be inte- and generalized No sequence families are the same. 

gers satisfying 

rrid\n and mj|m,-+i,  for 1 < i < d— 1. (1) 
REFERENCES 
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379, Mar. 1989. 
The generalized GMW sequence has the ideal full- 

period autocorrelation values and it can be counted as 3- A- KlaPPe'.    d-form sequences:   Families of se- 
follows: quences with low correlation values and large lin- 

Theorem 1 : The number of cyclically different gen- ear sPans>" IEEE Trans- Inform. Theory, vol. 41, 
eralized GMW sequences of given period N is given by: PP- 423-431, Mar. 1995. 
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Abstract — Constructions for families of cyclic con- 
stant weight codes are presented to be used in fiber 

optic CDMA networks for multirate transmission. It 
is shown that the discussed code families satisfy the 

requirements for successful transmission of different 
data rates using the CDMA technique. 

I. INTRODUCTION 

An (n,u, A)-optical orthogonal code (OOC) (see [1], [2],[3]) C, 
n > 1, 1 < w < n, 1 < A < w, is a family of {0, l}-sequences 

of length n and Hamming weight w satisfying the following 
auto and cross-correlation conditions: 

^2 x(k)x(k ©„ T) < A (1) 

for all sequences x(.) £ C and all integers r ^ 0 (modn) and 

]T x{k)y(k 8n T) < A (2) 
*=o 

for all pairs of sequences x(.), y(.)  £  C and all integers T, 

where 0n denotes addition modulo n. 

For a given set of values of n, u and A, let $(n, w, A), denote 
the largest possible cardinality of an (n, w, A)-optical orthogo- 
nal code. Upper bounds for this function and several optimal 

constructions for A = 1 and 2 can be found in [l]-[3]. An easy 

upper bound derived from the Johnson bound (see [1]) states 
that 

tin u \)< I A{n' 2W ~ 2A'W) I < (" ~ 1)(" " 2)-(n " A) 
V   '    '   ;- L n J -       w(w-l)...(w-X)      ' 

(3) 

II. CONSTRUCTIONS 

Codes with these properties have been called optical or- 
thogonal codes in papers [l]-[4] in connection with applica- 
tions for optical channels and cyclically permutable constant 
weight codes (see [5] and references there) in connection of 

constructing of protocol sequences for the multiuser collision 
channel without feedback. 

In a multimedia environment different types of users trans-     r,! 
mit at different data rates [6].   As a most obvious example 
in Personal Communication Networks we have low rate-voice 
transmissions and high rate data-transmissions. 

Note that in a multirate case a CPCW with a longer length     [4] 
corresponds to lower data bit rates and the smaller length 
CPCW corresponds to higher data bit rates. Hence for mul- 
timedia applications we need CPCW families with different     [5] 
lengths and weights. The code construction is complicated by 
the fact that now we need to establish not only correlation 

1 This research is supported in part by the National Science Foun-      rgi 
dation under Grant numbers RII-9014056, NCR-890505, and the 
Computational Mathematics Group of the EPSCoR of Puerto Rico 
Grant. 
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properties (value of A) of one CPCW family but also cross- 
correlation properties of families of CPCW with different n 
and u. 

In [3], three constructions (A, B and C ) for families of 
OOC's are presented. In every case, the families are asymp- 

totically optimum in the sense that, as the length of the se- 
quence family -¥ oo, the ratio of the size of the OOC to that 

of the maximum permissible as determined by the bound in 
(3) above, approaches unity. 

All three constructions make use of the following two ideas. 

Let n be an integer that can be expressed as the product n = 
nin2 of two relatively prime integers nj and n2. Then, from 
an application of the Chinese remainder theorem, it follows 

that the construction of sets of {0,1} sequences with periodic 
correlation bounded above by A is completely equivalent to 
the task of constructing a collection of arrays whose doubly- 
periodic correlation is bounded above by A. Secondly, the 
codewords within each family are required to have constant 
weight. The sequences in each of the three families A, B and 
C when represented "in matrix form appear as the graph of a 
function mapping Zni ->• Zni. This guarantees that they all 
have constant weight (approximately) riz. The functions in A 

and B are polynomials, whereas, construction C uses rational 
functions. 

In this talk, we will show that Construction A can be 
used to construct a nested chain of asymptotically optimum 

OOC's of lengths n0 = n, n,|n0, i > 1. Using on-off keying 
as the method of data modulation, we show how this, nested 

chain can be used to efficiently allow several users with differ- 
ent information rates to simultaneously transmit information. 
Decoding of the desired information stream is easily accom- 
plished using correlation detection. 

Such codes are relevant to multimedia communications. 

[1] 

[2] 
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Abstract — An upper bound for the extended 
Kloosterman sum over Galois rings is derived. This 
bound is then used to construct new, efficient se- 
quence families with prime-power phase. 

I. INTRODUCTION 

For a fixed prime p and integers e, ra, e > 2, m > 1, let 
Re,m denote the Galois Ring of characteristic pe and contain- 
ing pem elements. Let 4>e,m be a non-trivial additive character 
of Re,m and let f(x) be a non-degenerate polynomial (i.e. no 
term in f(x) has degree which is a multiple of p) over Re,m 

with weighted degree [1] Df. Define Te,m — T*,m U 0 where 
Tem is a cyclic subgroup (the Teichmuller group) of order 
pm - 1 of Rl m. In   [1], Kumar et al. prove 

J2     ^.rn(f(x)) 
*£%, 

<    (Df-Vy/P* 

of D'/j + Df2 complex numbers. These complex numbers can 
be shown to be the reciprocal roots of the zeta function of a 
function field over Fpm. It follows from the Riemann Hypoth- 
esis for function fields, that the magnitude of each of these 
complex numbers is i/p™. Thus, using notation as above, we 
obtain the following theorem: 
Theorem 1 

This bound leads to new sequence families which compare 
very well with existing sequence families when maximum non- 
trivial correlation, alphabet size and family size are used as a 
basis for comparison. More precisely, let Tr> denotes a maxi- 
mal family of pairwise, cyclically distinct sequences each hav- 
ing period pm — 1 from the set 

SD = {{Te,m(/(/3t))}tez \Df<D) 

where ß is a generator of Te*m and f(x) £ Re,m[x] has weighted 
degree Df. We then have the following bounds for the max- 
imum non-trivial correlation Cmax and the size of the family 
TD as under 

Cmax < 1 + (D - l)y/pK 

and 
\TD\>pm(D-^-x). 

In this paper we obtain an upper bound for the extended 
Kloosterman sums, i.e. sums of the form 

Ke,m(h,f2)    =       Yl     *'M(X) + M*'1))' 
x& ' e,m 

where fi(x),f2(x) are polynomials over Re,m- These sums 
lead to new sequence designs for CDMA applications. 

II. BOUND ON THE EXTENDED KLOOSTERMAN SUM 

Let fi{x),f2{x) € Re,m[x] have weighted degrees Dfl and 
Df2 respectively. Let ipe,m be any non-trivial additive char- 
acter of Re,m- Using L-function techniques, we can express 
the exponential sum X^er*    'Pe.mifiix) + f2(x~1)) as a sum 

°The work was supported in part by the National Science Foun- 
dation under Grant Number NCR-93-05017 and in part by the Nor- 
wegian Research Council for Science and the Humanities. 

£     <l>e,m{h{x) + f2(x-1)) 

i6Te*m 

<(Dh+Df2)Vp* 

III. APPLICATIONS TO SEQUENCE DESIGNS 

We now restrict ourselves to the case when p = 2.   Consider 
the set SD1,D2 °f sequences defined via 

(!)    SDllD2 = {{TeMfiiß*) + hiß''))} I Dh < Du Dh < D2} 

where ß is a generator of T*>rn and fi(x) € Reim[x], i = 1,2 is 
non-degenerate with weighted degree D^. Let the set 

7DX,D2 C <5D1?D2 

consist of a maximal family of pairwise, cyclically distinct se- 
quences in SDX,D2 with each sequence having period 2m — 1. 
Using Theorem 1, it is easy to see that the maximum non- 
trivial correlation Cmax of the family FDUD2 is upper bounded 
via 

Cmax <! + (£>!+ £>2)V2"\ (2) 

The size of the family TD^,D2 can be lower bounded using the 
formula below: 

|^Dl,D2|>2m(Dl + D2-^J-l^J-1). (3) 

Note that 

1 2e ~~    2e J      L 2e 

In case of equality, we note that the corresponding bounds 
for the maximum non-trivial correlation and family size of 
:FD1 + JD2+I and TDI,D2 are equal. 
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Abstract — For the application in a cellular common- 
code spread-spectrum multiple access system, here 
referred to as CTDMA, the ambiguity function of 

the binary spreading sequence and its mismatched de- 
spreading filter is optimized. 

I. INTRODUCTION 

In cellular Code Time Division Multiple Access (CTDMA) 
systems [1], the user signals are first separated by a symbol- 
level TDMA scheme and then spread in a DS-CDMA fashion 

by a common (cell-specific) binary spreading sequence s[] of 
length L with s[n] G {-1, +1} for 0 < n < L and zero other- 
wise. At the receiver, the incoming signal is passed through 
the aperiodic inverse filter v[-] of s[], which completely sep- 

arates the users of the same cell and thus omits this kind 
of interference that usually appears in cellular CDMA. The 

filter v[-], two-sided infinite in length, is well approximated 
by a filter w[-} of length N w 3L, which still achieves a suf- 

ficient user separation by minimizing the aperiodic correla- 
tion sidelobes Csw[m] = J^n s[n] w[n + m], m i= 0. Differ- 
ent techniques to design w[n] have been discussed in the lit- 
erature: Truncation of v[-] is conceptually simple [2], linear 
programming (LP) optimizes the peak/off-peak (POP) ratio 

Psw = Csw[0]/ma.xm^o\Csw[m]\, and the least-square (LS) al- 
gorithm minimizes the sidelobe energy of C3W[-\. 

II. SYSTEM ANALYSIS 

These filter design techniques neglect possible Doppler fre- 
quency shifts that occur in cellular applications due to veloc- 
ity differences Av.   The corresponding effect at the receiver 
output is described by the ambiguity function 

»K{) = J>-»s[ e '32^^n s[n] w[n + m] 

# L «[•1 (hex) *H 

pedestrian 
Aumaa; = 0 

car 
«30^ 

= 5-10l4 

train 
w60^ 

= 110l3 

airplane 
«300^ 
= 510i3 

1 
2 
3 

20 
25 
30 

05D39 
073F536 

09BF8EB5 

wl'\ 
40.070 dB 
40.828 dB 
42.408 dB 

37.97 dB 
37.90 dB 
38.35 dB 

34.64 dB 
33.97 dB 
33.84 dB 

22.00 dB 
20.86 dB 
20.34 dB 

4 
5 
6 

15 
15 
15 

2DE4 
2980 
2980 ü7[-j 

30.982 dB 
41.279 dB 
40.100 dB 

30.79 dB 
38.89 dB 
39.11 dB 

30.25 dB 
35.33 dB 
36.26 dB 

23.49 dB 
22.56 dB 
25.33 dB 

with £ — Tcfd. Here, Tc is the chip duration, fd = 2Av f0/c 
the Doppler shift, /0 the carrier frequency and c« 3-108is 

the speed of light. With f0 « 2 GHz, Tc « 1 ßs and Avmax = 

30...300^, maximum values of £max «5-10~4 ... 5-10~3 are 

obtained. In order to investigate the degradation due to these 
Doppler shifts (for other results, especially for larger Doppler 
shifts, cf. [3, 4]), we have computed the generalized POP-ratio 

n     (f        ^- minig[<<;,tt,„^4(U] 
Psw(^max) — — p- — maxm^0,|«|<«moJ/4st„[m,$]| 

where the filters w[-] of length N = 3L have been determined 
using the LP technique. For £max = 10"4, the Doppler effect M 
causes a noticeable degradation of psw(£max), and for £max = 
5-10 , the loss in psw(£max) can exceed 20dB as shown in 
the table below that lists the /t>s„,(fm<M:)-values. Especially se- 
quences with best noise performance [5] (cf. #1,#2,#3), which 

also provide very good psw(0)-values, seem to be Doppler sen- 
sitive. Others (cf. #4) are less sensitive. 

III. DOPPLER TOLERANT FILTERS 
We will first search for sequences s[-] with large psw(t,max)- 
values and then design receiver filters w[-] of length N = 3L 

with optimized Doppler performance.  To simplify the search 
in the first step, the ambiguity function is expressed as 

\Asw[m, g]|2=y^y^s[re]s[l] w[n + m]w[l + m] cos(27r|(n - /)) 
n        I 

«ein - 4TTY (C^MC^H-^M)2) , 
where we approximated cos(x) ss 1 - x2/2 (\x\ < 0.1 yields 

less than 5% error) and where Ci2[m] = J2n s[n]w[n + m]nt. 
Since this is a quadratic equation in £, only the cases $ = 0 and 

£ = £,max must be considered. Moreover, this approximation 
leads to an efficient criterion that allows an exhaustive search 
up to lengths LA:40. 

^ In the second step, we determined Doppler tolerant filters 
w[n] by adding constraints on | Y^ns[n]w[n+m] cos(27r£maxn)| 
and \J2n

s[n]w[n + m] sin(27r$moa;n)|, or on \cQ(m)\. Both 
approaches result in a reduced degradation oi psw(£max) with 

increasing £max. For £max = 5-10"3, the improvement of 

Psw(£max) may exceed 3 dB (compare #5 with #6). Nev- 
ertheless, the complete degradation of the pSu,(£maX) caused 
by Doppler frequency shifts cannot be compensated by mis- 
matched filters. 
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Abstract — Welch's lower bounds on total peri- 
odic and odd correlation energy of an equi-energy set 
of sequences are presented. It is shown that both 
bounds are simultaneously achieved precisely when 
the sequence set forms an aperiodic complementary 
sequence set, which has been extensively studied and 
is of independent interests. Then a lower bound 
closely related to an approximate SNR formula of 
Pursley for asynchronous DS/SSMA is derived. Our 
results are an extension of the works of Massey and 
Mittelholzer for synchronous DS/SSMA. 

I. INTRODUCTION 

In spite of the fact that the existing theory of sequence de- 
sign concerns mainly with the maximum periodic correlation 

magnitude, it is well-known that the inter-sequence aperiodic 
cross-correlation energy (i.e. between any two users) are more 
interesting than the maximum periodic (or even aperiodic) 
cross-correlation magnitude from the pragmatic viewpoint be- 
cause they determine the average SNR of an asynchronous 
DS/SSMA system under proper assumptions [6],[7]. 

In order to maximize the average SNR of an asynchronous 
DS/SSMA system by proper choice of signature sequences, 

sets of binary sequences are typically numerically optimized 
with respect to the average interference parameter (AIP), 
which can be accurately approximated by the total aperiodic 

cross-correlation energy (i.e. sum over all pairs of distinct se- 
quences). In the last two decades, many numerical results 
about binary sequences with optimized AIP were reported 

(c.f. [2] and the references therein). 
Welch's bound is essentially a lower bound on the total- 

even-moment of inner products of any set of equi-energy se- 

quences, though it is usually formulated as a bound on max- 
imum inner-product magnitude. Recently, Massey [3] iden- 
tified the necessary and sufficient condition for a sequence 
set to meet Welch's bound on the total inner-product en- 
ergy. This result was subsequently elaborated by Massey 
and Mittelholzer [4] for application in synchronous DS/SSMA 
systems. In particular, the uniformly good property of the 
Welch-Bound-Equality (WBE) sequence sets guarantees that 
all inter-sequence inner-product energy of such sequence sets 
simultaneously achieve the same value. This property means 
that the use of WBE sequence set as the signature sequences 
for a synchronous DS/SSMA system results in the minimum 

worse-case interuser interference variance, and is very desir- 

able from an application viewpoint. 

II. MAIN RESULTS 

This work is an extension of the results of [3] and [4] to 
asynchronous DS/SSMA systems, which are considered to be 

more practical due to the removal of the assumption of ideal 
sequence synchronization. The following theorems state our 

main results. 

Let X be an equi-energy set of K complex-valued sequences 

of length L. 

Theorem 1 (Welch's bound on total periodic correlation en- 

ergy) Let Xs be the sequence set obtained by including all cycli- 
cally shifled versions of every sequence in X. Then the total 
inner-product energy of Xs is at least K L , with equality if 

and only if X is a periodic complementary sequence set. 

Theorem 2 (Welch's bound on total odd correlation energy) 

Let Xs be the sequence set obtained by including all negacycli- 

cally shißed versions of every sequence in X. Then the total 
inner-product energy of Xs is at least K2L3, with equality if 

and only if X is a odd complementary sequence set. 

Theorem 3 (Bound for asynchronous DS/SSMA) Let C;,J(I) 

denote the aperiodic cross-correlation at phase shift t between 

the ith and jth sequences in X.  Then 

max   < 
0<j<K 

K-l   L-\ 

£  £  \dAt)\2+  £  |C;,;(<)|2 

•=0   t=l-L ( = 1-1, 
<#0 

} > (K-1)L2, 

1This work was supported by the Croucher Foundation Fellow- 
ship 1994/95. 

with equality if and only if the sequence set forms an aperiodic 

complementary sequence set. 

Theorem 3 is closely related to the approximate SNR for- 
mula of Pursley[6] for asynchronous DS/SSMA. Preliminary 

forms of Theorems 1 and 2 were presented in [5]. A discus- 
sion on binary linear cyclic codes that almost achieve Welch's 
bound on total periodic correlation energy can be found in [1]. 
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Abstract — 
A method of "coded addition of sequences" is pro- 

posed for the signal design with many codewords for 
synchronous or approximately synchronized CDMA 
systems. 

I. CODED ADDITION OF SEQUENCES 
The method can be explained using small examples. 
We can obtain a 4-phase good code of wordlength 2 

[(hj),(l,-j),(j,l),(-j,l),(-l,-j),(-l,j),(-j,-l),(j,-l)] 

Then, from orthogonal vectors 

(    1    1 

where 

Xn 

Xl 

x2 

11-1) 
(11-1        1    ), 

we can obtain eight vectors by "coded addition" of vectors 
with above 4-phase code as follows: 

(1) 

The Euclid distance between any two of these vectors is always 
4, except for the case of the two vectors are inverse each other. 
Farthermore, all of these vectors are orthogonal to both of 

X3 = (        1-111) 
x4=(    -1       111). 

Above method of "coded addition of vectors" also can be 
used to the row vectors in the IDFT matrix in following for- 
mula of the method of signal making for approximately syn- 
chronized CDMA[1]. Because (1 j) is also an orthogonal se- 
quence, a formula 

Xl  + JX2 = ( i+j 1+3 1-3 -1+3) 
Xl  -JX2 = ( i-i 1-3 1+3 -1-3) 
JXl  + X2 = ( i+i 1+3 -l+j 1-3) 

-jxi + X2 = ( i-i 1-3 -1-3 1+3) 
-Xl -jx2 = ( -l-j -1-3 -1+3 1-3) 
-Xi + jx2 = ( -1+3 -1+3 -1-3 1+3) 
-JXl  - X2 = ( -1-3 -1-j 1-3 -l+j) 

JXI  - X2 = ( -1+3 -1+3 1+3 -1-3) 

when L = 1. 
The Euclid distance between any two among [xn ...xia] 

is the same except for the case that these two are inverse 
each other. On the other hand, the crosscorrelation function 
between x'u and x2j is 0 for -1, 0 and 1 shift terms. 

II. DISCUSSION 

For a synchronous CDMA system, a signal design without 
co-channel interference is realized by using rows of a unitary 
matrix. For an approximately synchronized CDMA system, 
a signal design without co-channel interference is also real- 
ized by using the pseudo-periodic sequences proposed by the 
authorfl]. 

However, in real system, the information transmission rate 
and the number of users, which can use the system in the 
same time, are important. So, a user should be assigned many 
signals, each of which are without co-channel interference to 
the signals of other users, so that the user can use the assigned 
signals as codewords. 

In this paper, a method of "coded addition of sequences" 
was proposed for the signal design with many codewords for 
synchronous or approximately synchronized CDMA systems. 
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0 0     0 0 0 0 0 0 0       0 0 0 0 0       0       0 
1 1     j -j -1 -1 -j j 0       0 0 0 0 0       0        0 

y/3Ft~
l 0 0     0 0 0 0 0 0 1     1 j -j -1 -1   -j     j 

0 0     0 0 0 0 0 0 0       0 0 0 0 0       0        0 
j -3      1 1 -j j -1 -1 0       0 0 0 0 0       0        0 
0 0     0 0 0 0 0 0 j   -j 1 1 -j j     -1     -1 

' w3      w21 w3 w21 w15 w9 «,15 w9 w3 w21 w3 w2i w1* w9      w15 w9    1 
w        w w13 w19 w13 w19 w1 w7 w* w11 w17 w23 w17 23           5 

V)           W w11 

w11    w5 w11 w5 w23 w17 w23 w17 w19 w13 w19 w13 w7 wl      w7 w1 

w9      u,15 w21 w3 w21 w3 w9 w15 w21 w3 w9 wls w9 wli    w21 w3 

w19    w13 w19 w13 w7 w1 w7 wl wu wh w11 w* w23 w17    w23 w17 

w17    w23 w5 wli ws w11 w17 w23 w13 w19 w1 w7 wl w7      wi3 u 19 . 
- [Xll   Xl2  Xl3  Xl4   Xl5   Xl6  X17  Xn  X21   X22  X23  X24  X25  X26  X27  X2«] 

prepares eight polyphase codewords for a user, where w = 
exp(^). In this case, the user 1 can be assigned 8 pseudo- 
periodic sequences of length 6 + 1L: 

[xi, x{2 xj3 x{4 xj5 x'le x}7 xj8], 
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Abstract — An upper bound for a hybrid exponen- 
tial sum over Galois rings is derived. This bound is 
then used to obtain an upper bound for the maximum 
aperiodic correlation of some recently constructed 
weighted degree sequence families over Galois Rings. 
The bound is of the order of i/Llog L where L is the 
period of the sequences. 

R. 

I. INTRODUCTION 

For a fixed prime p and integers e, m,   e > 2, m > 1, let 
!,m denote the Galois Ring of characteristic pe and contain- 

ing pem elements. Let ipe,m be a non-trivial additive charac- 
ter of Re,m and let f(x) € i?e,m[^] be non-degenerate with 
weighted degree Df [1]. Define Te,m — T*,m U 0 where T*,n 
is a cyclic subgroup of R*r 

et al. prove 
of order pm — 1.  In   [1], Kumar 

E ^.™(/W) 
i€Te,„ 

<    (Df-I)y/P* (1) 

Consider the set So of sequences defined via 

SD = {{T.,m{f{ßt))}tez\Dj<D} 

where ß is a generator of T*tm- Let the set 

TDQSD 

consist of a maximal family of pairwise, cyclically distinct se- 
quences in So with each sequence having period 2m — 1. Using 
(1), it is easy to see that the maximum non-trivial correlation 
Cmax of the family To has the upper bound 

Cn <! + (£>- l)s/p° 

The family To compares very well with existing sequence 
families when Cmax, alphabet size and family size are used 
as a basis for comparison. In this paper, we obtain an upper 
bound to the maximum aperiodic correlation of the family To- 
The aperiodic correlation is often more relevant than periodic 
correlation in CDMA applications. 

II. BOUND ON A HYBRID EXPONENTIAL SUM 

Let f(x) € i?e,m[a;] have weighted degree Df. Let Xe,m 
be an arbitrary multiplicative character with order dividing 
pm — 1.' Using L-function techniques, we can express the hy- 
brid exponential sum Y~* _ ipe,m(f(x))x(x) as a sum °f 
Df complex numbers. These complex numbers can be shown 

'The work was supported in part by the National Science Foun- 
dation under Grant Number NCR-93-05017 and in part by the Nor- 
wegian Research Council for Science and the Humanities. 

to be the reciprocal roots of the zeta function of a function 
field over Fpm.   It follows from the Riemann Hypothesis for 
function fields, that the magnitude of each of these complex 
numbers is yfp™. Thus, we have 
Theorem 1 

*€Te,„ 

i>e,m{f{x))xe,m{x) < D S Uf-s/p" 

III. BOUND ON APERIODIC CORRELATION 

The aperiodic correlation 0I,2(T) between any two pe-ary 
sequences si(t) and S2{t) of period N, is defined via 

mtn{J\T-l,JV-l- r} 
.,»!(«+'■)- 3(0 

The 
tion 

u""""'   --■>-'i co = exp(i2i:fpe). 
t=max{0,—T} 

computation   of   the   aperiodic    correlation   distribu- 
Q*,i(T)i    I    <    T    <    N,   of   TD   reduces   to   ob- 

taining   the   distribution   of   the   exponential   sum   values 
^min{N-l,N-l-T] 

1>e,m(f(ß*)) I Df  < D}. {E™maz{0,-r} '  y>e,mVT{P   )) I LIi 

Using Theorem 1, and using similar techniques as in   [2] 
(see also   [4],    [3]), we can bound the maximum non-trivial 
aperiodic correlation 8max of To as under 
Theorem 2 

|öma.|<öv
/P?;r(ln(pm) + l). 
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Abstract — A new method for designing signals with 
a given time-bandwidth product is introduced. These 
signals in the set have a flat amplitude spectrum and 
have low cross-correlation function values and lie on 
a signal parameter space ellipse. Upper bounds for 
the cross-correlation between signals in the set is de- 
rived. 

I. INTRODUCTION 
There are many applications where there is a need for syn- 

thesizing signal sets which have low values of cross-correlation 
at all lags and low values of autocorrelation at nonzero lags. 
While prolate spheroidal functions are "essentially" time and 
band-limited, and are orthogonal, the cross-correlation be- 
tween the signals is not zero for all lags [1]. In an asynchronous 
system with no cooperation among users/targets, uniformly 
low cross-correlation values between signals are important. In 
an imaging context, using signals whose spectrum is broad 
enough to cover the nulls in the backscattering spectrum of 
targets ensures reasonable signal to noise ratio [2]. 

II. DESIGN CONSTRAINTS 
Let S = {si(t), «2(2)1 ■••!*#(<)} be a set of complex envelopes 
of signals which are L,2(=lf, j) with a corresponding set of 
Fourier transforms S = {Si(f),S2(f), ...,5w(/)}. The design 
specifications are as follows: 
Condition 1: 

Si(t) I2 dt = 1;      i-. (1) 

Condition 2: For some K > 0 and for all T < T 

\R,t]{r)\< K;      i,j = l,...,N;      i / j (2) 

where the cross-correlation Rii3(r) between signals s,(t) and 
Sj(t) is defined as 

f + T 
Rij(r)= si(t)s*(t-r)dt;     V <T 

Condition 3: For i = 1,2,...,N 

I Si(f) |= 
«2(/) 

f\<W 
f\>W (3) 

where «i is a constant and 02(f) is positive function. Let 
011 = hw ~ ^ an<^ tt2(/) = ^2, where Si, 82 > 0 are very 

small, such that f_ | Si(f) |2 df = 1 — e. The signals are 
"essentially" band-limited with the amplitude of the Fourier 
transform as specified. 

Since the area under the squared magnitude of the cross- 
correlation function is fixed because of (3), it can be reasoned 
that the cross-correlation function should be a constant func- 
tion with a support [—T, T] to achieve uniformly low values of 
cross-correlation.  

1This work was supported by the National Science Foundation 
under grant OCE 89-14300 

III. SOLUTION TO THE DESIGN PROBLEM 
It has been shown heuristically that for signals with quadratic 
phase functions in the time and frequency domains the shape 
of the complex envelopes will be rectangular [3]. Let 

Mf) = 1 Si(f) I e j(a,/2 + 6,/ + c,) 
(4) 

By selecting the quadratic coefficients carefully we can also 
ensure that the difference between the phase functions of two 
signals, which determines the cross-correlation property, is 
quadratic. To arrive at a rule to pick the quadratic coeffi- 
cients the usual definitions of the rms duration 7 and rms 
bandwidth ß are used [3]. Using these definitions, it can be 
shown that the quadratic coefficients lie on an ellipse, i.e., 

„2 J.2 

(£Q)2   +  72 (5) 

IV. UPPER BOUND FOR CROSS-CORRELATION 
Let the real and imaginary parts of a Fresnel integral be 
C{x) = /0*cos(*£)«ft and S{x) = f* sm(^f)dt. RZ<J is 
a continuous function of r, Aa, Ab and Ac, where Aa = 
o,' — a3; Ab = bi — b3; Ac = c, — c3. Since Rlt](r) is 
a continuous function so is | Ri,j(r) |. This means that 
maxr<r I Äij(r) | exists and is finite. 

Theorem: max|r|<T | Ri,j(r) |< 2.3(Jy , 

Proof: 

1 RIAT) I= ^VS^*1^'5^)-^)-^^)] (6) 
where       

=oi = s/^a{{2TT + Ab) + WAa) and x0 = ^£((2TT + 
Ab) - WAa). maxIOiI1 „(-oo.+oo^l C(Xl) - C(x0) |] < 1.6. 
Also,    maxl0ill £(_O0]+O0)[| S(xi) - S(x0) \] < 1.6. Thus 

I C(Xl)+jS(Xl) - C(xo) - jS{xo) |< 2.3 

Corollary: For a given duration and bandwidth for the signal 
set, the cross-correlation between two signals that are furthest 
apart along the semi-minor axis, in the set is bounded by —A—. 

VTW 

It can be shown that it is possible to trade-off the num- 
ber of signals on the signal parameter ellipse for better cross- 
correlation properties between signals in the set. 
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ON GRÖBNER BASES OF THE ERROR-LOCATOR IDEAL OF HERMITIAN CODES 

Xuemin Chen, I. S. Reed and T. Helleseth* 

1. ERROR-LOCATOR IDEALS FOR HERMITIAN CODES 
Consider error-correcting codes constructed from an affine ver- 

sion of the Hermitian curve. Let K = GF(q) and let m = 
y/q + 1 be an integer. In this case the affine version of the Her- 
mitian curve, C(x, y) = x + x™-1 — ym, is irreducible, regu- 
lar, and has exactly n  =  q^/q rational points, given by Pn  = 
{(zi.yi), (^2,2/2), ,(xn,Vn)}- The genus g of this curve is given 
by g = (m - l)(m - 2)/2. The total degree ordering(TDO) <t of 
the pairs (a,b) of the positive integers is chosen as follows : 

(0,0) <t (1,0) <t (0,1) <t (2,0) <t (1,1) <t (0,2) <(••-. 

In the TDO let j be a positive integer such that m - 2 < j < [!i^-\ 

and let <f>0(x,y), fa(x,y),...,4>u(x, y) denote the monomials xayb for 
(a,b) <t (0, j). The Hermitian code C is then defined by its parity 
check matrix H : 

hi = X] ■ 

H = 

^0(^1,3/1 
4>\(^\,yi <t>l(%n,yn 

(1) 

<ku(xi,yi) ■■■ 4>u(x„,yn) 

The dimension and the designed distance of the code C satisfy k = 
n — (mj — g + 1) and d* = mj — 2g + 2 < d, respectively, where d 
denotes the true minimum distance of the code C. 

In the decoding situation a received word r is the sum of a code- 
word c and an error vector e. The syndrome vector s is com- 
puted as usual by s = vHT. Assume that v = wt(e) < t, where 
t = [(d — 1)/2J. Also, assume that an error which occurs in the 
t-th coordinate of r is denoted by ei(^ 0). Then the error-location 
set of e is defined by EPxy = {(xi,yi) : « 6 Zn and t{ ^ 0}, 
where Zn = {i '■ 1 < t < n}. It follows from (1) that sab — 
Y^. _ eixfy^ for a + b < j are the known syndromes for the er- 

rors of the Hermitian code C, where Ze — {i : i € Zn and e; ^ 0} is 
called the error-location index set. The decoding problem is to use 
these syndromes sab to determine the v(< t) error positions (xi,yi) 
and the corresponding error values e; for t € Ze. 

Usually, the determination of the error positions is based on the 
observation that if any polynomial, f(x,y) = ^2V+W<h fvv>xvyw, 

has the same error positions as the received word among its zeros, 
then Y2 + <h fvwSa+v,b+w — 0. This implies that the procedure 
for determining the error positions is independent of the method 
needed to find the error values. The error-locator ideal of e is defined 
next. 
Definition 1   The polynomial ideal, 

Ie(x,y) = {f(x,y) 6 K[x,y] : f(xi,yi) = 0 for all i G Ze}, 

is called the error-locaior ideal of the error vector e. 
2. DETERMINING GRÖBNER BASES OF THE ERROR- 

LOCATOR IDEAL 
For brevity, define the following polynomials : 

fab = EtfiYt + EiXfY} + ... + EVX;Y* - sab, (2) 

*X.Chen was with the department of electrical engineering, Uni- 
versity of Southern California(USC), Los Angeles. He is now with 
Advanced Development of Communication Division, General Instru- 
ment Corp.,6262 Lusk Blvd.,San Diego,CA 92121. I. S. Reed is with 
the Department of electrical engineering,USC,LA,CA 90089-2565. 
T. Helleseth is with the department of informatics, University of 
Bergen, H0yteknologisenteret, N-5020 Bergen, Norway.This work 
was supported by the NSF under Grant NCR-9016340 and the Nor- 
wegian Research Council for Science and the Humanities 

hj = c{Xj,Yj), (3) 

' *;. hj = Yf - Y3, hi = E]-1 - 1, (4) 

over the set of variables Xj,Yj,Ej for 1 < j < v. For a received 
word r = c + e with v = wt(e) < t, the problem of decoding 
Hermitian codes is equivalent to solving for the common zeros of the 
following set of multivariate non-linear equations : fab — 0 for a + 
b < j, and the equations, hj = 0, hj = 0, hj = 0, hj = 0 for 
J = 1.2 v. 

Consider the polynomial ring K[X\,Yi,Ei, ...,XV, YV,EV] and 
the following set of polynomials : F = T\ U JT2 U ^3, where the sets 
Tj are given by T\ — {fab -a + b<j}, T2 — {hj : 1 < j < v}, and 
Tz — \l{j : 1 < t < v, 1 < j < v} with the polynomials fab, hj and 
lij being defined by (2),(3) and (4), respectively. Thus, the problem 
of decoding Hermitian codes is equivalent to a determination of the 
variety V(F) or its equivalent V(I(F)). The key observation is the 
following relation between the ideal 1(F) and the error-locator ideals 
HXj,Y3): 
Theorem 1 I(F)n K[Xj,Yj] C Ie{Xj,Yj) for j = 1,2,...,v, and 
V(Ie(Xj,Yj)) = V(I(F)nK[Xj,Yj]) for j = 1, 2,...,v. 

In order to solve for the error-locations from the error-locator 
ideal Ie(Xj,Yj), one needs to determine a set of generators for this 
ideal. First, define the projection sets EPX = {a : (a,ß) 6 EPxy} 
and EPy = {ß : (a,ß) e EPxy}. Next, define the "purely lex- 
icographical" (PLEX) ordering of the m-tuples (01,02, ...,am) as 
follows : (0,0,...,0) <p (1,0,...,0) <p (2,0,...,0) <p ••• <p 

(0,1,...,0) <p (0, 2, ...,0) <p • • •. Theorem 1 implies the follow- 
ing important theorem for the normalized reduced Gröbner ba- 
sis(NRGB) of 1(F) : 
Theorem 2 Let Gp be the NRGB of 1(F) w.r.t. PLEX order- 
ing exponents of the monomials X^Y^E*3 ...X^-^Yv3^1 £?3". 
Then Gp n K[Xi,Fi] = {s2(*l,Ki), <7l(*i)} and V(GP n 
K[Xi,Yi]) - EPXy, where g2(x,y) € K[x,y] and gi(x) £ K[x\. 

The above theorems provide an approach for producing from 1(F) a 
minimal set of generators for the ideal 1(F) n K[Xj,Yj]. Following 
this approach, a decoding method based on Buchberger's algorithm 
[4] is developed as follows: 
Decoding Method : 
(1) Initialize : Give F and set v = 0. 
(2) Set v = v + 1 and apply the Buchberger algorithm(w.r.t. PLEX 
ordering) to F. 
(3) If \V(F)\ = Oand v < t, goto (2); otherwise, find GpnK[X\,Y\], 
where Gp is the set of generator polynomials obtained by Buch- 
berger's algorithm. 
(4) Determine the error positions by solving Gp n K[Xi, Y\ ] for 
V(GpnK[X1,Y1]). 
(5) Solve for the error magnitudes e;. 
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A New Approach to Determine a Lower Bound 
of Generalized Hamming Weights Using an Improved Bezout Theorem 
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Lafayette, LA. 70504, USA 

Summary 

In this paper, a new approach to determine a 
lower bound for the generalized Hamming weights 
of algebraic-geometric (AG) codes is discussed. 

Let LS be a location set and let H A \ hu ..., 
h„ r be a well-behaving sequence of monomials 
based on LS. Let I\h ,... h ^ be a subset of LS 

called a maximal partially linearly dependent 
location set, on which hr^ is consistently and par- 
tially linearly dependent on its previous monomi- 
als. Define DUri,...,hr }= I/u ,-,h >l- It is 
called the consistent dependent-degree of mono- 
mials hr , •••, hr . We define D(

D
r) ä max 

"! D{h    k    ..ihi > i. 1</, <i2< <i„<r\. 

D?6* = 12 
M16> = 7 
DW = 3 

Z^16) = 10 DSX6) = 9 Z)£16) = 8 
Z)ft6) = 6 Z)ft6> = 5 £>$» = 4 
Z)ft6) = 2      Z)$|6) = 1       D[$> = 0. 

[2] 

Theorem: For a linear code Cr defined by Hf = 
[hj, h2, ..., hr ]T, if there is some d* such that 
ör-rf*+A + i < d* - 1, then the generalized Ham- 
ming weight dh is equal to or greater than d*. 

Thus, the determination of a lower bound of 
the generalized Hamming weights reduces to the 
calculation of D(

p
r). Using an improved Bezout 

theorem, for the AG codes defined by a large class 
of plane curves, the value of £><r) can be easily [3] 
determined. In the following we show one exam- 
ple. Let the curve be a Hermitian curve over 
GF(24): x5 +y4 +y = 0. We have the follow- 
ing well-behaving sequence H: 

H = { \,x,y, x2, xy, y2, x3, x2y, xy2, y3, x\       [4] 
x3y,x2y2,xy3,x5,x'iy,x3y2,x2y\ ... \ = { x'yj | 0 
</<15,0<;<3 }. 

Let us consider C16, i.e., r = 16. The first 16 
monomials are as follows: { 1, x, y, x2, xy, y2, x3, 
x2y, xy2, y3, x\ x3y, x2y2, xy3, x5, x*y }. Using 
the calculation of D(

p
r), we have the following 

values. 

From these values and the above theorem, we 
have dx{Cl6) > 12, d2(C16) > 15, d3(C16) > 16, 
d4(Ci6) > 19, d5(C16) > 20, d6(C16) > 21, d7(Cl6) 
> 23, and dh(Cl6) > h + 16, for h = 8, 9, 10, 11, 
..., 48. 

Using this new approach, some more 
efficient linear codes with the minimum distances 
4, 5, 6 and any lengths over GF{lm), and some 
more efficient AG codes have also been con- 
structed in this paper. 

References 

[1] V. K. Wei, "Generalized Hamming weights 
for linear codes," IEEE Trans, on Informa- 
tion Theory Vol. IT-37, pp. 1412-1428, Sept., 
1991. 

K. Yang, P. V. Kumar, and H. Stichtenoth, 
"On the Weight Hierarchy of Geometric 
Goppa Codes," IEEE Trans, on Information 
Theory, Vol. IT-40, pp. 913-920, May 1994. 

G. L. Feng and T. R. N. Rao, "A Simple 
Approach for Construction of Algebraic 
Geometric Codes from Affine Plane Curves," 
IEEE Trans, on Information Theory Vol. IT- 
40, No.4, pp. 1003-1012, July 1994. 

G. L. Feng and T. R. N. Rao, "Improved 
Geometric Goppa Codes, Part I: Basic 
Theory" to appear in IEEE Trans, on Infor- 
mation Theory. 

D\l6)=2\    D2
16) = \l    Z)^16> = 16    M16> = 13 

95 



Fast Erasure-and-Error Decoding of Any One-Point AG Codes up to 
the Feng-Rao Bound 

Shojiro Sakata * 
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Recently fast decoding methods ([1] [2] [3], etc.) of 
algebraic-geometric (AG) codes have been proposed as appli- 

cations of Sakata algorithm (the multidimensional Berlekamp- 

Massey algorithm) [4]. Similar but distinct fast decoding al- 
gorithms have been presented by [5] [6], etc. Among them, 

[3] [5] [6] give fast decoding methods for generic one-point AG 

codes from any algebraic curves in the projective space. These 
methods are more efficient than the original Feng-Rao decod- 

ing method [7]. In particular, [3] is concerned with the mul- 

tidimensional syndrome array instead of with the syndrome 
matrix, and employs a unique scheme of majority logic to 

find the unknown syndrome values necessary for decoding up 

to half the Feng-Rao bound (designed distance) dm in the 
framework of Sakata algorithm, where dFR is greater than or 

equal to the Goppa bound <JG in general [8]. 

To improve the probability of correct decoding, it is desir- 

able to devise an efficient decoding algorithm which can cor- 
rect both errors and erasures. Skorobogatov and Vlädui [9] 

were the pioneers of erasure-and-error decoding of AG codes. 
Their method can correct t errors and r erasures such that 
2t+r < da — g, where g is the genus of the curve difining 
the AG code. Extending their error-only decoding method 

[7], Feng and Rao [10] gave an erasure-and-error decoding 
method which can correct t errors and r erasures such that 

2t+T < dFR- 
In this paper we propose a fast erasure-and-error decod- 

ing method based on a unification of our error-only decoding 
method [3] and the algorithm [11] for finding a minimal poly- 
nomial vector set of a vector of multidimensional arrays. Our 
main concern is how to find the unknown syndrome values and 
the error locations in addition to the given erasure locations 

more efficiently than the Feng-Rao's scheme based on matrix 

calculations [10]. 

We take a one-point AG code (over a finite field K) C := 

{(ci,• • •,cn) e Kn\ EU c>f^ = 0JG L(mP~» from an 

irreducible nonsingular projective curve C, where i(mPoo) is 
a linear subspace of the algebraic function field K(C) which is 

composed of functions / having a single pole of order o(/) < m 

at Poo- In fast decoding of AG codes, we manipulate two 
kinds of entities, i.e., functions / (€ K[C\ :— Um>oi(mPoo)) 
(treated as multivariate polynomials) and multidimensional 

syndrome arrays. For our purpose, a kind of vectoral nota- 
tion or data structure is crucial. That is, while we can rep- 
resent a multidimensional (error or erasure) syndrome array 

u as an array vector {u^\ ■ ■ • , u^) having A component ID 
arrays u^'\ 1 < i < A, we represent each (error locator or 

erasure locator) polynomial (i.e., function) / as a polynomial 

vector (/(1\ • • •, /(A)) having A component univariate polyno- 
mials f('\ 1 < i: < A, where A is the smallest nonzero nongap 
(pole order) of functions / E K[C\. Including an algorithm 
(Algorithm 1) similar to that presented in [11], we can con- 

1This work was supported by the Science Foundation of the 
Japanese Educational Ministry under Grant No.20064157. 

struct a fast erasure-and-error decoding algorithm consisting 

of two stages. In the first stage, we find a system of A era- 
sure locator polynomial vectors by applying Algorithm 1 to 
the erasure syndrome array vector, and by using its result, 
we modify the errata (i.e., error plus erasure) syndrome ar- 

ray vector. Then, in the second stage, we can find unknown 

errata syndrome values by invoking a kind of majority logic 
for the modified errata syndrome array vector with the aid of 

Algorithm 1, and finally we obtain a system of A errata lo- 

cator polynomials. The computational complexity is of order 

0{\n2). 
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The (64,32,27) Hermitian Code and Its Application in Fading Channels 

X. Chen and I.S Reed 

Introduction 
In a trellis-coded modulation(TCM) scheme, a transmitted message is 
determined by the current received bit and a number of previously 
received bits. Therefore, if the decoder makes a mistake, errors have 
the possibility of propagating. Such a propagation of errors is 
considered to be a drawback in some channels such as mobile radio 
channels with slow-shadowing fading. In such a case errors due to 
the shadowing can affect the decoding process of the symbols within 
an unshadowed time period and lead to long-term error propagation. 
Thus, in such a scenario, block-coded modulation(BCM) may have 
advantages because the decoding of a received code block is 
independent of any other blocks. The commonly used BCM schemes 
included the extended Reed-Solomon(RS) codes combined with 
M-ary Phase-Shift Keying (MPSK) signaling for the 
bandwidth-limited fading channels. For example, the (16,8,9) 
extended RS code, defined over GF(24) , is coded with a 16-PSK 

signal set. In recent years one of the most exciting developments in 
the field of error correcting codes is the construction and decoding of 
algebraic geometry(AG) codes. It is shown in [1] that a sequence of 
Hermitian codes can be found by the use of results from AG which 
generalize the original construction of the RS codes. It is proved that 
under certain conditions that there exist "good" codes within this 
class of codes. Further, as an example, van Lint and Springer claim 
for any practical channel that, the specific AG code, namely the 
(64,32,27) Hermitian code, has a considerably better performance 
than the corresponding (16,8,9) extended RS code. In this paper.the 
(64,32,27) Hermitian code and its application in fading channels is 
discussed. 

Definition and Encoding of the (64,32,27) Hermitian Code 
To construct the (64,32,27) Hermitian code, consider the Hermitian 
curve of degree m-5,i.e.C(x,y)=x5+y4+y = 0 over GF(24). This 
curve has exactly n = 64 rational points and the genus of this curve is 
g = 6. The set of these rational points can be computed from the 
cyclic group of order 15, generated by the irreducible polynomial 
7r(x) = x4+x+1 Denote this set byP« = {(*i,yi),(*2,y2),...,(x64,y64);i 
. Since 64 > 8x5, a Hermitain code C can be defined by its parity 
check matrix as follows : 

<t>i(*i.;yi)   <t>i(*64,y<s4) 

<l>2(*l,yi)           <M*64,y64) 
H= 

<t>32(*l,yi)         <t>32(*64,V64) 
where <|>i(.r,y),<j>2(x,y) <|>32(*,y) denote the monomials xayb for 
(a,b) <., (0,8; and a < 5 with £, being the total ordering. Therefore, 
the dimension of C is k - 32. The designed minimum distance of this 
code is defined to be d* - 32 - 6 +1 = 27. The true minimum 
distance d of C satisfies d'i.d* since g-6<32. Finally the result 
d=d'=71 is determined from Theorem 5 of [1].A transform 
encoding method of the (64,32,27) Hermitian code C is given by the 
following theorem: 
Theorem 1 Let c(x,y) = I^tl /«,<(>, (*,y), where for i-1,2 32them,- 
are the message symbols.Then c = (c(xi,yi), c(x2)y2),..., cfc^.y«)! 
is a codeword in C. 

This theorem can be proved by Theorem 1 in [1] from the fact that the 
code C defined above is a self-dual code. A method for recovering the 
message symbols is considered next. Let c=(ci,c2, ....c«), 
c; e GF(24) be the codeword encoded by the above encoding method, 
and letdj =£*?, cjx]yj4^\Xj,yj), for i-i,2 32,where the (x,,y,) 
and <t>,(*,,y,) are defined   as above.   Then, the following theorem 
holds: 
Theorem 2 The message symbol vector m of the codeword c satisfies 
m = (dud2 d32). 
This theorem is verified readily by a computer search. 

Successive-Erasure Minimum-Distance Decoding 
of the (64,32,27) Hermitian Code 

A fast error-only-decoding algorithm for the Hermitian codes is 
developed in [2] by Feng and Rao. Then the Feng-Rao algorithm is 
generalized to an error-and-erasures decoding(EED) in [3]. In this 
paper.a new Successive-Erasure Minimum- Distance Decoding for 
the (64,32,27) Hermitian code is discussed. Let r = (rur2 r^) be 
the received word corresponding to c. Consider the decoder be a full 
maximum-likelihood detector which stores all 16 likelihood functions 
for each received symbol r,, i.e. p(r,lc;) for all /, where p(»l«) 
denotes the conditional probability density function. Based on this 
information the detector provides an estimate c, for each r,- such that 
p(r,- \CJ) is the greatest. Next define an estimate of the log likelihood 

ratio to be L\Ci) = In ^i —r— . Then the decoding algorithm 
^Cj*Ci PC' icJ> 

can be summarized as follows : 
Algorithm (1) Succesively erase pairs of symbols with the lowest 
L(CJ) values and apply the Feng-Rao EED algorithm to the estimated 
word c - (ci, C2,..., C64) with erasures. (2) Iterate (1) ^- = 14 
times. During each iteration of this process an estimate of the 
transmitted codeword is obtained and stored. (3) The decoder chooses 
that single codeword for which p(r\c) is the greatest.i.e. the 
codeword closest to the received vector r in likelihood distance. 

The (64,32,27) Hermitian-Coded 16-PSK Scheme 
A block coded MPSK scheme is developed by combining the 
(64,32,27) Hermitian code, defined over GF(24), with a 24-PSK 
signal set. In this combination the rate of the coded scheme is the 
same as the uncoded 24-PSK. But the time diversity of the coded 
scheme is determined by the minimum Hamming distance (d-27)of 
the code. Since the minimum Hamming distance of the (64,32,27) 
Hermitian code is much larger than the corresponding (16,8,9) 
extended RS code, a high coding gain is expected for the new 
(64,32,27) Hermitian-coded 16 PSK scheme. In evaluating the error 
bounds of this coded scheme on a Rayleigh fading channel at the 
bit-error rates around 10"5, more than a 26 dB coding gain, compared 
to uncoded QPSK, is obtained by the use of the new 
successive-erasure minimum-distance decoder. 
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Abstract — A new construction of linear codes from 
algebraic curves is introduced. In essence, the con- 
struction is of the BCH type, namely, it is to extend 
the method of constructing BCH codes to the con- 
struction of codes from algebraic curves. As a conse- 
quence, a new class of codes is constructed without 
relying much on algebraic geometry. A comparison 
to algebraic-geometric codes from Hermitian curves 
showed that our codes typically have much larger 
minimum distance at higher code rate. In partic- 
ular, compared to Hermitian codes on H(2a), which 
have length 23a, then, at higher code rate, our codes 
have minimum distance at least 2^a/ii times greater 
than that of the Hermitian codes. Examples have 
also shown that, for the same code length and de- 
signed minimum distance, our codes can have higher 
dimension compared to codes constructed from the 
approach given by Feng and Rao. 

Constructing linear codes from algebraic curves is a rel- 
atively new technique for obtaining codes of better rate or 
higher minimum distance, as well as codes of longer length. 

It was proved by Tsfasman, VladuJ and Zink [1] that from al- 
gebraic curves a sequence of codes which exceeds the Gilbert- 
Varshamov bound can be constructed using Goppa's construc- 
tion. Codes constructed from Goppa's approach is now called 
algebraic-geometric (AG) codes. Lately, much work has been 
done toward non-algebraic-geometric or simplified construc- 

tion of AG codes [2, 3, 4]. Most recently, based on their 
simplified approach of AG codes, Feng and Rao constructed 

improved AG codes [5]. 
In this paper, a new method constructing of linear codes 

from algebraic curves is introduced. In essence, the construc- 
tion is of the BCH type, namely, it is to extend the method 
of constructing BCH codes to the construction of codes from 
algebraic curves. As a consequence, a new class of codes is con- 

structed without relying much on algebraic geometry. A com- 
parison to algebraic-geometric codes from Hermitian curves 
showed that our codes typically have much larger minimum 
distance at higher code rate. In particular, compared to Her- 

mitian codes on H(2a), which have length 23a, then at higher 
code rate, our codes have minimum distance at least 2 L^-/4! 

times greater than that of the Hermitian codes. Examples 
have also shown that, for the same code length and designed 

minimum distance, our codes can have higher dimension com- 

pared to codes constructed from the approach given by Feng 

and Rao [5]. 
A brief description of the construction follows: 
Let a be a primitive element of GF(q2). For i = 0,... ,q — 

1, denote cc0 = 0, a; = a*-1, for i > 1. Let ßi,i,...,ßi,q be 
the q solutions of yq + y = aq+1 over GF(q2). Then we have 

q3 distinct pairs (a»,j0»,j)> which correspond to all the rational 

points of the Hermitian curve H(q): Uq+1 + Vq+1 +Wq+1 = 0, 
except a point at infinity. Let n be an integer 0 < n < q and 
6 = [n/q2\, then n = 6q2 + £. We denote every x G GFn(q2) 

by (xo,i,..., 2V_i,i ,a:o,2, ■..,av_1|2,...,3;o,e,...,a;,= -i,e) if 
£ = 0, and by (zo,i,..., a:g2_1|1,..., Eo,e+i,.. ■, Zf-i,9+i) 
if £ / 0. Let 6 be a positive integer. Define 

Rv := {0,1,..., L-J - 1} for v < 6 
v 

and 

"■This work was supported by the National Science Foundation 
under Grants NCR-9406043. 

R := (J{(u,i/ - l)|u G Rv}, where 8n = min{5, \n/q2]}. 

Then, we define the following linear code: 

C(n, S) := {c G GF~tf)\   £   ^aja^j = 0, (p, u) G R} 
j = l      t=0 

where kj = q2 - 1 for j = 1,..., 8 and ke+i := £ - 1 when 

Theorem C[n, S) has minimum distance d > 6 + 1. The di- 

mension ofC(n,6) is > n — 6 — Sni, where fi*ä := 53i=2L^/*J» 
with equality holds for 6 < q . 

we shall call 6+1 the designed minimum distance of C(n, 6). 

Example Consider the Hermitian curve H(8) over G.F(64). 
Then C(512,10) is a (512,487,11) code. A one point AG code 

on H(6) of length 512 and dimension 487 has actual minimum 
distance 7 [6]. Moreover, from the same curve, Feng and Rao's 
improved geometric Goppa codes of length 512 and designed 

minimum distance 11 has dimension at most 484. 

REFERENCES 

[1] M. Tsfasman and S. Vlädu$ and T. Zink, "Modular Curves, 
Shimura Curves and Goppa Codes, Better than Varshamove- 
Gilbert Bound," Math. Nachrichten, vol. 109, pp. 21-28, 1982. 

[2] T. Yaghoobian and I. Blake, "Hermitian Codes as Generalized 
Reed-Solomon Codes," Designs, Codes and Cryptography, vol. 
2, pp.5-7, 1992. 

[3] G.L. Feng, V.K. Wei, T.R. Rao and K.K. Tzeng, "Simplified 
Understanding and Efficient Decoding of a Class of Algebraic- 
Geometric Codes," IEEE Trans. Inform. Theory, vol. 40, 
pp.981-1002, July 1994. 

[4] G.L. Feng and T.R.N Rao, "A Simple Approach for Construc- 
tion of Algebraic-Geometric Codes from Affine Plane Curves," 
IEEE Trans. Inform. Theory, vol. 40, pp.1003-1012, July 1994. 

[5] G.L. Feng and T.R.N Rao, "Improved Geometric Goppa Codes, 
Part I: Basic Theory," preprint, 1994. 

[6] K. Yang and P.V. Kumar, "On the true minimum distance of 
Hermitian codes," Coding Theory and Algebraic Geometry-S, 
Lect. Notes in Math. 1518, pp.99-107, 1991. 

98 



A fast parallel decoding algorithm for general one-point AG codes 
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Abstract — In this paper we propose a fast paral- 
lel decoding algorithm for general one-point algebraic 
geometric(l-pt AG) codes with a systolic array archi- 
tecture(SAA). This algorithm is able to correct up to 
half the Feng-Rao bound and the time complexity is 
0(n) by using a series of 0(n) processors where n is 
the code length and each processor is composed of r 
cells for the smallest non-zero and non-gap value r. 

Our decoding algorithm is a parallel version of the decod- 
ing algorithm given in [5], which is a special version of multi- 

dimensional Berlekamp-Massey(multi-D BM) algorithm. This 
algorithm is implemented with a SAA. In [6], we recently pre- 
sented a parallel version of ID BM algorithm with a SAA 

which can be applied to decoding of Reed-Solomon codes and 

BCH codes. In this paper we present a scheme which is moti- 
vated by the systolic algorithm[6]. To implement the parallel 

computation, we introduce a concept of a discrepancy poly- 
nomial having discrepancies as coefficients of its terms in the 
multi-D BM algorithm. 

Let X be a curve with genus g over a finite field F. 
P\,.. .,Pn and Q are distinct F-rational points on X.  D := 
Pi-\ b Pn and G := mQ. T is the set of all non-gap values 
at Q and r := min{< € T\t / 0}. For each 0 < i < r - 1, 
Vi := mm{t € 7"|i=i(modr)} and vT := r. {vi,...,vT} is 
the minimal set of generators for the semi-group T under 
addition. For 1 < i < r, let V; be a function in L(ooQ) 
with —VQ(^J) = Vi where vg(-) denotes the valuation at Q. 

v~(vi »r), eo := (0,..., 0), Sx := (1,0,... ,0),...., e*r := 
(0,..., 0,1) € Z+ where Z+ is the set of all non-negative in- 

tegers. E := Z+ and E := {Si + kST\k £ Z+,0 < i < r - 1}. 
For any p € E, V? = Vf' • • • VrT € L(coQ) and -VQ(^

?
) = 

XXiPW" (p-v). 
The general 1-pt AG code C of length n over F is defined 

as follows: For c* € Fn, c € C iff £"=1 Cjipp(Pj) = 0 for all 

i>p € L(mQ), i.e., all p € E s.t. (p-v) < m. rfPR denotes 
the Feng-Rao designed distance defined in [3]. Let (e.j)\<j<n 

be an error vector. For all p g E, we define the syndrome as 
SP ■■= E^-i *>„ Win) w««e " < L(<*FR - 1)/2J. All Sp are 
known for (p-v) < m, but Sp, ra+1 < (p-v), are unknown. To 
correct up to [(^FR — 1)/2J errors, we must find the values of 
unknown syndromes S^s.t. m + 1 < (p-v) < N := C(FR,-|-3<7 — 2 
from [1]. Using the majority scheme[5], however, we can find 
the values of them. 

ForeachO < i < r —1 and J, € {Si + keT\k € Z+}, we intro- 
duce the following generator polynomial and its discrepancy 

polynomial. f^(x) := £e/J°zS and d<*>(x) := J^V € 

F[x] where IgS s.t. (£-tf) < (s;-u), n € £+E s.t. (n-t?) < N, 

and dy :— J2% /JJ "SjE+fi-V Moreover, for the above t, n and 

0 < j," < r — 1, we consider the auxiliary polynomials g^'\x) 
and e^'\x) with span c,; where ü — s; — Sjt = kST, \k\ g Z+. 

We set their initial data as follows: For each 0 < i < r — 1, 
si := Si, /<*>(*) := **• and d^(x) := £H Snx«, SH := Sh -ST 

and gUi)(x) = e(-ii\x) := 0. 

We consider the following systolic array (see Fig. 1). The 

systolic array is composed of a series of N processors where 

each processor is composed of r cells. In each cell ID BM algo- 
rithm is practiced not per a polynomial but per a term of the 
polynomial. All processors receive/send the data from the left- 
neighboring processor/to the right-neighboring processor, syn- 
chronously. We call a unit of synchronized operations a beat 
where each beat is composed of a fixed small number of arith- 
metic operations over F, which is assumed to take O(l) time 
complexity. The number of beats necessary for executing our 

algorithm is at most 3N. To correct up to [(^FR —l)/2j errors, 
our algorithm achieves an optimal 0(n) computing time by us- 
ing a series of 0(n) processors where we assume 0(n) = O(N). 

Each processor has 0(r) space complexity, and thus the total 

time and space complexity is 0(rn2). In general, r < n, e.g. 
for codes from Hermitian curves, 0(T) = 0(n1^3). Moreover, 
in [4], Kötter proposes a parallel Berlekamp-Massey type algo- 
rithm for Hermitian codes, which time complexity is 0(n2) by 
using T processors where each processor is composed of 0(n) 
registers. Thus, Kötter's total complexity is 0(rn3). 

(- Cells —^ N_   / Processors -y 

I   ■ I I  •   I I 

1 Email: kurihara@cs.uec.ac.jp and salcata@cs.uec.ac.jp 

Fig. 1: A systolic array 

REFERENCES 
[1] A.N.Skorobogatov and S.G.Vläduj; : "On the decoding of 

algebraic-geometric codes," IEEE Trans. IT, vol.36, no.5, 
pp.1051-1060, 1990. 

[2] G-L Feng and T.R.N. Rao, "Decoding algebraic-geometric codes 
up to the designed minimum distance," IEEE Trans. IT, vol.39, 
no.l, pp.37-45, 1993. 

[3] C.Kirfel and R. Pellikaan, "The minimum distance of codes in 
an array coming form telescopic semigroups," presented at the 
Fourth Workshop an Arithmetic Geometry and Coding Theory, 
France, 1993. 

[4] R.Kötter, "A fast parallel Berlekamp-Massey type algorithm for 
Hermitian codes," private communication, 1994. 

[5] S. Sakata, H.E. Jensen, T. H0holdt, "Generalized Berlekamp- 
Massey decoding of algebraic geometric codes up to half the 
Feng-Rao bound", submitted for IEEE Trans. IT 

[6] S.Sakata and M.Kurihara, "A parallel implementation of 
Berlekamp-Massey algorithm with a systolic architecture," (in 
Japanese) Proc. of SITA94 , pp.453-456, 1994. 

[7] M.Kurihara and S.Sakata: "A fast parallel decoding algorithm 
for one-point AG-codes with a systolic architecture," Proc. of 
SITA94, pp.449-452, 1994. 

99 



Effective Construction of 
Self-Dual Geometric Goppa Codes 

Gaetan Hache 

INRIA, Domaine de Voluceau - BP 105, 78153 Le Chesnay Cedex, France 
email: Gaetan.Hache@inria.fr 

I. INTRODUCTION 
The first criterion of self-duality for geometric Goppa codes 
has been given by Driencourt and Michon [1] for codes con- 
structed from elliptic curves. More general criterions can be 

found in [2, 4, 5, 6, 8]. Our aim is to effectively construct self- 
dual geometric Goppa codes. One example is given at the end 
which was done using the implementation of the Brill-Noether 

algorithm written in AXIOM by the author (see [3]). 

II. SELF-DUAL GEOMETRIC GOPPA CODES AND 

CLASS GROUP 
Denote by F? the finite field of q elements. For a = 

(ai,02,... ,an) € F£ and 6 = (61,62, • • • ,bn) € F£ we have the 
outer product a*b = (oifci, 0262, • • •, anbn) € F™. A linear code 
CcFJ, n even, is said quasi self-dual if there exists a vector 

a = (ai, a2,..., an) € FJ, a; ^ 0, such that a*C = C . Note 
that if for each a, there exists i, such that b2 = ai then the 

code b * C is self-dual with b = (61, 62, • ■ •, b„). If charF, = 2 
then such 6; always exists. 

For the rest of this abstract, F denotes an algebraic func- 
tion field in one variable of genus g with full constant field 
Fq. Denote by P> the set of places of F and by VF the set 
of divisors of F. The class group of F is the factor group 
CF := V%JVF where V°F is the subgroup of VF consisting of 
all divisors of degree zero and VF the subgroup of principal 
divisors. The group CF is finite. Its order HF = h is called 
the class number of F (see [7, V.l.3]). To compute the class 
number, one can use the Zeta-function of an algebraic function 
field in one variable (see [7, V.l.15 and V.l.17]). 

Proposition 1 Let the divisor D := Pi + P2 + ■ ■ • + Pn be 
the sum of n = 2k pairwise distinct places of F of degree 1. 
Assume that the class group CF := VpfVp is cyclic of order 
h y£ 0(mod2) and have a generator A with disjoint support 
from that of D. Assume moreover that there exists a divisor 
B of degree 1 with disjoint support from that of D. Then 
there exists an integer m € {0,1,... (h — 1)} such that with 
the divisor 

G :=(k + g-l)B + mA 

the geometric Goppa code 

Cc(D,G) := {(f(Pi),f(P2),...,f(Pn)) eFJ I / S £(G)} . 

is quasi self-dual. 

Proof: Since h ^ 0(mod2), the divisor 2A is also a gen- 
erator of the class group. Hence there exists an integer 
mi € {0,1,... (ft — 1)} such that 

D = nB + 2miA = 2(kB + mi A). 

For the same reason there exists an integer mj € 

{0,1,... (h - 1)} such that (2g - 2)5 + 2m^A is a canon- 
ical divisor. If we take m € {0,1,. .. (h — 1)} with m = 

mi + i?i2 (mod h) and set G := (k + g — 1)B + mA we have 

Hence 2G — D is  a canonical  divisor  which implies  that 
Cc{D,G) is quasi self-dual (see [9, Th.    3.1.46] or [6, Satz 

III. EXAMPLE 

Let F be the function field of the smooth plane quartic X 

defined by the following equation 

X3Z + X2Y2 + XY3 + XZ3 + Y* + YZ3 + Zi 0. 

The genus of F is g — 3 and the class number over F2 is h = 3. 
Over F2, F has one place of degree 1, one place of degree 
2 and 7 places of degree 4. Let P and Q be respectively 
the places of degree 1 and 2. The divisor A := 2P — Q is 

non-principal, thus it is a generator of the class group CF- 
The intersection divisor of the curve X with any line is a 

canonical divisor (see [9, Prop. 2.2.7]). We take K := 2P + Q 
as a canonical divisor which is the intersection divisor of the 
curve with the line Z = 0. Set the divisor B := P. Then 
4B + 2A is equivalent to K. Among the seven places of degree 
4 and considered as divisors, two are equivalent to 45, one is 
equivalent to 45 + A, and the remaining four are equivalent 
to 45 + 2J4. Thus the sum of the seven places of degree 4, say 
D, is equivalent to 285 + 9,4 = 285. Set G := 165 + A Then 
2G — D is a canonical divisor (see the proof of Proposition 1). 
Let Fi := W2*F. Let D' := ConFi/FD and G' := ConFi/FG 
(see [7, III.6.3 and V.l.9]). Then CC(D',G') is a quasi self- 
dual [28,14, d > 12] code over F24. In fact d = 12 since by 
computing the generator matrix of the code we found a word 
of weight 12. 
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Abstract — It is shown that certain syndromes of a 
Hermitian code are not needed for decoding. These 
syndromes can be replaced by data symbols thereby 
increasing the dimension of the code without changing 
the designed minimum distance. 

I. HERMITIAN CODES AND HYPERBOLIC CODES 

Hermitian codes and hyperbolic codes are defined on the affine 
plane GF(q)2. A hyperbolic code is defined for any q and is 
a two-dimensional cyclic code. A Hermitian code is defined 
for q an even power of two; it can be viewed as a shortened 
two-dimensional cyclic code. Whereas a hyperbolic code is 
defined on the full affine plane GF(q)2, a Hermitian code is 
defined on a curve in the affine plane GF(q) . Using only the 
affine plane is so that the discussion can be organized around 
the formalism of the two-dimensional Fourier transform 

cj'j" = X) w'v 

The Hermitian polynomial 

G{X, Y) = Xm - ym_1 - Y 

has n = (m — l)3 — (m — 1) zeros in the affine plane over 
GF((2m)2) of the form (y,ß) with 7 and ß both nonzero. 
These zeros of G(X, Y) are used to define a code over 
GF((2m_1)2) with blocklength n and dimension k = mJ-g+1 
if J > m, and designed distance d* = n — k — g + I where 

</=(V)- 
A codeword is a vector c with components Ci for i = 

0,... , n — 1, where i indexes the n points (i', i ' at which 
G(OJ~

1
 , w~*  ) = 0. The spectrum C is required to satisfy 

Cj.j,, = 0 if j' + j" < J- 

There are |(J+ l)(Jr + 2) such (j',j"). The code is the set of 
such codewords. 

II    An Enlarged Code 

We now enlarge the code to a new linear code that contains 
the Hermitian code. As in the previous section, a codeword 
is a vector with components c; for i = 0,..., n — 1 where i 
indexes the n points (i',i") at which G(ui~' ,u>~' ) = 0. For 
the enlarged code, the codewords satisfy 

G,i 0 if j'+j" < J and 0"+l)(j"'+l) < <** = n-k-g+1. 

Otherwise CJIJU is arbitrary. If the set {(j',j") | (j' + l){j" + 
1) < d*} is not contained in the set {(j',j") | j' + j" < J}, 
there will be fewer elements in the intersection than in the 
second set. Because there are fewer such (j',j") than before, 
the constraints are weaker. Then there will be more codewords 
satisfying the new constraint so the dimension of the code is 
larger. 

Syndrome Sjijii will be known only if j' + j" < J and 
(j' + l)(j" + 1) < d*. It follows from the two-dimensional 
form of Massey's theorem that each unknown syndrome can 
be inferred by a subsidiary calculation in the Sakata algorithm 

just at the time that it is needed. This uses an argument of 
Saints and Heegard in the case that (j' + l)(j" + 1) < d*, 
and uses an argument of Sakata et al. (based on the ideas 
of Feng and Rao) in the case that j' + j" < J. Because the 
unknown syndromes that result from the new hyperbolic con- 
straint can be inferred by the decoder there is no reduction 
in the designed distance. (Apparently the performance of this 
code cannot be found by the usual methods of algebraic geom- 
etry.) Feng and Rao showed that the Hermitian code has true 
minimum distance larger than its designed distance. We are 
probably taking up the same slack in another way, increasing 
the dimension by reducing the true minimum distance. 

III. SYNDROME FILLING 

The Sakata algorithm is a generalization of the Berlekamp- 
Massey algorithm to two dimensions, processing the two- 
dimensional syndromes in some fixed total order. The graded 
order works best for our purposes. The locator polynomial 
update rule is based on a two-dimensional version of Massey's 
theorem. At each iteration one or more discrepancies are com- 
puted using the current error-locator ideal. If one or more dis- 
crepancies are nonzero, then Massey's theorem describes how 
the size of the error-locator ideal must increase. 

It follows from Massey's theorem that certain syndromes 
cannot be generated wrong by the Sakata recursion; otherwise 
the error-locator ideal would grow too large. 

IV. EXAMPLE 

An example shows that the class of codes defined contains 
more than the usual Hermitian codes. We simply display one 
code in which the set {(j',j")\{j' + 1)0" + 1) < d*} is not 
contained in the set {(j',j")\j' + j" < J}. 

We choose the Hermitian code over GF(256), so m = 17 
and d* = (4080 - 17J). Choose J = 130, then d* = 
1870. Then consider (j',j") = (17,113). Next, observe that 
(17,113) € {(i',j")IO" + i") < 130>- However (/ + l)(j" + 
1) = 2358. Therefore 

(17,113) i {(j',j")\(j' + l)(j" + 1) < d*}. 

This means that syndrome £17,113 is not needed by the two- 
dimensional Berlekamp-Massey algorithm. Hence 011,113 is 
made into a data component, thereby enlarging the code. In 
particular, the enlarged code has larger dimension with the 
same designed distance. 
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Abstract — Based on matrix completion algorithms, 
new constructions for algebraic multilevel codes are 
given. The constructions have low computational 
complexity and can be used for channels with com- 
binations of burst and random errors. 

I. INTRODUCTION 

Combinations of random and bursty errors usually occur in 
many communication and storage systems. For example, con- 
sider a conventional concantenated coding system which is 
operating on a communication channel with a combination of 
random and bursty errors. The error process at the output 
of the convolutional decoder tends to be bursty, and depend- 
ing on the channel output, the length of the bursts varies. 
Assuming that interleaving has been used, the output of the 
de-interleaver will produce errors of short burst lengths. In 
an ideal situation, where the interleaving depth is enough to 
remove all of the bursts, the outer code may view the error 
process at the output of the de-interleaver as a purely ran- 
dom error process. However, each codeword in an interleav- 
ing frame will have a different share in the number of errors 
produced by bursts of short lengths. Therefore, in each frame, 
the decoder for the outer code may fail to decode some blocks 
which are suffering from a large number of errors, while it is 
still capable of decoding the other blocks in the frame. One 
may benefit from re-decoding the inner convolutional code as 
a determinate state convolutional code, where the Viterbi de- 
coder is re-initialized by known bits periodically [2]. In this 
way, the side information provided by successfully decoded 
blocks can be used to improve on the error correction capa- 
bility of the inner convoutional code. The matrix completion 
approach presented in this paper can be used as a complemen- 
tray rather than competing technique, since they can be used 
at the same time. 

In the matrix completion technique, syndrome information 
for the algebraic outer codes are not provided explicitly. At 
the first level of decoding, each frame is viewed as a single 
codeword. However, at this levlel, no attempt will be made to 
find the error locations and the error values for each block. In- 
stead, some syndrome information will be computed for each 
block in the frame. This crucial step in the decoding process, 
is achieved by a matrix completion algorithm which is sim- 
ilar to the Feng-Rao algorithm [1]. Now each block may be 
viewed as a member of an algebraic code. For some blocks, the 
computed syndrome information will be enough to remove all 
of the errors. For others, the combination of the known syn- 
drome information and the determinate state Viterbi decoder 
is used to enhance the performance of the purely algebraic 
decoding algorithm. The efficiency of this scheme comes from 
the following facts: 

• The success of the completion algorithm for the re- 
construction of the syndrome information depends on 
the over all number of errors in the frame. 

• Even if the number of errors in one block is beyond 
the error correction capability of the algebraic multi- 

level code, still one might be able to re-construct the 
syndrome information. 

• The complexity of the completion algorithm depends 
mainly on the number of the blocks and the num- 
ber of the syndromes which are to be re-constructed. 
The complexity grows only linearly with the size of the 
blocks. Therefore, the over all complexity of the decod- 
ing is much less than the complexity of decoding a large 
code of the same length. 

II. CONSTRUCTION OF THE MULTILEVEL CODES 

In the multilevel coding architecture, each frame 

c = (ci,c2).. . ,CJV) 

consists of N blocks. Each block 'c;', i = 1, 2,... N, is a vector 
of length ni over GF(q). Assuming that 'c' is transmitted and 
the word 

r = (ri,r2,...,riv) 

is received, the error pattern 

e = (ei,e2,... ,ejv) 

is defined by ei = r; — c,. Let a be an element of the extension 
field GF(qs) such that the order of V, the cyclic group gener- 
ated by a, is n\. The parameter s is the smallest integer such 
that a S GF(q"). The one dimensional syndrome s(ei,j) for 
any 7 £ T is defined as 

71J —1 

*(e'.7) = Yl eijy'. 
j=o 

A linear multilevel code is defined to be the vector space of 
codewords, {c}, such that 

S(C,T) = (s(ci,7).*(c2.7).---»*(civ.7)) 

falls in some specific subspaces of GF(q")   . 
Here, we use a matrix completion algorithm to reconstruct 

s(c,7) for some specific values of 7. 
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Abstract — Parallel to the definition of the rate dis- 
tortion function for source coding, we define a rate 
distortion function for delay in a queueing system 
which gives the tradeoff between the capacity of the 
server and the delay or buffer overflow incurred. This 
function is decreasing and convex and it is shown to be 
equal to the "effective bandwidth" of the input source 
for exponentially vanishing buffer overflow probabil- 
ity. 

Recent work on the information theoretic capacity of a 
queuefl] and on theory of "effective bandwidth" [2] have 
prompted us to take a new look at the capacity-delay 
tradeoff in a single server discrete time queue and view 
this as analogous to a rate distortion function for the 
source. Conventional source coding theory would allow 
perfect reproduction of the source at any service rate 
greater than the average rate of the input packets; how- 
ever, this would incur arbitrarily long delays. The trade- 
off between the rate and the delay is difficult to calculate 
in general, but in the case when the distortion measure 
is the buffer overflow probability, then we show that the 
limiting value of the rate distortion function is the effec- 
tive bandwidth of the source. 

We consider a discrete time slotted queue, where the 
input and the output processes consist of a sequence of 
packets (e.g. ATM packets). Consider two (discrete- 
time) point processes a* = {a,i(t),t = 1, 2,...}, i = 1 and 
2. Let j4j(0,f), i = 1 and 2, be the number of arrivals in 
the interval (0, t] of the point process a; and n(n), i = 1 
and 2, be the arrival epoch of the nth customer of the 
point process a;. We define a class of distance functions 
between two point processes as follows: 

1   ' 
Pq{aua2)    ^    lim sup - ^/(^(O,*), A2(0, t)){l) 

for some function / : Tl2 H-> 11. A similar distortion mea- 
sure can be defined using arrival instants. For instance, 
if ai is an arrival process to a queue and a2 is the corre- 
sponding departure process, then pq(a1,a2) is the aver- 
age queue length and pd(au a2) is the average delay when 
f(zi,z2) = z2 - Zx. 

We consider a queue with time varying capacity c{t)[Z] 
where c(t) is the maximum number of packets served in 
time slot t. Then the behaviour of the queue is governed 
by the following recursive equation: q(t+l) = (q(t)+a(t+ 
1) - c(t))+. We will call the sequence {c(t),t > 0} an in- 
dependent bandwidth allocation sequence if {c(t),t > 0} 
is independent of the arrival process. Let Tc be the fam- 
ily of independent bandwidth allocation sequences that is 

stationary and ergodic with mean c. Also, let a (b) denote 
the arrival (departure) process. For the class of distance 
functions pq(a, b), we say that a distortion D is achiev- 
able at rate c if there is an independent bandwidth allo- 
cation sequence {c(t),t > 1} G Tc such that pq(a, b) < D. 
The rate distortion function Rq(D) is defined to be the 
minimum rate c that the distortion D is achieved, i.e., 

Rq(D)= inf{c : pq(a, b) < D}. We define Rd(D) similarly. 
One can show that the rate distortion functions Rq(D) 
and Rd(D) are both decreasing and convex in D. 

In general, the calculation of Rq(D) and Rd(D) are 
difficult problems. However, motivated by the case of 
ATM networks with exponentially small buffer overflow 
probability, we consider the distance function 

Pl(a,b)' 
1   * 

= lim sup - J2 El{A(o,t)-B(o,t)>x}, (2) 

and let Rq
x{D) denote the corresponding rate distortion 

function Note that q(t) = A(0,t)-B(0,t) when q(0) - 0. 
If a(t) is stationary and ergodic with mean Ea{t) < c, 
then p%(a, b) = Pr(g(oo) > x). In this case, we have 
the following asymptotic result, based on the theory of 
effective bandwidth[3]: 

Theorem 1 If the arrival process a(t) is stationary and 
ergodic and it satisfies limt-.oo \ log Ee6A(°'tS> = A(0), for 
all e>0, then 

lim Rq(e-f>*) = at(9), (3) 

where a* (6) is called the effective bandwidth of the source, 

and is defined to be a* (6) ~ ^ 

The concept of effective bandwidth has attracted consid- 
erable interest lately, and a number of papers develop 
a calculus of effective bandwidth that allows one to an- 
alyze superpositions of sources, outputs of queues, and 
networks of queues. The current work provides an new 
interpretation of some of these results, and provides a link 
between rate distortion theory and queueing theory. 
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Abstract - It is shown that if a queueing network is 
stable with fluid arrival processes, then it is also stable 
for deterministically constrained bursty arrival processes 
of the same or smaller long-term rate. 

SUMMARY 

Fluid models of queuing networks are among the simplest 
models to analyze, owing to the fact that calculus can be applied. 
At the same time, wider classes of network models are more flex- 
ible for modeling real traffic. It is thus useful to reduce questions 
about the more realistic models to questions about related fluid 
models. Such a reduction was recently achieved by J.G. Dai, who 
showed that stability of a fluid model implies stability (in the 
sense of Harris recurrence) of related multiclass networks with 
random service and interarrival processes of renewal type. The 
purpose here is to similarly reduce the question of stability for 
networks with input traffic satisfying deterministic constraints in 
the sense of Cruz (IEEE IT Tranasactions, January 1991) to a 
question of stability for a fluid model. 

The network has d single server stations and K classes of 
traffic. Class / traffic is served at a unique station s(l). Let C be 
the d x K matrix such that C;,j = 1 if s(l) = i and C;,i = 0 
otherwise. Upon completion of service at s(l) the traffic of class I 
either becomes traffic of class I' for some other class V, in which 
case we write I -¥ I', or it immediately exits the network. Let P 
denote the K xK matrix such that piji = 1 if I —¥ I' and p(||/ = 0 
otherwise. A simple network with three stations and eight classes 
is shown in Figure 1 with 1 -► 2 -+ 3, 4->5-46 and 7 -» 8 and 
s = (1,2,3,2,3,1,3,2). It is assumed that the network is open, 
so that PK is the zero matrix. 

Station 1 Station 2 

Station 3 

Figure 1: Sample network. 

Exogenous traffic can enter the network as any class, though 
for the example given it might make sense for the exogenous 
arrival functions to be nonzero only for classes 1, 4 and 7. Let 
Ei(t) denote the amount of exogenous class I traffic to enter the 
network during [0, t]. Traffic of class / can be served (at station 
s(k)) at a maximum rate m = 1/mi where mi > 0. Let M = 
diag(mi,...,THK) and let e denote a column vector of all ones 
(with dimension depending on the context). The flow of traffic 
in the network is assumed to satisfy the following equations and 
conditions: 

Q(t)    =    q+E(t) + (PT-I)M-lT(t) 

I(t)    =    et- CT(t) 

Q(t) > 0     for t > 0 
i»00 

/    (CQ(t)Ae)dI(t) = 0 
Jo 

T(0) = 0,   T is right-continuous and nondecreasing 

1(0) = 0,   I is right-continuous and nondecreasing. 

The the following interpretations hold: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Qi(t) is the amount of class I traffic in the network at time t, 
and Qi(0) = go- 

Ti(t) is the amount of work (where work is measured in units of 
time) done on class I traffic during [0, t]. 

(CT(t))i is the amount of work done at station » during [0, t]. 

Ii(t) is the amount of idleness (measured in units of time) of the 
server at station i accumulated during [0, t] 

(CQ(t))i is the amount of traffic at station i at time t. 

The exogeneous traffic E is said to satisfy deterministic con- 
straints with parameters a = (at) and <r = (cri), abbreviated to 
"£is DC(a,<r) traffic", if 

0 < Et(t) - Ei(s) <ai(t-s) + tri    0 < t < s < oo.      (7) 

The network (C, P, m) is totally stable for DC(o/, <r) traffic if there 
is a finite constant T so that whenever (E, q, Q, T, I) satisfy (1) — 
(7), then limsup,^ |Q(t)| < T, where \Q(t)\ = £, \Q,(t)\. 

Theorem 1 // the network (C, P, m) is totally stable for 
fluid traffic with input rate vector a, then it is totally stable for 
DC(a, <r) traffic, for any vector o~. 
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Abstract - We extend the threshold condition 
for optimality of the policy for activating the slow 
server in a 2-server queueing system when the service 
times are deterministic. 

I. Introduction 

We consider a queueing system composed of an 
infinite-size buffer and two servers Si and S2 with con- 
stant, but different, service times Ti and T2, respec- 
tively, with T2 > Ti. The arrival process is Poisson 
with rate A < 57- + -^r. We wish to find the optimal 
policy for server activation that minimizes the average 
customer sojourn time in the system. 

II. Background 

This is a problem that has been well-studied for 
the case of exponential servers [1-3]. The optimal 
policy has been shown to consist of always keeping the 
fast server busy, as long as the queue is non-empty, 
and of activating the slow server when the queue size 
is greater than a threshold m0, the value of which 
depends on A and on the service rates. Extension of 
the result in more complicated systems has been, in 
general, difficult. The motivation for considering the 
deterministic case is that in packet-switched systems 
the transmission time of each packet is constant so 
long as the transmission bandwidth remains constant. 

III. Approach 

Let x0(t) denote the queue size at time t and ri(t) 
the residual service time of server Si, i = 1,2; clearly, 
0 < ri(t) < Ti. The vector x{t) = (x0{t),r1{t),r2(t)) 
is a Markovian state description of the system. We 
let Xi(t) be 0, if ri(t) = 0, and 1 otherwise. The 
total number of customers is then given by \x(t)\ = 
x0(t) + xx(t) + x2(t). Let 7T be a control policy that 
decides at every t > 0 which idle server to activate 
based on {x(s), 0 < s < t}. The policy TT is optimal if 
it minimizes the long-run average cost J„(x), where 
Jn(x) = limsupif E%[JQ \x(t)\dt] where x is the ini- 
tial state. 

Markov Decision Theory cannot be used easily 
to establish optimality conditions here because of the 
continuity of the transitions in the residual service 
times. However, we use the special features of the 
deterministic service times to obtain necessary condi- 
tions for the optimal Markovian policy that coincide 
with the properties of the optimal policy of the expo- 
nential service case. 

Furthermore, we obtain lower and upper bounds 
to the threshold value for the class of threshold poli- 
cies. 

IV. Results 

The optimal policy is shown to (i) activate at 
least one of the servers without delay if they are both 
idle, (ii) activate the fast server immediately if it is 
idle and the slow server is busy, and (iii) activate the 
fast server before the slow server if both are idle. 
Furthermore, the optimal Markov policy that acti- 
vates the slow server when the system is in states 
(y, ri,0), {z,ri,0) for y < z, must also activate the 
slow server for any state (x,ri,0), for y < x < z. 

The lower bound to the threshold value is given 
by 1 - ff + (^ - % - 1)(1 - ATi), and the upper 

bound by 1 + 2~rt. The method for computing the 
thresholds applies to the exponential case as well and 
the results are consistent with the exact threshold cal- 
culations in [3]. 
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Abstract — This work considers packet radio net- 
works in which users transmit using spread-spectrum 
multiple-access (SSMA) signaling, slotted ALOHA 
random access, and forward-error-correction (FEC). 
It is well known that these networks can exhibit 
bistable behavior similar to narrowband ALOHA sys- 
tems. In this work, we analyze the impact of FEC pa- 
rameters on the throughput, delay, and drift of slow 
frequency-hop (FH)/SSMA networks. We present 
exact expressions for throughput, delay, and drift, 
and, furthermore, characterize bistable systems by 
their first exit times (FET). Drift analysis suggests 
an approach to eliminating bistability that involves 
increasing both the average retransmission time and 
the blocklength. Numerical examples are provided 
to illustrate our approach. A noteworthy feature of 
our approach is that the elimination of bistability is 
achieved by careful selection of system parameters 
without using active control. 

I. INTRODUCTION 
Consider a network in which a population of N transmitters 
(or users) and N receivers share a common radio channel. 
The network topology is assumed to be fully-connected with 
paired-off transmissions; each transmitter communicates with 
a single, unique receiver. Each user is fed by a bursty mes- 
sage source. Users transmit messages in the form of pack- 
ets using spread-spectrum multiple-access (SSMA) signaling, 
slotted ALOHA random access, and forward-error-correction 
(FEC). We assume that feedback is present and that the 
feedback propagation delay is negligible in comparison to the 
packet transmission time. 

It is well known that such networks can exhibit bistoMe be- 
havior similar to narrowband ALOHA systems [1]. A bistable 
system possesses two locally stable equilibria with the system 
achieving high throughput and small delay at one [operating 
point) and low throughput and large delay at the other (sat- 
uration point). In practice, a bistable network can remain in 
saturation for large time periods, thus leading to poor perfor- 
mance. Consequently, the elimination of bistability, by which 
we mean removing the saturation point while retaining the 
throughput-delay performance at the operating point, is of 
importance in practical networks. 

Various stabilization techniques, which aim to prevent the 
network from reaching saturation, have been examined in the 
literature. Notably, these techniques rely either on recursive 
retransmission control (e.g., [2]), wherein an estimate of the 
total number of backlogged users in the network is employed 
by each user to alter a design parameter, such as the retrans- 
mission probability, or code rate, or else on centralized control 
of user transmissions (e.g., [3]). 

Our focus, in this work, is on investigating the impact of 
FEC code parameters on the throughput, delay, and drift 
of SSMA networks. For concreteness, we consider slow 
frequency-hop (FH)/SSMA signaling with Reed-Solomon era- 
sure correction [4]. We present a model which is exact for 
finite user populations and expressions for throughput, delay, 
and drift. Moreover, we characterize bistable systems by their 
first exit times (FET), which is a measure of the avera^J time 
taken by a bistable network to reach saturation, starting from 
zero user backlog. Also, a simpler limiting model is presented 
which may be used when both the number of users and the 
number of frequency bins are large. We then present our ap- 
proach to eliminating bistability based on a drift analysis of 
the limiting model. Finally, numerical examples are provided 
to illustrate our approach. 

II. CONCLUSIONS 

The following four observations apply to a bistable 
FH/SSMA network: 

(1) Increasing the code blocklength leads to higher through- 
put and lower delay at the operating point at the cost of 
smaller FET. 

(2) Increasing the average time to retransmission leads to 
larger FET at the cost of lower throughput and higher delay 
at the operating point. 

(3) Elimination of bistability necessitates increasing both 
the blocklength and the average time to retransmission. 

(4) At fixed blocklength, further improvement in operating 
point performance can be achieved by optimizing over code 
rate. 

From (3), we infer that it is possible to eliminate bistability 
by careful selection of network design parameters without the 
use of active (decentralized or centralized) control. 
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Summary 

In our earlier work [1, 2] we applied the diffusion 
approximation method to the steady state analysis of 
an ALOHA random access protocol, and non-Markovian 
queueing networks. More recently, we have successfully 
applied the diffusion model in analyzing the transient 
behavior of a statistical multiplexer, and in deriving a 
simple formula for the effective bandwidth of a bursty 
traffic source in an ATM (asynchronous transfer mode) 
network [3]. 

In this paper, we present a transient analysis of media 
access control (MAC) protocols such as slotted ALOHA 
and CSMA/CD (Ethernet) by formulating their queue 
behavior as an Ornstein-Uhlenbeck process X(t). We 
also derive an important result on the transient mean 
mx(t) — E[X(t)]: if the drift coefficient ß(x,t) is a lin- 
ear function of the system congestion x = X(t), then 
rnx(t) that we can obtain under the assumption of ho- 
mogeneous diffusion coefficient is an unbiased estimate 
of m^(t), the mean of the original process N(t), and is 
independent of the diffusion coefficient a(x,t). 

r-"  v  —i 

Transmit Multiple 
Access 
Channel 

(K-n) users     Retransmit 
in 

"user response" state 

Success 

Failure 

N(t) = n users 
in 

"backlogged" state 

Figure 1: The number of backlogged users, N(t), in the 

slotted ALOHA system 

Figure 1 is a queueing model representation of the 
slotted ALOHA system being considered. There are K 

users in the system. N(t) is the number of the "back- 
logged" users who are either engaged in actual trans- 
mission or waiting for a retransmission at the t-ih slot 
time. The parameter r is the probability that a re- 
transmission will take place at a given time slot. The 
remaining K — N(t) users are in the "user response" 
state, ready to generate a new packet with probability 
v in a given slot. 

We approximate the integer-valued process N(t) by 
a continuous-state diffusion process X(t), which has the 
drifl coefficient ß(x,t) = (K — x(t))u — S(x(t)), and the 
diffusion coefficient a{x,t) — (K — x(t))v + S(x(t)), 
where S(x(t)) represents the channel throughput when 
the process X(t) is in state x at time t. 

For analytical tractability, we simplify ß(x,t) and 
a(x,t) as follows: Suppose that S(x) (hence ß(x,t), as 
well) can be approximated by a linear function of x(t), 
i.e., ß(x,t) = ßo — ßix(t); and that a(x,t) is nearly con- 
stant around some value x, i.e., ct(x,t) K, OLQ. Then the 
diffusion process X(t) becomes an Ornstein-Uhlenbeck 
process, and we can readily obtain the time-dependent 
solution f(x,t\xo): it is a Gauss-Markov process with 
time-dependent mean mx(t) = x(l — e~Plt) + x^e~^1% 

and variance ax(t) = ^-(1 - e^1*). 
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Abstract — In this paper we extend further the re- 
sults of [1] and [2] to CDMA networks with truly 
multi-rate multi-media traffic. Voice, high and low 
priority data, and possibly videophone traffic all 
use DS/CDMA modulation but different information 
(data) rates. 

I. INTRODUCTION 

In our recent work of [1] we introduced a Markovian formu- 
lation for the problem of optimal admission of voice users in 
a CDMA network; there was also data traffic in the CDMA 
network but it had lower priority over voice and was allowed 
to use the CDMA codes left unused by the voice users. In 
[2] we exte ; Jed this work to CDMA networks with voice and 
multi-prir tity data; there are two classes of data users, those 
with high priority (same as voice) that require real-time de- 
livery (but lower BER than voice) and those with low priority 
that are treated as in [1], In the work of both [1] and [2] 
voice and data users transmit at the same data (information) 
rate and employ the same processing gain (number of chips 
per bit) in their DS/CDMA modulation. Finally, in our work 
of [3] we provided a preliminary analysis of a CDMA system 
supporting true multi-rate multi-media traffic. In [3] multiple 
chip rates axe used to spread the user signals in proportion to 
their information data rates rather than spreading them over 
the entire frequency band. In this paper we extend further 
the results of [1] and [2] to CDMA networks with truly multi- 
rate multi-media traffic. Voice, high and low priority data, 
and possibly videophone traffic all use DS/CDMA modula- 
tion but different information (data) rates. Since the signals 
of all users axe spread over the entire bandwidth, the different 
data rates result in different processing gains. 

II. MULTI-RATE CDMA SYSTEM 

The different processing gains affect the other-user interfer- 
ence in a more complicated way that in traditional CDMA 
interference evaluation. However, both an approximate analy- 
sis based on the Gaussian approximation and another analysis 
with any desirable accuracy based on the characteristic func- 
tion method axe carried out in order to determine the BER of 
the various traffic types as functions of the information rates, 
the overall bandwidth, and the number of users in each traffic 
class. This evaluation is used to determine the capacity region, 
that is, the maximum number of users that can be supported 
from each class so that the individual class BER requirements 
axe met. This calculation is carried out for (i) voice and data 
of different information rates and BERs, (ii) voice and two 
types of data, all with different information rates and BERs, 
and (iii) videophone, voice, and data with different rates and 
BERs. 

III. CODE ALLOCATION FOR MULTI-MEDIA TRAFFIC 

Three types of policies for optimal CDMA code allocation 
axe derived: one that pertains to voice and low priority data, 

another that pertains to voice, high priority data, and low 
priority data, and a third one that pertains to videophone, 
voice, and low priority data. 

For the first policy we present an optimal allocation scheme 
that determines the number of newly arrived voice calls that 
axe accepted in the network so that the long-term blocking 
(rejection) rate of voice calls is minimized and the packet error 
probabilities of voice traffic remains within acceptable limits. 
The unused CDMA capacity is be used by data traffic and the 
reamining data traffic is queued. We consider two models for 
the effects of other-user interference: the threshold model and 
the graceful degradation model. 

For the second policy we derive an optimal code allocation 
scheme that determines the number of newly arrived voice 
calls and data users with high priority that axe accepted in 
the network so that the long-term weighted blocking rates of 
voice calls and data traffic is minimized and the packet error 
probabilities of these two traffic types axe within acceptable 
limits. For the lower priority data we consider two policies. 
According to the first policy there are no CDMA codes re- 
served for these data, they get assigned CDMA codes only 
when the combined voice and high priority data traffic leaves 
certain codes unused. The second policy operates like the first 
except that there is also a small number of CDMA codes that 
axe always assigned to low priority traffic. For both schemes 
the BER requirement for the low priority data traffic is met. 

The performance measures axe the average blocking rates 
and average throughputs of the voice calls and all data mes- 
sages as functions of the offered voice and data traffic loads 
under the proposed optimal code allocation policy. The queue- 
ing delay and the packet loss probability of the low priority 
data traffic is also evaluated. A semi-Markov decision process 
(SMDP) with guaranteed BERs for voice and data traffic is 
used for formulating the system operation as a dynamic code 
assignment problem. A value-iteration algorithm is applied to 
this SMDP to derive the optimal policy. 

The third policy has many similarities in its operation with 
the second policy, but it operates on videophone traffic instead 
of high priority data traffic; this fact gets reflected in the multi- 
state Markovian model used (more complicated than the one 
used for data) and the different BER requirements. 
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Abstract — We consider a slotted ring that allows 
simultaneous transmissions of messages by different 
users, known as ring with spatial reuse. To alleviate 
fairness problems that arise in such networks, policies 
have been proposed that operate in cycles and guar- 
antee that certain number of packets, called quota, will 
be transmitted by every node in every cycle. We pro- 
vide sufficient and necessary stability conditions for such 
rings. 

I. INTRODUCTION 

We consider a ring with spatial reuse, i.e., a ring in which 

multiple simultaneous transmissions are allowed as long as 
they take place over different links (cf. [1, 2, 3]). Time is 
divided in slots and each slot is equal to the smallest trans- 

mission unit, called packet. A node receiving a packet with 
destination another node in the ring (ring packet), may re- 
transmit the packet in the outgoing link in the same slot. 

While rings with spatial reuse have higher throughput than 
standard token passing rings, they also introduce the possibil- 
ity that some overloaded nodes may block other nodes from 
accessing the ring. To avoid this problem, the following policy 
is proposed in [1, 2] for the operation of the ring. Each node 
is assigned a number called "quota". The policy operates in 
cycles. A node is allowed to transmit during a cycle as long 
as the number of transmitted packets does not exceed its as- 
signed quota. A cycle ends when the quotas of all nodes are 
delivered to their destinations. In this way, the operation of 
a node with regular traffic requirements is not adversely af- 
fected by nodes that may become overloaded. An analysis of 
the throughput characteristics of this policy is presented in [3], 
where it is also shown that if the end-to-end throughput re- 
quirements result in aggregate traffic load for each link of the 

network less than one, then the node quotas can be selected 
to achieve these throughput requirements. 

II. MAIN RESULTS 

The primary goal of this work is to obtain the stability 
region of the ring network with finite quota and to compare 

it with the maximum achievable stability region for such ring 
networks (cf. [3]). The second motivation is to extend our sta- 
bility approach of multidimensional distributed systems devel- 

oped in Georgiadis and Szpankowski [4, 5] and Szpankowski [6] 
to ring networks with spatial reuse. The conditions for stabil- 
ity are derived by means of a technique that is based on an ap- 
plication of mathematical induction, stochastic monotonicity 

properties and Loynes stability criteria.  A special technique, 

Supported by NSF Grants NCR-9206315 and CCR-9201078. 
2Research supported in part by NSF under grant NCR-9211417. 

based on the structure of the complement of the stability re- 
gion and the construction of a dominant system, permits the 
derivation of the necessary stability conditions from the in- 

stability condition of a dominant system. The general steps of 
the above stability analysis have been applied to the analysis 

of other systems as well (cf. [4, 5, 6]). It should be stressed 
that this general construction of [4, 6] requires detailed and 
subtle modifications for almost every queueing network which 
may be far from trivial, and this analysis is a typical example. 

In addition- we provide a decomposition and characterization 
of the instability region of the system. 

The exact computation of the stability region depends on 
the distribution of the arrival processes and this often ren- 
ders this computation intractable. The dependence on the 
distribution leads us to the introduction of the notions of the 
essential and absolute stability region. The first contains any 
arrival rate vector such that for every distribution with this 
arrival rate vector the network is stable. The second contains 
any arrival rate vector for which there exists some distribu- 
tion with this arrival rate vector under which the network is 

stable. Both stability regions have interesting practical im- 
plications. If the arrival distribution is not known, then the 
essential stability region is essentially the operational region 
of the system. The absolute stability region specifies what is 

achievable when the arrival streams can be shaped to have 
the statistics which lead to higher throughput. We present 
a method based on linear programming that permits the de- 
velopment of upper and lower bounds on the stability region 
using only the knowledge of the average cycle lengths. For 
the case of two nodes we provide a closed-form expression for 

the region of arrival rates where the system is stable for any 
arrival distribution. 
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Abstract — This paper presents the results of a ca- 
pacity evaluation for a cellular code-division, multi- 
ple access (CDMA) system over a wide-band fading 
channel. The study compares the performance of a 
system based on a conventional matched filter with 
that based on an adaptive receiver. Trellis codes and 
various rate convolutional codes are investigated in an 
attempt to improve the system performance. Perfor- 
mance is measured in terms of the maximum number 
of simultaneous users per cell for a given bit error rate 
(BER). The channel model is developed from mea- 
sured propagation data at 2.6 GHz in heavily built-up 
urban areas and includes the effect of both intra-cell 
and inter-cell interferers. 

I. SUMMARY 

One of the major problems associated with using direct se- 
quence CDMA systems is the low channel efficiency. For single 
cell systems based on conventional, matched filter receivers, 
the efficiency is typically between 10 - 20% [1], [2] of the theo- 
retical channel capacity. By using an adaptive linear receiver 
[1], [3], it is possible to increase the system efficiency of a 
single cell system significantly with only a moderate increase 
in receiver complexity. This is also the case for a multi-cell 
system operating over a multipath fading channel. 

The poor efficiency of the matched filter system is primarily 
due to the multiple access interference (MAI) produced by 
competing users of the channel bandwidth. Measurements 
[4] indicate that MAI coming from adjacent cells contributes 
up to 40 % of the total interference, for equally loaded cells, 
experienced by a given user. For this reason it is important 
for a capacity study to examine a system which includes the 
interference from surrounding cells. 

The efficiency of the cellular system will be defined as the 
maximum number of users that may be supported in one cell, 
while maintaining a specified BER, multiplied by the data rate 
of each user 

Mrd . . 
v = -g- (1) 

where M is the number of simultaneous users at a given bit 
error probability, r<j is the data rate and B is the spread spec- 
trum bandwidth. For this calculation, it is assumed that the 
same number of simultaneous users exist in all cells and all 
users have the same data rate. This gives an indication of the 
performance of the system normalised to one cell. 

The spreading sequence considered in this paper are GOLD 
sequences of length (N = 15 to 127). For code rates of 1/2, 
1/4 and 1/8, these spreading ratios change to 63, 31 and 15 
respectively in order to maintain constant bandwidth. With 
trellis coding, the spreading ratios do not change. The system 
considered has a BER of 10-3 and a data rate of 39.4 Kbps. 
The transmitted signal is band-limited by a raised cosine filter 
with a roll-off of 40 %.  The average power of the combined 

'This work was supported in part by the Australian Telecom- 
munications and Electronics Research Board (ATERB) 

signals of interferers from each adjacent cell is varied from - 
10 dB to -15 dB below the power of the signal of the user of 
interest. Due to imperfect power control, the signal power of 
the users in the cell of interest are assumed to be normally 
distributed with a variance of 1 dB. 

Simulation results have shown that the uncoded system 
based on the adaptive receiver lead to a 4 to 5 fold improve- 
ment in system efficiency over the fading channel compared 
to the matched filter system. 

When combining the systems with convolutional codes it 
was seen that, while offering significant advantages for the 
matched filter system, this form of coding actually reduces 
the system efficiency for the adaptive receiver system by re- 
stricting the maximum number of simultaneous users. As the 
code rate decreases from 1/2 to 1/8, the maximum number 
of users for the matched filter system eventually equals the 
number for the adaptive receiver system. 

The uncoded matched filter system offers a very low ef- 
ficiency with the maximum number of users well below the 
spreading ratio N. The gain from coding allows a larger num- 
ber of simultaneous users however, the number is still well 
below the spreading ratio. The uncoded adaptive receiver 
system however offers a maximum number of users which is 
approximately 70 % of the spreading ratio. The decrease in 
spreading ratio which accompanies a decrease in code rate 
causes the maximum number of users to decrease linearly. 
The gain from coding is insufficient to increase the number 
of users to that of the uncoded case. This is true for all code 
complexities examined. 

For both systems however, convolutional coding does offer 
the advantage of a reduction in the signal to noise ratio (SNR) 
required to achieve a given BER for lightly loaded systems. 

Trellis codes conversely require no reduction in spreading 
ratio and so the effect described above is minimised. Trellis 
coding allows an increase in efficiency for both systems as well 
as the coding gain described above for lightly loaded systems. 

It is therefore suggested that convolutional coding should 
not be considered when attempting to maximise efficiency for 
systems based on adaptive receivers. Rather, trellis codes offer 
a far better alternative. 
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Abstract   Quadratic-inverse   spectrum   estimates   for 
locally white non-stationary processes are described. 

I. Introduction 

Most time-series data encountered in practice is non- 
stationary whereas most spectrum estimation methods 
assume stationarity, and this has resulted in many ad- 
hoc analysis methods. The multiple-window methods 
of spectrum estimation1" is akin to linear inverse the- 
ory applied to the discrete Fourier transform. In the 
original derivation, both stationarity and "local white- 
ness" were assumed and the resulting estimates of 
spectra were simply squares of the linear inverse. 
Quadratic-inverse theory'21 eliminated the locally white 
assumption and gave stable second moments. The 
effects of limited non-statonarity on the variance of 
such estimates is known'31. This talk describes a way 
of combining the non-stationary quadratic inverse the- 
ory with that of harmonizable processes. 

II. Harmonizable Processes 

Harmonizable processes may be written as gen- 
eralized Fourier transforms, 

x( t) = J e'2^' d\( T| ) 

with covariance function rc( t, t') = E{x( t)x(t') } 
and corresponding generalized spectral density 
yc(i],T)')di\dT\' = EU$(T])rf|(V) }• They are 
connected by the two-dimensional Wiener-Khintchine 
relation 

r„( t, t' ) = J J ei2« "I - 'V > Yc( ri.li' ) dr\ rfn' . 

Local stationarity is described by the spectrum parallel 
to the n = r|' diagonal, while global non-stationarity is 
on the orthogonal coordinate. Wigner-Ville and 
dynamic spectra are obtained from 45° coordinate rota- 
tions followed by single Fourier transforms'41. For 
white non-stationary processes the covariance function 
is rc( t,t') = P(.t)8(t-t') so the corresponding 
generalized spectrum is a function of n, - n/ P(t) is the 
expected power of the process at time t. 

III. Estimation 

To estimate P(t) we use a multiple-window method. 
Thus one chooses a frequency/and a bandwidth Wand 
describes the information contained in the band 
(/ - W,f + W)by the coefficients of a locally orthog- 
onal expansion of Slepian functions. Given N samples 
from an observed sequence x(t) one chooses a resolu- 
tion bandwidth W and computes the eigencoefficients 

**(/)=  Z  e~i2nf" W (N,W)x(n) (1) 

properties of the Slepian sequences makes it almost 
irrelevant whether the white non-stationary model is 
valid globally, or only locally within the frequency 
band (/ - W, f + W). Denote the vector of eigencoef- 
ficients (1) by X = X(/) and the covariance matrix of 
the eigencoefficients by CJk(f) = E{ Xj(f) xk(f) }. 

To estimate limited non-stationarity, expand P(t) 
on an orthonormal bases 

P(f.t) = 2>z(/M/C). 

The system whose kernel is the square of the sine ker- 
nel defining the Slepian sequences 

2 

a,A,(n) =  £ sin27tW( n - m) 
7c( n - m ) A,{m) 

has 4AW real eigensequences corresponding to signifi- 
cantly non-zero eigenvalues. The corresponding bases 
matrices defined by 

 "-1 
V h ik Ajf X  v«> v<» At(n) 

where the v\k) (N,W) are the orthonormal discrete pro- 
late spheroidal sequences. The extreme band-limiting 

are trace-orthogonal, tr { A(,) A(m) } = a, 6;>m. 

The covariance matrix C may now be written 

C(/) = Z?,(/)A») 

so quadratic estimates of the expansion coefficients 

PK/) = -^~tr{ C(/) A« } = J- Xt(f) A« X(/) 

follow. p0(f) is proportional to the usual stationary 
spectrum 5(/), while p\(f) is, loosely, the time 
derivative if the spectrum S(f). It may be shown that 
these estimates are unbiased and, because 
Var{ßi(f) } - ajx, time resolution of non-stationarity 
is essentially limited to 1/4 W. 
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Abstract — We consider the problem of estimating 
the min-norm solution to a low-rank, linear statistical 
model. We calculate the statistics of the solution as a 
function of the statistical characterization of the ma- 
trix containing observation noise. We also present a 
new method for estimating the rank of the underlying 
noise-free matrix. 

I. CALCULATION OF BIAS AND VARIANCE 

Consider the following linear model 

n0 ,   m>n. y = H„ (1) 

The parameter vector 0 is to be estimated from data contained 
in H and y. In the absence of observation noise on the data, 
we assume that the rank of H is r < n. Thus we refer to (1) as 
a low-rank model, and we are interested in the minimum-norm 
solution for 6. In practice, the data will contain perturbations 
(noise), and we assume that both H and y are perturbed by 
additive noise so that the observed data are [H y] + N. The 
estimate 6 is obtained as the min-norm solution to the low- 
rank model equation HÖ = y, where [H y] is obtained from a 
singular value decomposition of [H y] + N. 

Our results are based on a perturbation expansion for the 
SVD of a finite-size matrix [lj. We have previously applied 
these matrix perturbation ideas adaptive detection [2], and 
performance analysis of array signal processing algorithms [3], 
In order to be useful, the perturbed subspaces must not be 
"too far" from the unperturbed subspaces. This will be true 
if the noise matrix N is "small enough." We have quantified 
the concepts of "too far" and "small enough" in our previous 
analysis of the threshold effect [4]. First- and second-order 
expressions for the perturbed subspaces were derived in [5]. 

In this paper, we use the perturbation formulas to calculate 
the statistics (bias and variance) of the solution 0 as a function 
of the statistical characterization of N, the matrix containing 
observation noise. We stress that the perturbation formulas 
do not require the data record to become large. In addition, 
this approach can handle arbitrary correlation of the elements 
of N. 

II. ORDER DETERMINATION 

In the estimation problem discussed above, a low-rank ap- 
proximation to the data matrix is utilized to draw an infer- 
ence. In doing so, it is implicitly assumed that the underlying 
true rank of the data matrix is known. In practice, this is 
seldom the case and the underlying true rank is unknown and 
needs to be determined. 

Under high SNR conditions, the perturbed signal subspace 
is stable and is more or less determined by the underlying 
(noise-free) signal subspace. This in turn stabilizes the per- 
turbed orthogonal subspace. Hence in different realizations 
of the data, the singular vectors change erratically, but the 
space spanned by them remains relatively unchanged. Thus 
the energy in the perturbed orthogonal subspace is also well 
defined. It is closely related to the noise energy in the orthog- 
onal subspace. Using matrix perturbation approximations we 
quantify this idea and evaluate the distribution to be a central 
X2 with (ro - r)(n - r) degrees of freedom. 

Based on this distribution, we can set a threshold TT such 
that ST < Tr with a probability 1 - a where a is a small 
positive number. In other words, if the rank is r then ST 

can be well explained by the noise energy alone, and will be 
below this threshold with high probability. If the rank is r + 1 
or greater then, due to the additional signal energy, Sr will 
exceed the threshold with high probability. Based on this 
idea, we develop a recursive procedure on the set of sums of 
squares of singular values of data matrix that is essentially a 
signal energy detection procedure in enlarging subspaces. 

In order determination there are two basic types of error 
probabilities, error due to overestimation (false alarm) and 
error due to underestimation (miss). The proposed method 
allows the user to set a bound on the false alarm probability. 
The user can determine a value of SNR for which a prescribed 
value of probability of detection or probability of net error can 
be obtained. Thus, the user can specify the conditions under 
which performance goals, specified by error probabilities, can 

be obtained. 
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Abstract — A new algorithm is proposed for blind 
channel identification in the impulsive signal environ- 
ments, where the signals are modeled as symmetric 
a-stable processes. The Alpha-Spectrum, a new spec- 
tral representation based on fractional lower-order 
moments, is developed. Conditions for blind iden- 
tifiability of any FIR channel (non-minimum phase, 
unknown order) are established using the properties 
of the Alpha-Spectrum. 

I. INTRODUCTION 

The a-stable distributions are characterized by heavy tails and 
infinite variance, except for the Gaussian distribution^ = 2), 
which is the limiting case. By the Generalized Central Limit 
Theorem, they are the only class of distributions that can be 
the limiting distributions for sums of i.i.d. random variables. 
These properties make the a-stable distributions attractive 
models for impulsive data [1]. Most algorithms for blind iden- 
tification of FIR channels are based on second- or higher-order 
statistics. When the signals are impulsive and modeled as a- 
stable processes, these algorithms fail. We propose a robust 
blind identification method based on a new spectral represen- 
tation: the a-Spectrum, for the impulsive environments. We 
then prove the blind identifiability of any FIR channel (non- 
minimum phase, unknown order) driven by white SaS (a > 1) 
processes. 

II. BLIND IDENTIFICATION WITH THE OT-SPECTRUM 

Our new blind identification method is based on the properties 
of covariation, which plays a role analogous to covariance. For 
two jointly SaS random variables X and Y with 1 < a < 
2, covariation is defined by [X,Y]a = jsxy<a~1>ij(ds),2 

where S is the unit circle and ß(-) is the spectral measure 
of the SaS random vector (X, Y). The FLOM (fractional 
lower-order moment) estimator for covariation is   [X, Y]a = 

—TJ7—r^—~fv, p > 1, where X, Y are both real or isotropic 
HJ(\Y\P) * — 

complex SaS random variables and jy is the dispersion of Y 
[2]. Properties of covariation include: 

1. If Xi, X2, Y are jointly SaS, then   [aXi + bX2, Y]a = 
a[XuY]a+b[X2,Y]a. 

2. If Yi,  Y2  are  independent and X, Y\,  Y2 are jointly 
SaS,   then      [X,aYi + bY2]a 

b<°-i>[X,Y2]a. 

,<a-l> [x,yi]a + 

3. If X, Y are independent, then   [X, Y]a — 0. 

'This work was supported by the Office of Naval Research under 
contract N00014-92-J-1034. 

2The notation: 

Y<P ■■>.{ \Y\P-2Y* 
\YF-lAga(Y) 

Y: complex 
Y: real. 

For a FIR channel Y„ = X)Lo',*-^"-«' usmS tne above 
properties, we have: 

i—q 

Sa(z) = [Yn, £ Yn-iz% = ~i*H ((;)<a_1>) (#(*))<a_1> - 
i=~q 

where yx is the input dispersion and H(z) is the filter trans- 
fer function. Eq.(l) is of fundamental importance. We name 
Sa(z) the a-Spectrum, with which, we can identify both 
the magnitude and phase responses of the channel. The mag- 
nitude can be obtained by letting \z\ = 1, then Sa(eJ'") = 
H(e-"") . To obtain channel phase response, noticing the 

magnitude |H(«)| and phase $(z) of any FIR channel can be 
expressed in terms of A<m> = ^f=\ a? and B^ = J2?*t b?, 
where {a;}  and {■£-} are the zeros inside  and outside  the 

unit circle, respectively.   ——jjp— determines \H(eJW)\ and 

 jjj  determines $(e-"") [3].   Taking logarithm of both 
sides of Eq.(l), we have: 

1   ic < >»M      ,    A   v^(m)M'0 + B(m)M£)    ,    , log|£Q(re    )| = cvlog AQ— >     — cosymuj). 
m=l 

(2) 

W   ^      f> AC"Vm(r)-gC"W(I)   .  ,      , ,,, 
*(re    ) = 2^ m      smW. (3) 

m— 1 

where |Sa(fe
JW)| and \P(re-,t") are the magnitude and phase 

of the a-spectrum, and /im(r) = rm'°-1' + (a — l)r~m, 

um(r) = rm^-^ - r-m. A(n)~B(n) can be obtained from 
either ISc^re^)! or ^(re3"). Therefore the channel phase re- 
sponse is: 

*(<>) = J2 

H^n = £ 

■ $* (*(reJ'w) + #( V")) sin(nw)dw^ 

vn{r) + Mr) 

Hn(r) -/in(f) 
i(Hi 

(5) 
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Abstract — Blind identification consists of estimat- 
ing the impulse response of a linear, time-invariant 
channel used for transmission of digital data by ob- 
serving the channel output without knowledge of the 
transmitted symbol sequence. 

The aim of this paper is twofold. First we compare, 
in order to assess their applicability to the equaliza- 
tion of digital radio links affected by selective fad- 
ing, some recently proposed algorithms based on the 
second-order statistics of the received signal. Further 
we show how one of these algorithms can be modified 
to account for correlated noise. 

I. INTRODUCTION 

By blind identification we mean here the estimate of the im- 
pulse response of a linear, time-invariant noisy channel used 
for transmission of digital data; this estimate is obtained 
by observing the channel output without knowledge of the 
transmitted symbol sequence. 

The desirable features of the ultimate blind identification 
algorithm are the following: 

• Low identification error in the presence of noise. 

• Fast convergence. 

• Computational simplicity. 

• Insensitivity to data-symbol correlation. 

• Insensitivity to noise correlation. 

• Possibility to make it adaptive. 

Tong, Xu, and Kailath [6, 7] have developed a blind iden- 
tification algorithm (herewith referred to as TXK algorithm) 
which is based on an estimate of the autocorrelationfunction 
of the observed channel-output samples. This feature entails 
a convergence faster than other blind algorithms based on 
higher-order statistics [9], which is highly desirable when 
the channel is time-varying and its variations have to be 
tracked quickly in order to compensate for them. This al- 
gorithm converges globally, can resolve the non-minimum- 
phase zeros of the channel transfer function, and is robust 
with respect to timing recovery. However, it suffers from 
some drawbacks, viz., 

• It is computationally intensive, as it requires two 
singular-value matrix decompositions. 

t It requires data symbols to be uncorrelated. 

• It requires the noise to be uncorrelated. 

• It is not adaptive. 
More recently, an improved algorithm (herewith referred 

to as MDCM) was proposed by Moulines et al. [4]. The ad- 
vantages of this new algorithm over TXK are: 

• Lower computational complexity. 

1This research was sponsored by the Human-Capital and Mobil- 
ity Program of the European Union. 

• Convergence even with correlated data symbols. 

• Lower identification error for the same observation 
length. 

Baccalä and Eoy [1, 2] have proposed a new algorithm 
(herewith referred to as BR) that presents a significantly 
lower computational complexity and an identification error 
close to that of TXK and MDCM algorithms. 

II. OUR RESULTS 

The aim of this paper is twofold. First we compare, by com- 
bining analysis and simulation, the TXK, MDCM, and BR 
algorithms, in order to assess their applicability to the equal- 
ization of digital radio links affected by selective fading. Our 
results show that in general these algorithms based on sec- 
ond order statistics outperform standard blind equalization 
in terms of convergence speed. Moreover, while the BR algo- 
rithm has a lower computational complexity, in this specific 
application the MDCM algorithm outperforms both TXK and 
BR in terms of robustness to source-data correlation and 
mean-square estimation error. 

Further, we derive a modification of the MDCM algorithm 
in [4] in order to achieve blind identification in the presence 
of unknown correlated noise. Our algorithm is based on a 
matrix decomposition method proposed in [5]. 
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Abstract — Iterative methods have of late en- 
joyed increasing popularity in signal restoration prob- 
lems. Inherent mathematical difficulties have led re- 
searchers to propose ad hoc solutions in many in- 
stances. The question of optimality of such solutions 
is an open one. This paper concerns this question for 
a class of iterative methods of signal restoration and 
offers a criterion for optimality based on information 
theory. 

I. INTRODUCTION 

The signal restoration problem has classically been modelled 
as that of estimating the input z to a sytem , assuming that 
the distorting process h is specified or estimatable and that 
the distorted output it is available. Further generalizations 
incorporate any a priori knowledge about the solution , into 
the restoration process , in the form of constraint(s). A well 
defined system model in combination with robust techniques 
naturally leads to good results. More interesting is the case 
where the problem belongs to the class of ill-posed problems. 
Regularization theory is used to pose a corresponding well- 
posed problem , the solution to which is a close enough ap- 
proximation of the solution to the ill-posed problem being 
considered [1]. 

II. ALGORITHM DERIVATION 

The problem is formulated as the constrained minimization 
of a stabilizing functional [2] Cl(x). Recently , Noonan and 
Achour[3], [4] studied the use of the Itakuro-Saito distance 
from communication theory and the Kullback-Leibler mea- 
sure from statistics as stabilizing functionals. They proposed 
a generalized mapping function based on the use of the Mutual 
Information Measure as the stabilizing functional and incor- 
porated a priori noise variance information as a mean squared 
error constraint. Mathematically stated, 
Minimize : 

i    JV 

N 
■ h* : 

III. SPECIAL CASES OF THE MAPPING 
In this paper we demonstrate that various well known ad hoc 
algorithms are special cases of the proposed mapping function 
[3],[4]. In particular the pioneering Van-Cittert method and 
the popular Landweber restoration technique are shown to 
belong to this class of optimum algorithms. 

The specific mapping ip(z) = exp(z' (z * hf)) yields , 

The proposed generalized mapping function resulting from 
this optimization leads to the following general form , 

<p (zn+i) = <p(z„)exp (Xz'n ([it - z„*h]* hf)) 

z„ = zn + A (i h* : 

n(u, z)=\*\ yj ^".* ("' z)'n 

u      z 

Pu/z(u/z) 

Pu(u) [1] 

ubject To : [2] 

where hf is the flipped i.e.  time-reversed version of the dis-     L°J 
torting process h and z' is the partial of z with respect to 
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which is the Van Cittert restoration algorithm with a particu- 
lar smoothing function h, while the specific mapping <p{z) = 
exp(z'z) yields , 

Zn+l  = Zn + A (it - Z„*h)*hf 

which is the Landweber restoration algorithm with a particular 
smoothing function h 

The algorithm generated by the use of the Kullback-Leibler 
Measure is given by , 

zn = znexp(X([u — zn * h] * hf)) 

which can be generated from the generalized mapping function 
by the trivial mapping <p(z) = z 

This provides a sound statistical argument for the use of 
these methods and establishes an optimality interpretation for 
their estimates. The Mutual Information Measure is based oil 
the concepts of entropy and information content. Interestingly 
, the proposed mapping function is derived by normalizing the 
signal and identifying this as the probability density function 
of the signal itself. This method can thus be applied to signals 
whose probability structure is not fully known. The derived 
algorithm has been shown to be stable and robust[5]. There 
exists a strong condition for the convergence of the mapping 
in the general case. For specific cases the condition simplifies 
to a weaker problem specific condition. 

Applications of the above algorithm are discussed. In par- 
ticular noisy image restoration and high resolution estimation 
of spectra are presented. This work is a continuation of that 
presented in [3],[4], [5] . 
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Abstract — Stochastic processes subjected to a peri- 
odic clock change function will have weighted versions 
of its power spectrum reproduced at integer multi- 
ples of the jitter frequency. It has been shown that 
the original process may, in theory, be reconstructed 
without error by a suitable choice of correction filter 
[1]. In this paper we extend the results presented in 
[1] to the general case where the resulting process is 
a linear combination of TV clock change functions. 

I. DEFINITIONS 
Let Z = {Z (t), t G R} be a random wide sense stationary 

process of zero mean and mean square continuous admitting 
an autocorrelation function Kz (T) and a Cramer-Loeve rep- 
resentation ©z (w) [2]. The results regarding a single periodic 
clock change are given in [1]. We consider here the following 
extended definition: 

W{t) = Y!l=1Z{t-fn(t + e))gn{t + 6) (1) 

where 9 is a random variable, independent of Z (t) and uni- 
formly distributed on (0,27r). We assume that the func- 
tions fn (•) and gn (•) are periodic with the same period 
Tn = 27r/wn, and that the frequencies are related in the fol- 
lowing manner: 

— = -        (p,g)€NxN*    V(m,n)e {1..TV}2       (2) 
wm       q 

There then exists a frequency A, the smallest multiple of the 
set {wn} such that the functions fn (•) and gn (•) are periodic 
in Tx = 2TT/A. 

II. POWER SPECTRUM AND LINEAR PERIODIC 

FILTERING 

Using the Cramer-Loeve representation of (1), we find 

W (t) = JR e™ £n=i e-^«+<"ffn (t + 9) dQz (w)       (3) 

where the summation is periodic (of period T\). If it can be 
expressed in terms of its Fourier components 

Eti e~iwMu)9n («) = Er=-o* ** H JkXU (4) 
then W (t) is a cyclostationary process, stationarised by the 
phase 9. W (t — 9) then admits a continous series representa- 
tion whose elements, the responses of Z (t) through the linear 
invariant filters $k (w), are jointly stationary [3]. This no- 
tation also demonstrates that W (t — 9) can be seen as the 
filtering of Z (t) by a linear periodic filter [4], whose impulse 
response is given by 

MM - T) = £--00 eik" /R $fc (w) e^dw (5) 

The power spectrum of W (t) follows directly from that of 
W(t-6) 

dSw (w) = Er=-o0 l$* (w - fcA)!2 dSz (w - kX)       (6) 

III. RECONSTRUCTION 

A linear reconstruction of Z (t) based on the observation of 
a frequency band centered around kX of W(t), is the linear 
projection of Z (t) on the Hilbert space spanned by this pro- 
cess. This reconstruction is ideal when the spectrum of Z (t) 
is bounded such that 

dM«) = o     v^(-f,^) (7) 

It can be shown that this is a filtering operation, where the 
filter is given by 

Hk (w) = nfc (w) /$* (w) (8) 

where n», (ui) is an ideal bandpass filter centered at w = kX 
and $k (w) is given by 

■Ln 

*« M = Eti 4- Jo" e-'-'-M-«*"»-, («) du (9) 

IV. EXAMPLE 

Consider the case where Z (t) is a sequence of independent 
bits, TV = 2, and the periodic functions are given by 

/i (t) = a sin (wit)     h (t) = ß sin (uit/2) 
9i (*) = 1 32 (t) = exp (twit/2) 

(10) 

In this case, the receiving filter, based on the baseband signal 
is given by 

HO^=M^)TJ^W) (11) 

where Jn (w) is the n'th order Bessel function. 

V. CONCLUSION 

In this paper we have presented a generalisation of periodic 
clock changes. We developed the optimal receiving filter and 
found its analytical expression in a particular example. 
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Abstract — A near-optimum method for filtering 
out the quantization noise is presented. Use is made 
of the result that the spectrum of the quantization 
noise is related to the probability density function of 
the signal derivative. 

I. INTRODUCTION 

The need for representing signals by a finite number of 
bits implies that quantization noise is present in almost all 
digital signal processing systems and inherently occurs in the 
analog-to-digital conversion process. The distortion error, or 
quantization noise, consists of the difference between the input 
to the quantizer and the discrete output signal. 

In the following a near-optimum method for filtering out 
the quantization noise is presented. Use is made of the result 
that the spectrum of the quantization noise is remarkably re- 
lated to the probability density function (pdf) of the signal 
derivative. 

II. NEAR OPTIMUM FILTERING OF QUANTIZED 

SIGNALS 

For a signal x(£), assumed stationary in the wide sense, the 
power spectrum density (PSD) of the quantization noise was 
shown to be given by [1] 

SK(W) = 
2TT: 

OO 

(1) 

where p'x(.) is the pdf of the derivative of the input signal. 
Equation 1 demonstrates that the PSD of the quantization 

noise is related to the pdf of the derivative of the input signal. 
The convergence of the noise spectrum to Equation 1, as the 
stepsize decreases, is a result of a previous work [2]. 

In order to design the optimum filter, for extracting the 
signal corrupted by noise, there are two common approaches: 
minimization of the signal to quantization noise ratio (SQNR), 
that leads to the matched filter, or minimization of the mean 
square difference between the input signal and its estimate, 
leading to the theory of Wiener filtering. 

It is useful to consider an estimator based on the Wiener 
filter, that minimizes the expected value E[x(t) — x(t)]2, where 
the estimator is given by 

x(t) f 
J —C 

h(t - T)[X(T) + n(T)]dr. (2) 

If a Gaussian process is assumed as the input signal, the 
cross correlation between the quantization noise and the signal 
is given by [3] 

RXN(r) = 2Rx(T)Y^(-ire"2"2sQNR'e. (3) 

1This work was partially sponsored by the Brazilian Council for 
Scientific and Technological Research (CNPq). 

$(w) Filter 

Figure 1: Near optimum filters for selected quantization 
stepsizes. 

For an SQNR above QdB, the cross correlation is about 
eight orders of magnitude smaller than the input signal auto- 
correlation. This corroborates the assumption of an uncorre- 
lated noise at the output of the quantizer. Therefore, based on 
the formula for the noise spectrum, one can design a Wiener 
filter that is near optimum for the above conditions 

$(w) = 
Sx(u) 

^(") + £r£~i &*'(££) 
(4) 

where Sx(v) is the signal PSD. 
Figure 1 depicts the results of application of Formula 4, 

with the signal obtained by passing white Gaussian noise 
through a first-order Butterworth lowpass filter [4], for se- 
lected values of the stepsize, and shows how the number of 
levels can influence the design of a filter. The signal spectrum 
is also drawn in the same figure. It seems clear from this fig- 
ure that the optimum filter tends to an allpass filter as the 
stepsize decreases. 
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Likelihood Ratio Partitions for Distributed Signal Detection in 
Correlated Gaussian Noise 

Po-Ning Chen and Adrian Papamarcou1 

I. INTRODUCTION 

A distributed detection system is considered in which two sen- 
sors and a fusion center jointly process the output of a random 
data source (see figure). It is assumed that the null and alter- 
native distributions are spatially correlated Gaussian, differing 
in the mean; thus the random source is either noise only or a 
deterministic signal plus noise. 

X 
9x 

U = gx(X) 

 ^ 
 ► 

Fusion 
Center 

V(U,V) 

Y 
9y 

V = 9y(Y) 

In the presence of spatial dependence, the joint optimiza- 
tion of local quantizers gx, gv, and global decision rule T> may 
yield solutions in which gx and gy are not based on marginal 
likelihood ratio tests. This is one instance where distributed 
detection departs from the traditional statistical framework 
where likelihood ratios are sufficient for most purposes. This 
departure was first noted in [1], and was corroborated specif- 
ically for the additive Gaussian noise model by means of a 
counterexample [2] involving two-dimensional vectors X and 
Y. 

This work is an attempt to characterize noise models for 
which the optimal system employs marginal likelihood ratio 
tests. In the setup where each sensor draws one local ob- 
servation (i.e., X and Y are scalars X and Y, respectively), 
we succeed in obtaining a sufficient condition on the noise 
mean and covariance under which the optimal binary quan- 
tizers are contiguous partitions of the marginal observation 
space. Since the marginal likelihood ratio is a linear function 
of the local observation (X or Y), this result implies that gx 

and gv are threshold-type functions of the marginal likelihood 
ratio. It also reduces the optimization to identifying break 
points (thresholds) in the marginal observation space. 

We also examine whether the sufficient condition discussed 
previously is also necessary, and find that violation of this 
condition may in certain—but not all—cases render the con- 
tiguous marginal likelihood ratio partition suboptimal. We 
reach this conclusion by examining the special case where the 
noise marginals are the same for both sensors; the sufficient 
condition is then equivalent to positive correlation between X 
and Y. We find that for values of the correlation coefficient 
p(X, Y) close to —1, local quantizers based on non-contiguous 
likelihood ratio partitions outperform those based on contigu- 
ous likelihood ratio partitions. We were not able to establish 
the same for p(X, Y) close to 0~. 

1 Po-Ning Chen is with the Computer and Communication Re- 
search Laboratories at the Industrial Technology Research Institute. 
Hsin-Chu, Taiwan ROC. 

Adrian Papamarcou is with the Department of Electrical En- 
gineering at the University of Maryland, College Park, USA. 

Finally, we consider the following question. Assuming that 
the sufficient condition discussed previously is satisfied, does 
symmetry in the signal and noise models (same marginal for 
both sensors) imply symmetry in the optimal solution, with gx 

and gy being identical contiguous partitions of the real line? 
We find that this is indeed true, and in such cases, optimal 
design is further simplified. 

II. STATEMENT OF RESULTS 

The observation statistics are denoted by 

HQ : Pxy 

H\ : Qxy 

Af 

M <Tx 

&X1 

(Txy 

-I 
A Bayesian setting is assumed,  in which Ho and Hi  are 
assigned prior probabilities.     Also,   quantizers are binary 
throughout, i.e., \\gx\\ = \\gy\\ = 2. 

Theorem 1 If 

Oxy{?l0x — Pcrxy)(tJ-ay ~ V^xy)    >   0; (1) 

then there exist optimal quantizers of X and Y which are con- 
tiguous partitions of the real line. 

Counterexample Assume a uniform prior. Let crx = ay — 
\i = rj = 1 and axy = — 1, so that (X, Y) lies on a straight line 
with probability 1 under each hypothesis. It can be shown 
that every contiguous binary partition of the real line is out- 
performed by noncontiguous one. 

Remark The above counterexample clearly represents an ex- 
treme case where either of the local observations is a sufficient 
statistic for centralized testing. The same effect, however, can 
be obtained by choosing axy ss — 1 and applying a continu- 
ity argument. A nondegenerate counterexample can then be 
constructed. 

Theorem 2 Let ß — r] and crx = ay. If the local quantiz- 
ers are constrained to be binary contiguous partitions of the 
real line, then the optimal quantizer pair employs the same 
threshold in both quantizers. 

In conjunction with Theorem 1, the above theorem implies 
the following corollary. 

Corollary 1 Let the signal and noise models be symmetric. If 
<rxy > 0, then an optimal solution exists in which both quantiz- 
ers use the same contiguous partition of the observation space. 

[1] 
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ABSTRACT - In this paper we report on some progress 
towards a solution for the assignment problem in coding, ie the mapping 
of information words onto codewords at the encoder, and the 
computationally more difficult problem of mapping codewords onto 
information words at the decoder. 

I. INTRODUCTION 

The assignment problem is still unsolved for many classes of constrained or 
nonlinear codes [1-7], including some recording codes developed in recent 
years [2]. A few previous approaches have been based on applying techniques 
such as Pascal's triangle [1,2] or mapping block codes onto trellises [3]. 

Previously, we investigated the assignment problem for constrained codes 
with short symbol lengths, in order to minimize error extension at the decoder 
[8]. In this paper, we consider longer codeword lengths and focus on 
designing a mapping algorithm feasible for implementation when a single 
lookup table for mapping codewords onto information words, becomes too 
large to implement. 

Traditionally, coding and mapping algorithms have been based on 
computations which can be modeled as integer manipulations. The mapping 
algorithm that we propose in this paper, exploits the capability of modem 
digital circuits to handle rational numbers. It can be implemented with 
magnitude comparison of integers and two lookup tables, which are for many 
codes of interest much smaller than the abovementioned single lookup table. 
For each codeword, a moment with rational weights is computed, similar to 
the moment computed in the Varshamov-Tenengorts construction [7], or 
when constructing higher-order spectral null codes [2]. If necessary, this 
computation can be implemented as arithmetic multiplication and division of 
integers. 

n. ALGORITHM 

Consider the mapping of codewords onto information words at the decoder 
of an (n,k) binary block code. An exhaustive lookup table requires a memory 
of size 2", and it may be infeasible to implement. We propose a decoder with 
memory upperbounded by 2* * '/n. Our algorithm is thus of interest when 
decoding codes where a memory of 2* * '/n is feasible to implement, while a 
memory of 2" is infeasible. For example, many constrained, constant weight, 
or nonlinear codes of interest have R = k/n - 1/2 and k <. 20 [2,4,5,6]. 

When setting up the decoder, we start with the set of 2* n-bit codewords, 
x =( x, x„), which are ordered using the standard lexicography of n-bit 
binary numbers. Next, we partition the codebook into 2*/n subsets of 
consecutive codewords, each with cardinality upperbounded by n. For each 
subset, we set up a system of n linear equations as follows. For the A'th 
codeword, JC\ we set 

>1 

(1) 

where h is the integer representation of the information word onto which 
this codeword is mapped. We now use the set of n linear equations to solve 
a set of weights [a,] for each subset of codewords. These sets of weights are 

stored in Table A of dimension 2*/n at the decoder. A second lookup table of 
dimension 2/fo at the decoder, Table B, is used to store the lexicographically 
last codeword of each subset. 

When mapping a codeword onto an information word, the decoder compares 
it to the entries in Table B, to determine which entry from Table A should 
be used to compute the information word, using (1). 

While the algorithm is thus conceptually simple, it may present interesting 
algebraic or combinatorial problems when taking advantage of the structure 
inherent in many codebooks. For some classes of codes, each codeword's 
complement is also in the codebook or the codebook can be partitioned into 
codebooks with words which are identical, except for different prefixes. In 
these cases, it is possible to reduce the size of the lookup tables at the 
decoder. The memory requirements may be reduced, or the necessity of 
accessing the entries in Table B sequentially, may also be precluded, using 
tree searches. 

Hi. CONCLUSIONS 

Many interesting classes of constrained, constant weight, or other nonlinear 
codes, have previously been constructed in the literature. While the useful 
properties of these codes have been proved, the difficult problem of mapping 
codewords onto information words, is often not addressed. With this paper, 
we hope to contribute towards a general approach to solve this problem. 
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Abstract — In this talk we consider real-time non- 
parametric algorithms for nonstationarity detection 
and SVD updating based on Jacobi rotations. We 
propose two schemes which improve the overall per- 
formance when the rate of change of the data is high. 
In the "variable rotational rate" scheme, the number 
of Jacobi rotations per update is dynamically deter- 
mined. In the "variable forgetting factor" approach, 
the effective width of the observation adjusts to the 
data nonstationarity. 

I. INTRODUCTION 

In this talk, we investigate the algorithmic and architectural 
relationships among the input update rate, the rate of con- 
vergence of the Jacobi-SVD algorithm, and the quality of the 
SVD processed outputs. This approach provides new insights 
on the selection of forgetting factors needed in adaptive signal 
processing. We also obtain a real-time, nonparametric non- 
stationarity indicator of the observed data in terms of their 
singular value behavior. The proposed algorithm has been ap- 
plied to problems in DOA estimation, speech segmentation, 
and linear prediction. 

II. THE JACOBI SVD ALGORITHM 

Given the computed matrices Um, Em, Vm 

• application of forgetting and vector projection 

• QR updating 

0 QH m+l 
>-m+l 

£C+i «" (U
Q     J 1 Om+i. Qm+i 6 C("+1>*("+1>, orth. 

• Jacobi rotations (rediagonalization) 

for k = 1,..., £; for i = 1,..., n — 1 
Apply a Jacobi rotation to rows and 
columns i and i + 1 of Sm+i 
Propagate the rotations to Um+i and Vm+i 

end 

The QR and the Jacobi rotation steps can be implemented on 
a parallel/systolic architecture [3]. 
Variable Rotational Rate Scheme. For sufficiently slowly 
changing data, a slowly updating implementation of the Ja- 
cobi SVD algorithm produces the same (or better) estimates 
than a higher throughput implementation, for equal computa- 
tional rate [1]. When the data variation increases, a higher up- 
dating rate with no computation rate increase produces com- 
puted singular matrices which are far from convergence. The 
idea we explored is to "decouple" the updating rate from the 
speed at which rotations are computed ("rotational rate"). 

1This work is supported by NASA/Dryden grant NCC 2-374. 

Consider the QR factorization required by the updating al- 
gorithm, where T,'m is upper triangular. In order to give an 
estimate to the number of Jacobi rotations needed to diago- 
nalize T,'m, what is of interest is the amount of fill-in in the 
submatrix of T,'m This is in turn related to the value am+i = 
||sm+iV£||/||sm+i||, m = 0,1,..., where Vm = (V£, V£), and 
Xm+i is the incoming vector. The quantity am+i represents 
the degree of nonstationarity of the incoming data and is easily 
computed in the Jacobi algorithm. 

From our analysis of the initial convergence behavior of the 
Jacobi SVD algorithm, as well as the behavior of the off-norm 
of H'm in time, we propose the following variable rotational 
rate scheme, for medium to high SNR, noise power o^, and 
numerical rank = r: 
1) Compare the nonstationarity indicator to a threshold p, 
function of <rN. 2) If am+i < p, then choose a value for £ not 
smaller than r. Otherwise choose £ > n. 3) Choose a high 
enough forgetting factor, which guarantees that the diagonal 
elements of Sm are sufficiently large (cf. below). 
Variable Forgetting Scheme. We have also studied the re- 
lationship between the data variation an the forgetting factor. 
SVD tracking requires narrower observation windows, as the 
rate of data variation increases. If it is required that the num- 
ber of Jacobi rotations which rediagonalize £' be kept low, 
then the amount of fill-in produced by the QRD step has to 
be limited. This is achieved by setting a minimum value for 
ß. The proposed variable forgetting scheme is summarized as: 
1) Determine at every time instant the duration of the sta- 
tionarity window, JVW. 2) Given a threshold b, compute ß so 
that ß1*™ < b. 3) Make sure that ß is not too small, ß > /?min. 
Compute ß as ß — max {61'JV™,y8min}- 

The proposed SVD updating algorithm can find application 
in many situations, such as beamforming, adaptive filtering, 
DOA tracking, speech processing (segmentation, glottal clo- 
sure detection), adaptive parameter estimation [1]. In all the 
cases considered, the algorithm promptly detects signal non- 
stationarities, whether in amplitude or phase. The ability to 
track data variability is exploited for real-time adaptation of 
the SVD updating algorithm, thereby producing more accu- 
rate estimation of singular values/subspaces. In certain appli- 
cations, such as speech segmentation, the proposed algorithm 
can be used with the double function of detecting data tran- 
sitions (voiced to unvoiced) and computing the desired filter 
parameters. This algorithm can be implemented on a parallel 
(systolic) processor with relative ease. 
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Abstract — We consider the LMS estimation of a 
channel that may be well approximated by an FIR 
model with only a few nonzero tap coefficients within 
a given delay horizon or tap length n. When the num- 
ber of nonzero tap coefficients m is small compared to 
the delay horizon n, the performance of the LMS es- 
timator is greatly enhanced when this specific struc- 
ture is exploited. We propose a consistent algorithm 
that performs identification of nonzero taps only. 

I. INTRODUCTION 

In various adaptive estimation applications, the unknown 
channel is characterized by an impulse response which con- 
sists of extended regions of negligible response or 'inactivity'. 
Examples include circuit echo paths within 4-wire loop tele- 
phony networks, which typically show initial inactive regions 
within their impulse responses, and room acoustic echo paths 
and mobile radio channels which typically show impulse re- 
sponses having many inactive regions interspersed by 'active' 
or nonzero regions. Our aim is to develop a technique which 
discriminates between the active and inactive regions of such 
channels and to subsequently LMS estimate only the active 
regions of the channel. 

II. SYSTEM DESCRIPTION 

Assumption 1: Unknown channel is linear, time invariant and 
is adequately modelled by a discrete-time FIR filter 0(z_1) 
with a maximum lag of n sample intervals. 
Assumption 2: Only m<n of the taps of 0(z-1) are nonzero. 
Assumption 3: All signals are sampled. At sampling instant k: 
u(k) is the signal input to the unknown channel and the chan- 
nel estimator; an additive disturbance, s(k), occurs within 
the unknown channel; and y(k) = U(k)T0 + s(Jt) is the ob- 
served output from the unknown channel, where 0 is the n tap 
unknown channel tap vector and U(k) is the n tuple vector 
containing the last n input samples. 
Assumption 4: (i) The input signal and disturbance signals 
are zero mean bounded wide sense stationary, (ii) The input 
and disturbance signals are uncorrelated with each other over 
time, (iii) The n x n input signal covariance matrix R is pos- 
itive definite, (iv) The input signal is uncorrelated over time 
('white'). 

III. ACTIVE TAP DETECTION 

The aim is to determine the positions of the m nonzero 
elements of 0. The approach taken is to minimize the 

Least Squares cost function VN(6(N)) = EjliM*) - 

U(k)T6(N))2]/N under the restriction that all but m elements 

lThe authors wish to acknowledge the funding of the activit- 
ies of the Cooperative Research Centre for Robust and Adaptive 
Systems by the Australian Government under the Cooperative Re- 
search Centres Program 

of 6 are zero. In general, this requires the calculation and 
comparison oiVN(6(N)) for (n)!/[(m)!(ra - m)!] different tap 
combinations. For signals u(k) and s(Jfe) which satisfy the as- 
sumptions above, we can show that, for sufficiently large N, 
the LS cost function VN(6(N)) can be approximated by a cost 
function in which the contribution of each tap is decoupled 
from the rest. This leads to the following result. 
Result 1 Subject to the validity of the assumptions 1-4, then, 
for sufficiently large N, the positions of the m most active taps 
of the FIR modelled unknown channel are given by the indices 
corresponding to the m greatest values of: 

*"0") = ElLi+i **M* - j)n/EHi+1 *2(* - ;)]• 

To enable a tap of the unknown channel to be classed as 
'active' or 'inactive', rather than just more or less active re- 
quires a threshold to be developed for the tap activity measure 
XN{J). This is achieved by considering a structurally consist- 
ent version of the LS cost function: 
WN((9(N)) = VN(Ö(N)) + Cmlog(N)/N, 
where m is the number of active taps to be determined, C 
is a constant independent of m,N. Through an extension of 
Result 1 above and application of work by Donoho cited in 
[1], we obtained the following result. 
Result 2 Subject to the validity of the Assumptions 1-4, then, 
for sufficiently large N, the positions of the active taps of the 
FIR modelled unknown channel are given by the indices j for 
which: XN(J) > cr\logN, where a\ is the variance of y(k). 

Simulations demonstrate that this tap activity criterion 
leads to fast detection of the active taps of the unknown chan- 
nel 

IV. LMS ESTIMATION VIA DETECTION 

• Determine at each sample interval k the indices which sat- 
isfy the active condition Xj(k) > (Tj(fc)log(fc), where &l(k) is 
an estimate of cr^. 
• For sample interval k (i) LMS update those taps in the 
LMS estimator which correspond to the active tap indices (of 
sample interval k); (ii) apply an exponentially decaying (for- 
getting) function to the remaining taps (corresponding to the 
inactive tap indices of sample interval it). 
This structural detection LMS algorithm can be easily modi- 
fied to obtain an NLMS version. 

Simulations demonstrate that the structural detection 
LMS/NLMS algorithms provide considerably better asymp- 
totic/transient performance, respectively, than the standard 
LMS/NLMS algorithms in which full parametrization is used. 
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Abstract — We show that the family of maximal fixed- 
cost codes, with codeword costs defined in a right- 
cancellative semigroup, have biproper trellis presen- 
tations. Examples of maximal fixed-cost codes include 
such "nonlinear" codes as permutation codes, shells 
of constant Euclidean norm in the integer lattice, and 
of course ordinary linear codes over a finite field. The 
intersection of two codes having biproper trellis pre- 
sentations is another code with a biproper trellis pre- 
sentation; therefore "nonlinear" codes such as lattice 
shells or words of constant weight in a linear code 
have biproper trellis presentations. 

I. BIPROPER TRELLIS PRESENTATIONS 

A proper trellis presentation for a block code C is one in which 
the set of edges emanating from any trellis vertex are labelled 
distinctly [l]. A "biproper" trellis is a proper trellis that re- 
mains proper when the direction of all trellis edges is reversed. 
Although not all codes have biproper trellis presentations [2], 
when a code has a biproper trellis presentation, the fortu- 
nate circumstance arises in which the biproper trellis simul- 
taneously minimizes the vertex count at each time index, the 
trellis presentation is unique (up to relabeling), the trellis is 
one-to-one, and subtrellises are also biproper. In the language 
of dynamical systems theory [3], codes with biproper trellises 
have a well-defined and unique minimal state realization. 

Let C be a code of length n, i.e., a set of n-tuples. The 
following conditions are equivalent: 

1. C has a biproper trellis presentation. 
2. C forms a rectangular relation [2] at each time index. 
3. For fixed partition (—, —) of codewords into "past" and 

"future" [3], if (a, d) £ C and (a, c) £ C and (6,c) £ 
C implies (b, d) £ C for all possible (not necessarily 
distinct) choices of a, b, c, d. 

4. Any of six further equivalent conditions of Willems [4] 
as paraphrased by Forney and Trott [3, p. 1500]. 

Example. Let C be a group code regarded as a block 
code of length two, in which the coordinate p (resp., /) 
of a codeword (p, f) represents the entire past (resp., fu- 
ture) of that codeword. Suppose c\ = (a,d), C2 — {a,c), 
and C3 = (b,c) are codewords. The combination cicJ1C3 = 
(o, d)(a~1, c_1)(6, c) = (b,d) must also be a codeword, hence 
the code satisfies condition (3). Since the split into past and 
future can be done at an arbitrary time index, the code has a 
unique minimal state realization at each time index. 

The purpose of this paper is to introduce a wider class of codes 
that also satisfy the equivalent conditions listed above. 

II. MAXIMAL FIXED-COST CODES 

Let 5 be a right-cancellative semigroup, i.e., a semigroup in 
which ai = bx implies a = b for all a, b, x £ S.   Let A be a 

product A\ x A2 x • • • X An of symbol alphabets, and define 
"cost functions" ßi : Ai —+ S that associate an element of 5 
with each symbol a; £ Ai. Define the "cost" ß(&) of an n- 
tuple a = (a\,..., a„) £ A as the product (in 5) of coordinate 
costs, i.e., 

Ii(ai,a2,...,a„) = ^1(01)^2(02) ••• ßn(a-n)- 

Similarly, for a fixed partition of an element of A into past 
p = (01 o,-) and future / = (a;+i,..., a„), define ß(p) = 
/xi(oi) ■■■ ßi(ai) and //(/) = ßi+i(ai+1)- ■ ■ ßn(an)- 

For a fixed cost s £ S, define the maximal fixed-cost code 
Ms = {a £ A : ß(a) = s} to be the set of all possible n-tuples 
from A having cost s. 

Theorem. Ms has a biproper trellis presentation. 

Proof: For fixed partition of codewords into past and fu- 
ture, let (o, d), (a,c), and (b, c) be codewords in Ms- Then 
ß(a)ß(c) = ß(b)ß(c). By right-cancellation, ß{a) = ß(b); 
therefore, ß(a)ß(d) = ß(b)ß(d) = s. Since ß(b, d) = s, and 
Ms is maximal, (b, d) is a codeword. Thus Ms satisfies condi- 
tion (3). 

III. EXAMPLES 

1. Let Ai = GF(q), let H = [hi,..., h„] be an r x n 
matrix with columns hi having entries from GF(q), and let 
S — GF(q)r be the vector space of r-tuples over GF(q). For 
1 < i < n, define ßi(x) = x ■ hi. Then ß(a) = &HT, and Mo 
is the linear code with parity-check matrix H. 

2. Let Ai = {0, 1}, let S — No be the monoid of non-negative 
integers under addition, and define ßi by ßi(0) = 0; ßi(l) = 1. 
Then, for any block length n, Mw is the set of binary n-tuples 
of Hamming weight w. 

3. Let Ai = Z, let S = No, and define ßi by ßi(x) = x2. 
Then, for any block length n, Mw is the set of integer n-tuples 
of squared norm w, i.e., a shell in the integer lattice Z". 

4. Let Ai — {ai,..., ac}, let S = NQ, the direct product of c 
copies of No. Define ßi by ßi(ai) = e* = (0,.. ., 0,1, 0,..., 0) 
where e; is the unit vector nonzero only in coordinate i. Then 
M(mi,...,mc) is the permutation code obtained by permuting 
the vector of "shape" (0J"1,..., a™°) in all possible ways, 
where a™' denotes the m,-tuple (ai,ai,... ,ai). 
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Abstract — We present a polynomial-time algorithm 
which produces the optimal sectionalization of a given 
trellis T for a block code C in time 0(n2), where n 
is the length of C. The algorithm is developed in 
a general setting of certain operations and functions 
defined on the set of trellises; it therefore applies to 
both linear and nonlinear codes, and accommodates 
a broad range of optimality criteria. The optimality 
criterion based on minimizing the number of opera- 
tions required for trellis decoding of C is investigated 
in detail: several methods for decoding a given trellis 
are discussed and compared in a number of examples. 
Finally, analysis of the dynamical properties of opti- 
mal sectionalizations is presented. 

I. INTRODUCTION 

It is now well-known [2, 3] that every linear block code may be 
represented by a trellis, which can be employed for maximum- 
likelihood decoding of the code with the Viterbi algorithm or 
variants thereof. The complexity of a given trellis is usually 
expressed in terms of parameters such as the number of states 
and/or branches it contains. While, indeed, these parameters 
govern the complexity of trellis decoding, in many cases this 
complexity may be reduced with an appropriate sectionaliza- 
tion of the trellis. By a sectionalization we mean the choice of 
the symbol alphabet at each time index: for a given order of 
the time axis I, the sectionalization shrinks I at the expense of 
increasing the code alphabet [2]. A wide variety of such gran- 
ularity adjustments is possible, and each may substantially af- 
fect the decoding complexity. For a given code C of length n 
and a given order of its time axis X, a specific sectionalization 
of its trellis T is determined by the set {ho,h\,...hv} C X 
of section boundaries, where h0 = 0 < h\ < ••• < h„ = n. 
Clearly, there are 2n_1 possible ways to select the section 
boundaries, and the sectionalization problem consists of find- 
ing the optimal choice among the 2n_1 possibilities. Examples 
of specific 'good' sectionalizations for particular codes may be 
found in [2, 3] among other works. However, at the present 
time, finding the best sectionalization is more akin to 'art' 
than to exact science: no systematic method for finding the 
optimal sectionalization of a given trellis is presently known. 

II. THE SECTIONALIZATION ALGORITHM 

In this work, we present a complete solution to the general sec- 
tionalization problem. Namely, we describe a polynomial-time 
algorithm which produces the optimal sectionalization from a 
given generator matrix of the code. The algorithm is devel- 
oped in a general setting of certain operations and functions on 
the set of trellises. In particular, we generalize to some extent 
the usual definition of a trellis. We then define the operations 
of composition and amalgamation of trellises. This enables 
us to consider a class of functions defined on the set of trel- 
lises, that satisfy a certain linearity property with respect to 

•This work was supported by the NSF Grant NCR-9501345 

the composition operation. We then seek a sequence of amal- 
gamations and compositions that minimize the value of an 
arbitrary given function from this class. We show that finding 
such a sequence is equivalent to finding the minimum-weight 
path in a certain weighted digraph. This may be accomplished 
using the well-known Dijkstra algorithm [1]. Thus, to find the 
sectionalization of a given trellis T which minimizes the value 
of an arbitrary given function F(T), we construct the corre- 
sponding sectionalization digraph (/, and then apply a variant 
of Dijkstra's algorithm to Q. 

III. EXAMPLES 

The general sectionalization algorithm described above applies 
to both linear and nonlinear codes and easily accommodates 
a broad range of optimality criteria. However, herein, we fo- 
cus on the optimality criterion based on the total number of 
real additions and comparisons required for decoding the trel- 
lis. This criterion conforms to the well-estabbshed tradition 
of counting decoding complexity [2, 3]. For instance, for the 
(24,12,8) binary Golay code C24, we obtain the sectionaliza- 
tion with boundaries at 0,8,16, 24, which coincides with the 
one given by Forney [2] and proves that this sectionalization 
is indeed optimal for trellis decoding of C24. The number 
of decoding operations we obtain for this sectionalization is 
1339, which is slightly less than the number reported by For- 
ney in [2], and considerably less than the complexity of the 
earlier algorithms. Notably, all the previous Golay decoders 
have been specifically 'tailored' for Cu, whereas our decoder 
is the output of a general-purpose computer program which 
applies uniformly well to any linear code. Other examples 
include Reed-Muller codes, BCH codes, Shearer codes, and 
quadratic-residue codes. In particular, for all the primitive 
BCH codes of length < 64 we improve upon the decoding 
complexities reported in [3]. 

IV. DYNAMICS OF OPTIMAL SECTIONALIZATIONS 

Although our algorithm readily produces the optimal section- 
aUzation, it provides little insight as to how it relates to the 
dynamical properties of the code. Thus, we also investigate, 
under certain simplifying assumptions, the dynamics of opti- 
mal sectionalizations. For instance, we show that if the di- 
mensions of both past and future subcodes change at a given 
position i € I, then t is necessarily a section boundary in the 
optimal sectionalization. Furthermore, in any section of the 
optimal sectionalization the dimension of either the past or 
the future or both must be constant. 
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Abstract — We present a new lower bound on the 
state-complexity of linear codes, which includes all the 
existing bounds as special cases. For a large number 
of codes this results in a considerable improvement 
upon the DLP bound. Moreover, we generalize the 
new bound to nonlinear codes, and introduce several 
alternative techniques for lower bounding the trellis 
complexity, based on the distance spectrum and other 
combinatorial properties of the code. We also show 
how our techniques may be employed to lower bound 
the maximum and the total number of branches in the 
trellis. The asymptotic behavior of the new bound is 
investigated and shown to improve upon the known 
asymptotic estimates of trellis complexity. 

I. INTRODUCTION 

The trellis state-complexity of a linear code C over GF(q) is 
defined as s = maxigi {logq \Si\ }, where Si is the set of states 
at time i € 1 in the minimal trellis for C. Perhaps the earliest 
known lower bound on s is due to Muder [4]: for an (n, k, d) lin- 
ear code s > &-min;ex {K{i,d) + K(n - t, d)}, where K(n,d) 
is the largest possible dimension of a linear code of length n 
and minimum distance d. This bound was improved by several 
authors, giving s > k — min;6x {k(i; C) + k(n—i; C)}, where 
k(i;C) is the dimension-length profile (DLP) of C, i.e., the 
maximum dimension of any subcode of C of support size *. All 
these bounds are based on the common idea of dividing the 
time axis for the code into two sections — the past and the fu- 
ture, and then bounding the dimension of the resulting state- 
space using any of the known upper bounds on the dimension 
of the past and future subcodes. In [3] we have recently de- 
rived a conceptually different bound s > \k(d — 1)/«!, based 
on dividing the time axis into \n/(d— 1)] sections, and using 
the fact that there can be no parallel transitions in a trellis 
section of length less than d. 

II. LOWER BOUND ON STATE COMPLEXITY 

In this work we present a new lower bound on s, which includes 
all the existing bounds as special cases. The new bound is 
obtained by partitioning the time axis for C into several - 
that is, generally more than two - sections and then selecting 
the partition which yields the best lower bound. 

Theorem 1. Let h,h,...h be any set of positive integers, 
with h + h + rh = n. Then 

s   > 
'fc-fc(/i;C)-fc(fe;C)- k(lL;C) 

L-\ 

For great many codes this results in a substantial improve- 
ment upon the DLP bound. We have applied the proposed 
technique to all the 8128 best known binary linear codes of 
length < 128, and obtained over 3400 improvements over the 
DLP bounds. For a complete summary of our results, send 
e-mail to trellisCgolay.csl.uiuc.edu. 

•This work was supported by the NSF Grant NCR-9409688 

III. BOUNDS ON BRANCH AND EDGE COMPLEXITY 
Trellis branch-complexity was denned by Forney in [1] as 
6 = max;gzb;, where 6, is the logarithm of the number of 
branches in the trellis section corresponding to time i € X. The 
state-complexity bounds of Theorems 1 and 2 can be trans- 
lated into a lower bound on b, which is often much tighter 
than the obvious statement b> s. 

Theorem 3. Let h,h,...lL be positive integers, such that 
h+h + --- + h=n-L + l. Then 

b > 
k-k(h;C)-k(l2;C) k(lL;C) 

L-\ 

The new bound on branch-complexity was again applied to all 
the best-known binary linear codes of length < 128, yielding 
over 3300 improvements over the DLP bound. Notably, in 
2621 out of the 3300 cases, the lower bound on b is strictly 
greater than the lower bound on s. In addition, we derive 
lower bounds on the total number of branches in the trellis — 
the trellis edge-complexity E(C) as defined in [2]. The bounds 
follow by solving a nonlinear integer programming problem 
with linear constraints, which arise from the general relations 
between the values of bi derived in the proof of Theorem 3. 

IV. ASYMPTOTICS 
As shown in [3], for a sequence of codes of increasing length n, 
with rate fixed at R and relative minimum distance fixed at 
d/n = S, the state-complexity is bounded by c\n < s < C2« 
for some constants c\ and ci independent of n. The results 
of [3] establish c\ > 6R, while the work of [5] shows that 
a > R - ßmax(2<5), where flmax(-) is the function describing 
the JPL upper bound. Herein we prove 

Theorem 4. 
L = 2,3,..., 

Let <; = s/n.    Then for n 

R — Rm&xy 

oo and for ail 

> <(LS) 

The theorem produces a countably infinite family of lower 
bounds on c, and it is easy to see that the apparently dissimilar 
bounds of [3] and [5] are in fact the extreme members of this 
family corresponding to L = 2 and L ~ l/S, respectively. 

REFERENCES 

[1] G.D.Forney,Jr., "Dimension/length profiles and trellis com- 
plexity of linear block codes," IEEE Irans. Inform. Theory, 
vol.40, pp. 1741-1752, 1994. 

[2] A.B.Kiely, S.Dolinar, R.J.McEliece, L.Ekroot, and W.Lin, 
"Trellis decoding complexity of linear block codes," preprint. 

[3] A. Lafourcade and A. Vardy, "Asymptotically good codes have 
infinite trellis complexity," IEEE Trans. Inform. Theory, vol. 41, 
pp. 555-559, 1995. 

[4] D.J. Muder, "Minimal trellises for block codes," IEEE Trans. 
Inform. Theory, vol.34, pp. 1049-1053, 1988. 

[5] V.V. Zyablov and V.R. Sidorenko, "Bounds on complexity of 
trellis decoding of linear block codes," Problemy Peredachi In- 
formatsii, vol.29, pp.3-9, 1993, (in Russian). 

124 
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Abstract — The growth of trellis diagrams of lattices 
versus their coding gain is studied. It is established 
that this growth exponentially in terms of the coding 
gain. 

I. INTRODUCTION 
The issues of trellis complexity have recently attracted wide 
attention. In this direction, many authors have studied the 
relations between trellis complexity, the minimum distance 
and the dimension of linear block codes. This work reports a 
parallel development for lattices. 

II. PRELIMINARIES 
Let C denote the set of all lattices having a finite trellis dia- 
gram. Let Lg£ and n denote the dimension of L. Let C(L) 
denote the category of all the finite trellis diagrams for L, then 
C(L) is nonempty. Let S and B denote the minimum number 
of states and branches, respectively, of elements of C(L). Con- 
sider the sum of the cardinality of the label groups for each 
element of C(L) and let G denote the minimum of these sums 
in C(L). Define <S(L), the average state trellis complexity of 
L, to be (S — l)/n and B(L), the average branch trellis com- 
plexity of L to be B/n. Define G(L), the average label group 
complexity of L to be G/n. For any lattice L, let S(L) denote 
the coding gain of L. Then 
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Ti (T)    = =    inf{S(L) | 8{L) > 7 and L G £}, 

T2(7)    = =    inf{B(L) | S(L) > 7 and L G £}, 

T3(7)     = =    inf{Q(L) | 8(L) > 7 and L G £}, 

referred to as the state trellis complexity, the branch trellis 
complexity and the label trellis complexity functions respec- 
tively. 

Since % ,i = 1,2,3, represent the best trade-off between 
trellis complexity and gain, it is essential to establish bounds 
on the behavior of these functions. 

In [1] these results are established. 
1: % = 1 + CjZn(7) for Ci, i = 1, 2, 3 constants, whenever 

the coding gain is close to 1. 
2: T\ and Tj grow exponentially when 7 is large. 
3: Tz grows at most linearly. 
4: ^1(7) > (l/yr)T/2,r = 1,2,3,..., where jr denotes the 

coding gain of the densest lattice in r dimensions. 
5-T2(7)>7(r+1)/2/7,r/2,r = l,2,3)... 
6- T\   is bigger than any of the DLP bounds evaluated at 

7- 
7- A random coding argument was then applied to show 

that the bounds given above cannot be much improved. 
The above results imply that the Viterbi algorithm, applied 

to the trellis diagrams of lattices, have exponential running 
time.  

xThis work was supported by the National Sciences and Engi- 
neering Research Council of Canada grant number A7382. 
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Abstract — In this paper we present a systematic 
method for combining rotational invariance and punc- 
tured codes for use with TCM, and discuss a new per- 
spective on the class of punctured codes. 

I. INTRODUCTION 
Trellis coded modulation (TCM) based QAM systems, such 

as those found in the V.32 and V.34 telephone modem stan- 
dards, incorporate rotational invariance to provide benefits 
with respect to absolute phase reference and phase noise pro- 
tection. In binary convolutional code based QPSK systems, 
the computational savings and code rate flexibility of punc- 
tured coding is well known and used to great advantage. How- 
ever, these systems do not maintain rotational invariance and 
suffer from the lack of this property. 

Until recently, a systematic method of combining both rota- 
tional invariance and puncturing in a general framework was 
unknown. In this paper we present a rotationally invariant 
encoding/uncoding structure that can use punctured codes. 
Parts of this work are related to [4, 5]. 

II. BACKGROUND 

Rotationally invariant (RI) trellis codes are important 
whenever the modulation signal set has a two-dimensional ro- 
tational symmetry and the transmission system can introduce 
a phase ambiguity at the receiver. A trellis code is RI if the 
componentwise rotation of a code sequence is always another 
code sequence in the code (cf., [1]). RI trellis codes with RI 
encoders/uncoders are highly desirable as a method of han- 
dling 90° phase ambiguities as they have the property that 
the output of the uncoder for any codeword is the same as the 
output when the codeword is first rotated by 0°, 90°, 180° or 
270° before being presented to the uncoder. 

A punctured convolutional code is a high-rate code ob- 
tained from a lower-rate code by periodically eliminating, i.e., 
"puncturing" specific symbols from the lower-rate codeword 
[2, 3]. The resulting punctured code depends on both the orig- 
inal code, and on the number and locations of the symbols to 
be deleted. 

III. TRELLIS CODING 

This work describes a method of encoding, using any trans- 
parent binary convolutional code (BCC), that results in a RI 
trellis code for applications to QPSK and QAM modulation. 
This method incorporates three components: (1) a transpar- 
ent BCC (2) a 2 dimensional signal space labeling and (3) a 
precoding/postcoding function. 

Transparent codes and transparent encoders/uncoders are 
highly desirable as a method of handling 180° phase ambigui- 
ties. A BCC is said to be transparent if the compliment of any 

1This work was supported in part by NSF grant NCR-9207331 
and by the United States Army Research Office through the Army 
Center of Excellence for Symbolic Methods in Algorithmic Mathe- 
matics (ACSyAM), Mathematical Sciences Institute of Cornell Uni- 
versity, Contract DAAL03-91-C-0027. 

2erl4@cornell.edu, rowe@ee.cornell.edu, heegard@ee.cornell.edu 

codeword is always a codeword. Every transparent code has 
a transparent encoder/uncoder with the property that even if 
the codeword is complemented the uncoder will produce the 
correct sequence. 

The QPSK and QAM signal sets need to be labeled in such 
a way that: (1) the two least significant bits, (Ij, Qj), satisfy 
(Ij, Qj) —» (Qj, Ij) under 90° rotation and (2) the remaining 
most significant bits are invariant to 90° rotation. 

The following mapping describes the required precoder/ 
postcoder structure. Precoder equations: 

Xj     =    WJ +Xj~i + Zj(xj~i + yj-i), 

yj     =    ZJ + Wj + yj-i + Zj(xj-i + 2/j-i). 

Postcoder equations: 

Wj    =    Xj + yj_i + (XJ + yj)(xj-! + yj-i), 

Zj     =    Vi + Xj + yj-i + Xj-i. 

Note that: (1) the postcoder inverts the precoder, (2) the 
output of the postcoder is the same under the map (xj,yj) —> 
(yj, Xj) (or any integer power of this map), (3) the postcoder 
function is feedback free and thus limits error propagation. 

In the encoder, the two binary outputs of the precoder 
are independently encoded with separate transparent BCC 
encoders. The BCC outputs, along with the remaining un- 
coded (or parallel edge) information, are combined to select 
the QAM constellation point to be transmitted. The mapping 
is such that (1) the BCC outputs independently select the LSB 
of the I and Q components and (2) parallel edge information 
is RI. 

By using the above encoding method with transparent 
punctured BCCs, the resulting structure is a punctured, rota- 
tionally invariant trellis code. The cost of this technique is a 
doubling of data memory in the viterbi decoder. 

We will also present an alternative view of punctured codes 
from the perspective of multirate systems. 
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Abstract — This summary outlines certain results 
about trellis structures of linear block codes that 
achieve the highest speed of decoding while satisfying 
a constraint on the structural complexity of the trel- 
lis in terms of the maximum number of states at any 
particular depth. An upper bound on the number of 
parallel isomorphic subtrellises in a proper trellis for a 
code without exceeding the maximum state space di- 
mension of the minimal trellis of the code is derived. 
The complexity of VLSI implementation of a Viterbi 
decoder based on an i-section trellis diagram for a 
code is analyzed and certain descriptive parameters 
are introduced. It is shown that a VLSI chip Viterbi 
decoder based on a non-minimal trellis requires less 
area and is capable of operation at higher speed than 
one based on the minimal trellis when the commonly 
used ACS-array architecture is considered. 

I. INTRODUCTION 

Much effort has been expended on minimizing the num- 
ber of states in a trellis for a block code by considering all 
possible permutations of the bits of the code and also on min- 
imizing the number of operations required to decode a received 
vector using a trellis for the code. If decoding is performed 
using a stored program that is executed sequentially, then this 
approach will lead to the fastest speed of decoding. However, 

if decoding is performed using a VLSI chip, then the above 
approach fails and an alternative approach is more suitable. 
Given a constraint on the amount of hardware (determined 
by the number of states and the complexity of branches) in 
the decoder, decoding must be done as fast as possible; 
not with as few computations as possible. In [3], we 
have derived properties of the structure of this non-minimal 
trellis which show that a non-minimal trellis implementa- 
tion requires less area in the VLSI chip than the minimal 

trellis implementation when the prominent ACS-array archi- 
tecture is assumed [2]. 

II. CONSTRAINED PARALLELISM 

We show how to build a trellis for a linear block code 
which is a disjoint union of certain desired number of parallel 
isomorphic subtrellises. Although this trellis is not minimal, 
its state space dimension at every depth is less than or equal to 
the maximum state space dimension of the minimal trellis. Let 
{so, SM, ..., SLM} denote the state dimension profile (SDP) of 
the I-section, M bits/section minimal trellis of a (TV, K) linear 

block code C and smax,L(C) be the largest among them. Let 
G be the trellis oriented generator matrix of an (N, K) linear 

block code C [1]. Let r = (n, r2>. .., rN) be a typical row of 
G.   Then, we define the span of r, denoted span(v), to be 

the smallest interval [i,j], 1 < i < j < N which contains all 

the non-zero elements of r. For a row r whose span is [i,j] we 

also define an active span of r, denoted aspan(r), as [i,j-l] 
if i < j and aspan(r) = <j> if i = j. Define the non-empty set, 

/max(C) = {I :  a,(C) = «m„,i(C)} (1) 

Let .R(C) be the following subset of rows of G, 

Ä(C) = (r£G: ospan(r) D /max(C)} (2) 

Let d = \R(C)\ where \Q\ denotes the cardinality of any finite 
set Q. 

Theorem 1: With R(C) defined as above and d = |Ä(C)|, 
let 1 < d' < d. There exists a subcode C' of C such that 
•Smax,z,(C) = smax,L(C) - d' and dim (C) = dim(C) - d' 
if and only if there exists a subset R' C Ä(C) consisting 
of d' rows of R(C) such that for every / satisfying si(C) > 

amax,t(C), there exist at least s((C) - smax,i(C') rows in R' 
whose active spans contain /. The set of coset representatives 
[C/C] is generated by R'. 

The utility of the above theorem is that it 
shows how to choose a subcode C of C with «maXli(C') = 
Smax,i,(C) - dim ([C/C']), such that a non-minimal trellis T 

for C with maximum state space dimension smax,L(C) and 

which is the union of 2 'm L J parallel subtrellises T, each 
isomorphic to the minimal trellis for C can be built. Up- 
per Bound on Parallelism: The smallest such subcode has 
dimension lower bounded by dim (C) - |Ä(C)|. i.e., the max- 

imum number of parallel subtrellises one can obtain with the 
constraint that the total state space dimension never exceed 

Smax(C) is upper bounded by 2|fi(C)l with R(C) as defined 
above. Parallelism of the Minimal Trellis: The logarithm 
to the base 2 of the number of parallel isomorphic subtrel- 
lises in a minimal I-section trellis for a binary (TV, K) linear 

block code is given by the number of rows in its trellis ori- 

ented generator matrix whose active span contain the integers 
{M, 2M, ...,(L- \)M} where N = LM. 
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Reconfigurable Trellis Decoding of Linear Block Codes 
Alan D. Kot and Cyril Leung 

Abstract — A class of methods for soft-decision decoding 
of linear block codes, referred to as Reconfigurable Trellis (RT) 
decoding, is presented. In RT decoding a reduced trellis (or tree) 
search is facilitated by carrying out the search on a reconfigured 
trellis (or tree) that corresponds to an equivalent code. The equiv- 
alent code is formed by reordering the received symbols according 
to their reliabilities. Consequently, the trellis reconfiguration is de- 
termined 'on-the-fly', but only a small portion of the trellis needs 
to be constructed, as guided by the reduced search. The search 
efficiency improves for channels where the soft-decisions provide 
a good indication of which symbols are in error. For example, us- 
ing the M algorithm on an erasure channel, only a single survivor 
(i.e. M = 1) is sufficient to attain maximum-likelihood decod- 
ing of maximum-distance codes. For more typical channels, we 
present simulation results and a detailed assessment of the number 
of metric and binary-vector operations for the M algorithm. 

Summary 
We discuss a class of methods for soft-decision decoding of 

linear block codes that utilize reconfigured trellises (or trees). By 
a reconfigured trellis, we mean that the trellis used for decoding 
corresponds to an equivalent code obtained by a reordering of the 
symbol positions to exploit their differing reliabilities. Some recent 
works also utilize reduced searches on specially generated trellises 
or trees [1][2][3] (see also [4]). Of these works, [1][2] do not 
reconfigure the code trellis. The work reported herein, while it 
uses a similar trellis reconfiguration to that of [3], was developed 
independently [5][6]. Both [2] and [3] focus on ML decoding, 
while here we emphasize that trellis reconfiguration may facilitate 
many types of reduced searches, and concentrate in particular on 
the M algorithm. 

The number of branches explored during reduced searches of 
trellises is decreased by exploring paths that are most likely to be 
part of the maximum-likelihood path (MLP), while discarding those 
paths that are unlikely to belong to the MLP as early in the search 
as possible. The key observation is that few branches would need 
to be explored if the rank order of path metrics rapidly converged 
with depth to their final values. In other words, a,reduced search 
algorithm could stop any further exploration of a path relatively 
early in the search, without losing the MLP, if the influence of the 
unexplored branch metrics on the rank order of the path metrics was 
insignificant. Since reliable symbol-positions have one symbol- 
hypothesis that is much more likely than its alternatives, and 
since unreliable symbol-positions have little distinction between 
alternative symbol-hypotheses, reconfiguring the symbol positions 
in a most reliable symbol first (MRSF) manner should increase 
the rate of convergence with depth of the rank order of path 
metrics. In other words, using MRSF ordering should enable the 
path exploration to rapidly gather and utilize the most significant 
branch-likelihood information, regardless of the type of reduced 
search being used. 
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RT decoding will tend to collect channel errors into a burst in 
the later depths (tail) of the trellis, thus 'trapping' many errors. That 
is, many errors can fall in the parity symbol positions in the tail, 
and for such positions there is only one branch leaving each node, 
which constrains the search while conveniently ignoring the errors. 
The number of errors that will be trapped by RT decoding depends 
on how accurately the soft-decisions indicate the error positions. 
For example, if we are fortunate enough to have a channel that 
is extremely well approximated by an erasure channel, then RT 
decoding will collect all erasures in the tail. In the case of a 
maximum-distance code on an erasure channel, if there are n — k 
or fewer erasures they will all be in the final n — k positions of 
the reconfigured trellis, and these final n — k = dmin — 1 positions 
will hold parity symbols. This leaves a correct information set from 
which the correct codeword will be formed, thus ensuring that ML 
decoding can be attained by retaining only one survivor, regardless 
of the size of the code. Similarly, for non-maximum-distance 
codes, we can be assured to correct any pattern of dmi„ - 1 errors 
with only one survivor. 

We focus on suboptimal soft-decision decoding to explore the 
trade-off between the coding gain attained and the computational 
effort expended. A 'near-ML' decoder can be very efficient while 
having a loss in decoding performance that is negligible in practice. 
For example, the extended Golay (24,12) code on an AWGN 
channel can be RT decoded, using the M algorithm, to within 0.25 
dB of ML decoding with only 8 survivors. Tables are presented 
that summarize the number of metric and binary-vector operations 
for the M-algorithm. 

Finally, we comment that some other important factors con- 
tribute to the efficiency of RT decoding. First, the reduced trellis 
exploration is facilitated by the use of a simplified trellis construc- 
tion method [7]. Second, the efficiency of the RT-M algorithm is 
enhanced by the use of a survivor selection method that operates 
in linear-time [8], needing at most M comparisons at each depth. 
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Abstract - The structure of the twisted squaring construction 
is studied. We focus on the subclass of symmetric-reversible 
codes and show that it includes the extended primitive BCH 
codes. New results on the trellis complexity of these 
constructions, and the BCH codes in particular, are derived. 

I. INTRODUCTION 

Trellis diagrams are primarily used for efficient soft-decision 
decoding [l]-[3]. The structure of the codes is a fundamental key 
for investigating the associated trellis diagrams [2],[4]-[7]. The 
squaring construction (SC) was employed by Forney [2] to derive 
trellis-oriented designs, particularly applied for RM codes and 
Barnes-Wall lattices. We are interested in the twisted squaring 
construction (TSC), a generalization of the SC [2]. The 
Nordstrom-Robinson code and a related packing are known 
examples of nonlinear TSC [2]. We classify several families of the 
TSC and focus on the symmetric-reversible codes. We show that 
they include the extended primitive BCH codes. The constructions 
are characterized and new results on the related trellis diagrams 
are developed. 

II. THE TWISTED SQUARING CONSTRUCTION 

We follow the notations of [2]. Let S/T denote the partition of a 
discrete set 5 into M = \S 17] disjoint subsets 7J, i = 
0,1,---,M-1. The minimum distance d(S) is defined as the 
minimum nonzero distance d(s{,s2) associated with any pair 
(si ,s2 ) e S. We also define d(T) as the minimum d(%) among the 
subsets of 5. Let T? denote the set of all pairs (5i,52) where 
sus2 e Tt. The SC is the union U of the M sets 7J2 , and d{U) = 
m\n{d{J),2d(S)} [2]. Let C{n,k) denote a linear code over GF(#) 
with length n and dimension k. Let D be a subcode of C. The SC 
is labeled by \C I D\2 . It consists of codewords {d\ +b,d2 +b) , 
where dud2eD and b belongs to the space B = [C/D] of 
cosets representatives of D in C. The TSC is the union W of M 
sets 7)7}, where i and j cover all values between 0 and M. The 
lower bound d(W)> mm{d(T),2d(S)} [2] suggests an improvement 
of the TSC over the SC. The TSC in terms of linear codes will be 
labeled by ||C7Z)|| . It consists of codewords (d\ +b,d2 +b'), 
where b and V run through all elements of B. Let Gc and GD 

denote the generator matrices of C and D, respectively. The 
generator matrix of \\C I Df is equivalent to 

(Gc    GC) 

U     GD)' 
where Gc is obtained from Gc by elementary row operations. 

III. SYMMETRIC-REVERSIBLE AND RELATED CODES 

A code A is called symmetric if (a\,a2)eA implies that 
(a2,ai) eA . We show that any symmetric code is a TSC, and 
Gc = EGC such that E is invertible and E2 is equivalent to the 
identity matrix. A code is called reversible if it contains the 
reversed version of every codeword. A symmetric-reversible (SR) 
code is hereby defined as a code that is both symmetric and 
reversible. We show that part of the above properties are inherited 

to the subcodes C and D. A code is called affine-invariant (AI) if 
it is invariant under the affine permutation. This class includes the 
Reed-Muller (RM) and extended primitive BCH codes. We prove 
that AI codes are iterated SR codes (and obviously iterated TSC), 
i.e., the subcodes C and D are also SR codes. We characterize the 
constructions and show that the dual TSC and dual SR designs 
are, respectively, TSC and SR designs. 

IV. TRELLIS COMPLEXITY 

A general description of trellis diagrams of block codes is given 
in [1],[2]. For a given coordinate ordering, the minimal trellis size 
s is defined as the maximal state-space dimension of the minimal 
trellis diagram [2]. The minimal s over any permutation of a code 
A is labeled by s(A). The general Wolfhound is s(A)< min {k,n-k} 
[1]. Let A be a TSC code [|C/D|| . A simple recurrence formula 
for the trellis complexity is given by 

s(A) < s(D) + dim(0 - dim(Z>). 

Improved bounds are derived for iterated SR codes such as 
primitive BCH codes. Upper bounds on the decoding complexity 
are thereby implied in conjunction with results of [3]. Some 
examples of binary primitive BCH codes are given in Table I. 
Actual s parameters were numerically obtained using computer 
program (see also [5],[6]). 

TABLE I 
UPPER BOUNDS ON S(A) FOR PRIMITIVE BCH CODES 

Code C D Wolf Bound New Bound £ 

(16,7,6) (8,6) (8,1) 7 6 6 
(32,21,6) (16,15) (16,6) 11 10 10 

(64,45,8) (32,29) (32,16) 19 15 14 
(64,36,12) (32,26) (32,10) 28 21 19 

Additional results are developed utilizing the highly structural 
constructions. Furthermore, the trellis complexity of long BCH 
codes may be evaluated. The constructions may also be useful for 
related applications such as the generalized weight hierarchy [8], 
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Codes Which Satisfy the Two-Way Chain Condition and Their State 
Complexities 
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Abstract - All binary linear codes, satisfing 
the two-way chain condition with dimension up 
to 6 are described in terms of their generator 
matrices. An expression for their state complex- 
ity profile is found also. Cases, when such codes 
are Z4 — linear are shown. 

I. Introduction 

Let C be a binary linear [n,k,d\ code. The support 
of a vector a = (a1,a2,...,an) in GF{2)n is defined by 
^(a) = {j\üj ^ 0}. The minimum support weight, dr, 
of a code C is the size of the smallest support of any r- 
dimensional subcode of C. In particular di = d. 
The concept of the two-way chain condition was intro- 
duced by Forney [3]. 

Definition 1 An [n,k] code C satisfies the two-way 
chain condition if it is equivalent to a code C with the 
following property: there exist two chains of subcodes of 
C, the left chain D\ C D\ C • • • C D\ = C, and the 
right chain Df C Df C • • • C Df = C, where, for 
1 < r < k, we have dim(Z^) = dim(I>*) = r, x(D^) = 
{1,2,... ,dr}, and X{Df) = {n-dr+l,n-dr+2,... ,n}. 

The state complexity profile of a linear block code C is 
s(C), where Si(C) = k-pi~fi and pi, /; are the dimen- 
sions of the past and future subcodes [2, 3, 5]. 
The concept of a binary Z4 - linear code was introduced 
by A. R. Hammons, P. V. Kumar, A.R. Calderbank, N. 
J.A. Sloane, P. Sole [4]. A binary code is Z4 - linear if 
its coordinates can be arranged so that it is the image 
under the Gray map 4> of a linear block code over Z4, i.e. 
an additive subgroup of Z%. 

II. Main Results 

Lemma 1 A sufficient condition for an [n, 5] code C 
with di+d2 <n to satisfy the two-way chain condition 
is that C is generated by a matrix 

I 

\ 

1 
0 
0 
0 
0 

1 
1 
0 
0 
0 

0 
1 
0 
0 
0 

CL4 

~0~ 
1 
1 
0 
0 

0.5 

"0" 
0 
1 
0 
0 

0 
0 
1 
1 
0 

0 
0 
0 
1 
0 

where 
a,j < ai,2 < j < 5, 
a,j + aj+i < <ii + a2,3 < j < 4, 
ai < a? + aj+i, 2 < j < 4. 

The state complexity profile for codes from Lemma 1 
is 

01ai-101a3~101a5"101a3"101ai~10 for a2=a4= 0, 
0i«i2a2-1la301a5_101a32a2-1lai0 for a2 > l,a4 = 0, 
01Q1-101Q32a4~1la5+12a4-1la301Ol~10  for o2 = 0,a4 > 1, 
0iai2a2-1la3+12a4-1la5+12a4~1la3+12a2-1lai0  otherwise. 

The state complexity is 1 if a4 < 1 and a2 < 1, 
2 otherwise. 

«1 

~0~ 
0 
0 
0 
1 

Lemma 2  Codes described in Lemma 1 are Z4 - linear 
if 05 is an even number. 
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The Trellis Complexity of Convolutional Codes1 
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Abstract — We develop a theory of minimal trellises 
for convolutional codes, and find that the "standard" 
trellis need not be the minimal trellis. 

I. INTRODUCTION 

Prom a minimal generator matrix G(D) for an (n,k,m) 
convolutional code, it is possible to construct a "standard" 
trellis representation for C. This trellis is in principle infinite, 
but it has a very regular structure, consisting (after a short 
initial transient) of repeated copies of what we shall call the 
trellis module associated with G(D). The trellis module con- 
sists of 2m "initial states" and 2m "final states," with each 
initial state being connected by a directed edge to exactly 2fc 

final states. Each directed edge is labelled with an n-bit bi- 
nary vector, namely, the output produced by the encoder in 
response to the given state transition. 

Since the trellis module has 2fc+m edges, and each edge has 
"length" (measured in bits) n, then total edge length of the 
trellis module is n ■ 2k+m. Since each trellis module represents 
the encoder's response to k input bits, we are led to define the 
"standard trellis complexity" of the code as 

n 
k 

r\m+k edges per bit. (i) 

The standard trellis complexity as defined in (1) is a mea- 
sure of the effort per decoded bit required by Viterbi's algo- 
rithm. However, we will see in the next section that this com- 
plexity can sometimes be reduced, by the construction of a 
simplified trellis for the code. 

II. EXAMPLE 

Consider the (8,4,3), dfree = 8, "partial unit memory" con- 
volutional code with minimal generator matrix 

G(-D) = 

/11111111 \ / 00000000 \ 
11101000 j I 11011000 
10110100 I 10101100 

Viooiioio/ Viooiono/ 
D (2) 

(see [3]). According to (1), the "standard" trellis complexity 
of this code is 256 edges per bit. However, it is quite easy to 
reduce this number, as follows. 

We view the code in (2) as an (infinite-length) block code, 
with "scalar" generator matrix 

^scalar 

Go   Gi 
Go   Gi 

Go   G\ 
Go   Gi 

(3) 

where G(D) = GQ + D- G\{D). Prom this representation, and 
using a modification of the now "standard" theory of trellises 
for block codes [4], one can see that the code has a minimal 
trellis, built from trellis modules, each of which has 480 edges. 

1This work was partially supported by a grant from Pacific Bell. 

Since each module represents four encoded bits, the trellis 
complexity, as measured in trellis edges per encoded bit, is 
thereby reduced to 120. 

In this example, the trellis complexity can be reduced still 
further, if we allow column permutations of the original gen- 
erator matrix G(D) in 2. Indeed, by computer search we have 
found that one "minimal complexity" column permutation for 
this particular code is the permutation (01243567), which re- 
sults in the generator matrix (cf. (2)) 

G{D) = 

(11111111\ 
11110000 
10101100 
10011010/ 

+ 

/ 00000000 \ 
11011000 
10110100 

V looomo/ 
D. (4) 

Then after putting the minimal generator matrix of (4) into 
"minimal span" form, it becomes 

G(D) 

/11111111\ 
00001111 | 
01111111 I 

\ 00111111/ 

/ 00000000 \ 
11111000 
11111100 

Vimiiio/ 
D. (5) 

The trellis complexity of the generator matrix in (5) turns out 
to be 104 edges per encoded bit. 

III. GENERAL RESULTS 

We have found a simple algorithm algorithm for finding 
a generator matrix G(D) for a convolutional code, for which 
the corresponding "scalar" generator matrix (cf. (3)) is in 
"minimal span" form [4]. This generator matrix can then be 
used to produce the minimal trellis for the convolutional code. 
In principle, the theory of minimal trellises for convolutional 
codes can be deduced from the general "Forney-Trott" theory 
[2], but we believe the observation that the Viterbi decoding 
complexity of convolutional codes can be thereby systemati- 
cally reduced is new, as are the details of the algorithms for 
producing the minimal trellises. 

One nice by-product of our theory is that when we apply 
our techniques to a convolutional code obtained by puncturing 
[1], we always find a trellis for that code which is as least as 
simple as the "punctured" trellis. Thus in the new theory, 
punctured convolutional codes no longer appear as a special 
class, but simply as high-rate convolutional codes whose trellis 
complexity turns out to be unexpectedly small. 
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They Could Not Reach the Cutoff Rate of BSC 
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Abstract — Binary block codes exceeding the 
Gilbert-Varshamov bound on minimum Hamming 
distance (if such codes exist) have their error expo- 
nents below the one of the Binary Symmetric Channel 
(BSC) in the interval (Rcrit, Rc) and they cannot reach 
the cutoff rate R0 and thus the capacity Re of the BSC 
if a Maximum Likelihood decoder (MLD) is used. 

I. INTRODUCTION 

In [1] a nonstandard technique for bounding the error expo- 
nent of specific families of channel block codes was introduced. 
Contrary to the standard methods based on ensemble averag- 
ing, this technique, called the distance distribution method, 
enables the unification of three different approaches to the 
asymptotical analysis of channel codes: channel coding theo- 
rems, bounds on the error exponent, and bounds on the min- 
imum distance. 

II. THE CONNECTION BETWEEN dHGV(R) AND R0 

The general lower bound on the code family error exponent 
was obtained in the following form 

For the family of uniformly distributed binary codes, £?ub, 
whose Hamming distances are binomially distributed 

£(*)» = ^mm^  (E#{d,R) + Ee{d, R,&)-R) (1) 

where ÜMs an infinite family of channel block codes B(R, N) 
over a finite or infinite alphabet, provided by some channel- 
determined distance measure d between its codewords. JP' is 
characterized by the distance distribution exponents (DDE) 

E0{d, R) = {lim^oo -i Id (jffjfcy) J^  , (2) 

where m represents the number of ordered pairs of codewords 
from B(R, N) that are on some fixed distance di > 0, L the 
total number of different values of d > 0 in B(R, N) (arranged 
in increasing order), and M = 2RN the number of codewords 
in B(R, N). The influence of the decoding algorithm and the 
channel performance is characterized by the error effect expo- 
nent (EEE) 

Ee(d,R)={]imN.+00-jj\d(el)}li ' (3) 

where e; = P [x = Xj \ xm, m ^ j, di = d(xj, xm)] represents 
the error effect of the codeword Xj when the codeword xm is 
erroneously decoded provided xm and Xj are on some fixed 
distance d\. Ee{d, R,&) in (1) denotes some lower bound 
on (3). For each fixed value R > 0 of the code rate, cho- 
sen from the set of possible family rates H, the code fam- 
ily €8 contains an infinite fixed rate sequence of block codes 
FRS{R,&) = (B(R,N1),B(R,N2),...) where Nt < Ni+1 

and R = Id Mi/Ni = const, i = 1, 2,... with M; = \B{R, Nt)\. 
5\(&,R) and 5L{€&, R) in (1) are asymptotical values ofmin. 
and max. distances of codes in FRS(R, !§&) for each R £ 72.. 

_2Ü_ m l = dH = l,2,...,N (4) M(M-l)   ~ 

for all rates R £ Tl = [0,1], the DDE function (2) in 
the interval [0,0.5] represents the Gilbert-Varshamov curve 
dHav(R) when d represents the normalized Hamming dis- 
tance dH = dii/N, i.e., E&ub(dH,R) = 1 — H(dH), where 
H(x) is the binary entropy function [2]. On the other hand, 
when d represents the normalized Bhattacharyya distance 
on the BSC (with transition probability p) given by dB = 

-ldx/4p(l -p)dH the DDE function (2), E&ub(dB, R), of the 
family !§Sub determines the cutoff rate R0 of the BSC. Under 
the usual condition of equal prior probabilities of codewords 
and using the MLD, this fact was shown in [1] by replacing 
E^ub(dB, R) in (1) and using a very simple lower bound on 
the"EEE function (3) given by Ee(dB, R,^) = Ee(dB) = dB. 

III. SKETCH OF THE PROOF. 
Proving that the Hamming distance distribution expo- 
nent EpRS'(dH, R) of a hypothetical fixed rate sequence 
FRS* (R) of binary block codes with asymptotical nor- 
malized minimum Hamming distance S*Hl(R') that exceed 
the Gilbert-Varshamov bound must intersect the Gilbert- 
Varshamov curve is the first step in the proof of the main 
statement of this paper. This can be proven by chosing 
the special value p = p'crit for which R1 = RCrit- Then 
EFRS'(dH,R') > Eegub(dH,R!) for 0 < dH < 0.5 contradicts 
the space-partitioning upper bound on E(R)BSC- Further- 
more, using the distance distribution method it can be shown 
that the cutoff rate lower bound E0(R')FRS' on the error ex- 
ponent of FRS'(R') on the BSC must be smaller than the 
cutoff rate lower bound E0(R) on the error exponent of the 
BSC for R= R' and forp > p'crit, i. e., when Rcrit < R' < Rc. 

iy. CONCLUSION 
It is shown that the still open famous problem of finding bi- 
nary codes with minimum distances that exceed the Gilbert- 
Varshamov bound is irrelevant when MLD is used. In this 
case the Gilbert-Varshamov bound (curve) uniquely deter- 
mines the error exponent of asymptotically optimal binary 
block codes on the BSC in the interval (Rcrit, Rc)- The same 
conclusion is valid for spherical codes on the AWGN channel 
that exceed the Shannon lower bound on minimal Euclidean 
distance. 
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Abstract — It is well known that time-varying con- 
volutional codes can achieve the capacity of a discrete 
memory less channel [1]. The time varying assumption 
is needed in the proof to assure pairwise independency 
between the codewords. In this work we provide a 
relatively simple proof that indeed time-invariant con- 
volutional codes can achieve the capacity without any 
restriction (albeit, the error exponent achieved by our 
proof may not be the optimal). 

I. OVERVIEW 

We consider the following setting of fixed (time-invariant) con- 
volutional codes with rate R = b/n bits per symbol: At each 
time instance an information vector ut = {u\, «f,..., ut} of b 
bits is pushed into a delay line (register) of length K (i.e. 
the delay line contains b ■ K bits). Then n ■ q bits, a;^, 
i G {1,..., n}, j S {1,..., q}, which are linear combinations of 
bits in the register are calculated. These combinations define 
the specific convolutional code, n output symbols, {o,}f=1, 
are produced using a mapping from bits to channel symbols, 
M : {0,l}? —► {1,..., J}, Oi = M(ai:i,... ,ai,q). The map- 
ping defines a distribution Q(k) = 2_?|{a; M{&) = k}\. Note 
that as q —► oo any distribution Q can be approximated. 

We show that for a given DMC with a transition proba- 
bility P(y\x), a distribution Q(x) and any b and n such that 
b/n < I(Q;P) ,where /(•; •) is the mutual information, there 
exists a sequence of convolutional codes of increasing K such 
that for K —* oo, Perror —► 0 exponentially where Penor is the 
probability of an error in decoding N ■ b transmitted bits. 

II. OUTLINE OF THE PROOF 

We analyze the average performance of an ensemble of con- 
volutional codes, defined by a randomly chosen q ■ n linear 
combinations (requiring q ■ n ■ b ■ K random bits), and by a 
random initial value of the register. 

Our proof analyzes a sub-optimal decoding procedure in 
which at each time point t we decode the information symbol 
Ut based on a future observed block of size Lt • n symbols. The 
value Lt will be chosen, as described below, so that Gallager's 
technique to upper bound the error probability in block cod- 
ing (see [3, pp 135-150]) can be applied, i.e., that there will 
be a pairwise independence between the true codeword and 
any codeword that can cause an error in decoding Ut. If an 
error will occur at any time point, we shall declare that our 
decoding has failed. We shall show that, on the average, the 
error probability in decoding ut will vanish, exponentially in 
K. Thus, as long as the information sequence length N is 
short enough, Penor will also vanish exponentially. 

Specifically, we first constrain Lt < K/2. Then, we use the 
fact that if A is a binary matrix with rank / and v is a random 
binary vector with uniform iid components , then the random 
vector Av has I uniform iid components. A lower bound on 
the number of symbols we can use and still have pairwise in- 
dependence, Lt • n, can be calculated from the current register 

value. We assume to know the current register value, since 
otherwise an error has already occurred, and there is no need 
to calculate the error probability in decoding Ut. It can be 
shown that taking Lt — I, where I is the maximum number 
such that the rows of the matrix 

/ U<-f ut 

u. 
2 

.K. 

\ ut !■ + !-! r + l-2 

Ut-A'+l    \ 

Ut-Jsf+2 

Ut-Jf+i    / 

are still linear independent, will ensure the desired pairwise 
independence. (This matrix is known to the decoder be- 
cause it contains only bits that have already been decod- 
ed). Now, we analyze the error probability, averaged over 
a uniform choice over the messages, i.e., under the assump- 
tion that u are uniformly distributed. In this case we have 
Pr{£t = /} < 2 ' 5"'. For each value of Lt we face the situa- 
tion where we observe a block of Lt ■ n symbols and we try to 
decide between at most 2 ' randomly chosen different pos- 
sible inputs. The error probability in this case can be upper 
bounded by Gallager's exponential expression for block codes. 
Using this expression, and taking the expectation with respect 
to Lt, we get: K/2 

1 = 0 

<     (j _|_ K/2) ■ 2_""2'min(R'B°0'c3)-'DH) 

■terror       S:       ^* -^e 

For R < J(Q; P) and logiV = o(K ■ n), the expression above 
goes to zero exponentially with K ■ n. 

III. DISCUSSION AND FURTHER IMPROVEMENTS 

The achieved error exponent above is worse than the error ex- 
ponent for time varying convolutional codes [1], and even from 
the error exponent for block codes [3]. A better exponent was 
achieved for special cases such as BSC by a slight change in the 
proof. In [2], it was claimed (without a proof) that for b —► oo, 
time-invariant convolutional codes can achieve the same expo- 
nent as time varying codes. This claim was also proved by us 
with similar technique (but without constraining Lt to be less 
than K/2). The question whether fixed convolutional codes 
has the same error-exponent as time-varying for any b, is still 
under investigation. 
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Abstract — This paper proposes an explicit con- 
struction of codes achieving Shannon's capacity for ar- 
bitrary discrete memoryless channels. The proposed 
codes are obtained by applying the idea of variable 
concatenation to a class of concatenated codes with 
employing algebraic geometry codes as outer codes. 
Further, we clarify that the error exponent of the pro- 
posed code is equal to the error exponent obtained by 
Forney for concatenated codes. 

I. INTRODUCTION 

In 1982, P. Delsarte and P. Piret gave an explicit construction 
of codes achieving the capacity and admitting a simple decod- 
ing algorithm[l]. Recently, M. Steiner expanded their results 
and gave an explicit construction of codes having the decoding 
error probability bounded by an exponential function of block 
length at all rate below capacity for any discrete memoryless 
channel[2]. However, the error exponent of the code is far 
below Forney's error exponent which gives the performance 
obtainable with concatenated codes [3]. 

This paper proposes a new explicit algebraic construction 
of codes achieving Shannon's capacity for any discrete memo- 
ryless channel. The proposed code can be regarded as a gener- 
alization of Justesen codes [4] followed by a channel-dependent 
mapping, with employing an algebraic geometry code[5] as the 
outer code. The proposed codes are optimum in the sense that 
they can attain Forney's error exponent. 

II. THE ENSEMBLE OF INNER ENCODERS 

Let us consider a discrete memoryless channel (DMC) with 
input alphabet X and output alphabet Y. We assume that a 
set of messages delivered by the information source consists of 
all fc-tuples a = (ai,a2)- ■ • ,ajt) with a; € GF(q), for a certain 
positive integer k. 

Let us identify GF(q)k with any ^-dimensional subspace of 
GF{qn). To each pair (7,(7) of elements 7 and a of GF{qn), 
we associate the affine encoder g : GF(q)k —> GF(qn) given 
by 

<?(a) = 7a + a, a € GF(q)k, (1) 

and define GA to be the set of all such encoders. Further, let 
G be a set of encoders expurgating the encoder with 7 = <r = 0 
from GA- Obviously, G C GA, \GA\ = q2n and \G\ = q2n - 1, 
As is usual, the number r = k/n is referred to as the rate. 

III. CODE CONSTRUCTION 

The outer code is formed by an algebraic geometry code 
CH(N,K) constructed from a generalized Hermitian curve[5], 
which is a linear code over GF(q2m) with q — 2h and the 
code length N = q2rl — 1. The inner codes are variable (n, k) 
codes over GF(q) which belong to G, where k = 2m. The 
overall concatenated code is an (NB,K0) code over GF(q), 
where N0 = nN and K0 = 2mK. Let us denote the proposed 
(channel-independent) code by C. 

In order to apply the proposed code C to a channel, the 
symbols of inner codewords are mapped into channel input 
symbols by a channel-dependent mapping 77 : GF(q) —> X. 
The mapping r? is constructed such that the occurrence prob- 
ability of 1 £ I approximates the desired input probability 
Qmax{x) which achieves capacity of the channel[6]. More pre- 
cisely, for all x S X, let ix be integers, such that ix/q « 
Qm«i(x) and ^2xex ix = q. Then, ix distinct symbols of 
GF(q) are mapped into the identical channel input symbol x. 
Hence, for any $ > 0 and appropriately chosen ix (x € X), we 
can find a sufficiently large q (or L) such that 

^°Cma.X \X) 

ix/q 
-1 < 6       Vx € X. (2) 

Let us denote this channel-dependent code by C. 

IV. EXPONENTIAL ERROR BOUNDS 
The next theorem is our main result. 
Theorem 1: Let the inner codes be decoded by maximum 

likelihood decoding and the outer code by GMD decoding. 
Then, on arbitrary DMC, for arbitrarily fixed e > 0 and suffi- 
ciently large m and L, the proposed code C of overall length 
N0 and overall rate R0{= K0/N0) has the average probability 
of decoding error Pe bounded by 

pe  < q-N0Ep(R0,t,6) 
(3) 

where 

^(fi.,6,9) = o mnjl-Ji) (£(|) -e-a(«)) ,    (4) 

E(r) is the Gallager's reliability function[6], and a(0) —* 0 as 
0^0. D 

By choosing e and 6 properly, we can obtain E(R0,e, 6) > 0 
whenever R0 < Co, where C0 denotes the capacity of the 
original channel. This implies that the proposed codes achieve 
Shannon's capacity. Further, the error exponent Ep(R0,0,0) 
is equal to Forney's error exponent [3]. 
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Abstract — Shannon's restricted two-way channel is 
studied. The outer and the inner bounds are obtained 
of the region of rates achievable when error probabili- 
ties exponentially decrease with given at two outputs 
exponents. 

A restricted two-way channel (RTWC) is defined by a ma- 
trix of transition probabilities 

W = {W(y1,y2\x1,x2),x1 G Xux2 € X2,yi G 3^1,2/2 6^2}, 

where X\, X2 are the finite input alphabets and }>i, y2 are 
the finite output alphabets of the channel. The channel is 

supposed to be memoryless. RTWC is represented in figure. 

mi 

m2 

h 
Xl 

w 

yi 
92 

y2 X2 
92 h 

There are two terminals. When the symbol x\ € Xi is 
sent from the first terminal, the corresponding output symbol 
!/i G 3>i arrives on the terminal 2. At the same time the 
input symbol x2 is transmitted from the terminal 2 and the 

corresponding symbol y2 arrives on the opposite terminal. Let 

■Mi={l,2,...,|.Mi|}   and   M2 = {1, 2,..., \M2\) 

be the message sets of corresponding sources. The code for 
RTWC is a collection of mappings (/1, f2, gi, g2), where /1 : 

■Mi —* %i 1 fz '■ M2 —+ X2 are the encodings and gi : 
M2 x y? —► Mi, g2 : Mi xy2°-> M2 are the decodings. 

The restrictions mentioned in the name of the model, means 
that in the RTWC there are no connections from decoders to 
encoders on the same terminal. The average error probabili- 
ties of the code e;(/i, f2,gltg2) is considered. 

Let e = (ei, e2), 0 < e; < 1, i = 1, 2. Nonnegative numbers 
R\,R2 are called e-achievable rates pair for RTWC, if for any 
<5; > 0, i = 1,2 there exists a code such that for sufficiently 
large n 

-log IM I >Ri-Si, n 
and 

: = i.2. 

:1,2. ei(fi,h,gi,g2) < a, 

The set of all e-achievable rates pairs is called the capacity 
region. For e; = exp(-n£;), Ei > 0, i = 1, 2, E = {Ei,E2) 
the region of achievable rates we call ^-capacity region C(E). 

The RTWC was first investigated by Shannon [1], who ob- 
tained the capacity region of the RTWC. Important results 

relating to various models of two-way channels were obtained 
by Ahlswede [2-4], Zhang, Berger and Schalkwijk [5], Han [6]. 

Papers of Van der Meulen [7], Gelfand and Prelov [8] and the 
book of Csiszar and Körner [9] contain the detailed surveys. 

In the present paper the outer sphere packing and the inner 
random coding bounds for C(E) are constructed. For small E 
this bounds coincide and when Ei -+ 0, i = 1, 2 we obtain the 
capacity region of RTWC. 

The inner bound is obtained using the Shannon's random 
coding medhod, and upper bound is constructed by the com- 
binatorial method proposed by Haroutunian [10]. 

ACKNOWLEDGEMENTS 

Authors thank Prof. I. Csiszär for valuable remarks con- 
cerning a version of the paper. 

REFERENCES 

[1] C. E. Shannon, "Two-way communication channels," Proc. 4- 
th Berkeley Symp. Math. Stat. and Prob., vol. 1, pp. 611-644, 
1961. 

[2] R. Ahlswede, "On two-way communication channels and a prob- 
lem by Zarankiewicz," Trans. 6-th Prague Conference on In- 
form. Theory, Statistical Decision Functions, Random Pro- 
cesses., pp. 23-37, 1971. 

[3] R. Ahlswed, "Multy-way communication channels," Proc. 2-nd 
Intern. Symp. Inform. Theory., Tsahkadsor, Armenia, 1971, 
Publishing House of the Hungarian Academy of Sciences., pp. 
23-52, 1973. 

[4] R. Ahlswede, "The capacity region of a channel with two senders 
and two receivers," Ann. Prob., vol. 2, no. 2, pp. 805-814, 1974. 

[5] Z. Zhang, T. Berger, J. P. M. Schalkwijk, "New outer bounds to 
capacity regions of two-way channels," IEEE Trans, on Inform. 
Theory, vol. IT-32, no. 3. pp. 383-386, 1986. 

[6] T. S. Han, "A general coding scheme for the two-way channels," 
IEEE Trans, on Inform. Theory, vol. IT-30, no. 1, pp. 35-44, 
1984. 

[7] E. C. Van der Meulen, "A Survey of multi-way channels in infor- 
mation theory: 1961-1976," IEEE Trans, on Inform. Theory, 
vol. IT-23. no 1, pp. 1-37, 1977. 

[8] S. I. Gelfand, V. V. Prelov, "Communication with many users 
(in Russian)," Itogy nauki i texniki. Prob, theory, math, statis- 
tics, technical cybernetics, vol. 15, M. VINITI, pp. 123-162, 
1978. 

[9] I. Csiszär, J. Körner, "Information theory. Coding Theorems 
for Discrete Memoryless Systems," Budapest:Akademiai Kiado, 
1981. 

[10] E. A. Haroutunian, "Combinatorial method of construction of 
the upper bound for E-capacity," (in Russian), Mezhvuz. sb. 
nouch. trudov. Matematika, vol. 1, Yerevan, pp. 213-220, 1982. 

135 



Lattice Codes Can Achieve Capacity on the AWGN Channel 
R. Urbanke and B. Rimoldi 

Washington University, Dept. of Electrical Engineering 
Electronic Systems and Signals Research Laboratory 

St. Louis, MO 63130, USA 

Abstract — It is shown that lattice codes (intersec- 
tion of a sphere with a possibly translated lattice) can 
achieve capacity on the additive white Gaussian noise 

channel. 

I. INTRODUCTION 

Consider the additive white Gaussian noise (AWGN) channel 
with peak signal-power constraint S. It is well known [1] that 

the capacity of this channel is C — \ log(l+-j|), where N is the 

variance of the i.i.d. Gaussian noise. The proof in [1] is non 
constructive in nature and, hence, codes that achieve capacity 
may exhibit little or no structure, making them ill suited for 

practical applications. An important class of structured codes 
are lattice codes which we define to be the intersection of a 

possibly translated lattice A with a spherical bounding region 
centered at the origin. The following facts are known: (1) 
For any rate R < |log(-j|) there exists a lattice code which 
results in an arbitrarily small (maximum) probability of error 
when used with lattice decoding [4, 5, 6]. (2) If we choose 
the code as the intersection of a possibly translated lattice 

with a "thin" spherical shell centered at the origin then rates 
up to capacity can be achieved with arbitrarily low (average) 
probability of error under a minimum distance decoding [2, 
3]. Further, the rate at which the error probability tends to 

zero is essentially equal to the optimum one as determined by 
Shannon [1]. Regarding the second result, in [3] it was pointed 

out that because of the "thin" spherical bounding region these 
codes resemble more random codes than lattice codes. 

We use [2, 3] to close one of the remaining gaps by showing 

that lattice codes (where the boundary region is a sphere as 
opposed to a spherical shell) combined with minimum distance 

decoding can achieve capacity. This is 
Theorem 1 Let S, N and e > 0 be given. If R < |log(l+f) 
then there exists a lattice code for the additive white Gaussian 

noise channel with peak power constraint S and noise variance 
N with rate lower bounded by R and average probability of 
error of a minimum distance decoder upper bounded by e. 

II. PROOF OUTLINE 

The result is not surprising since in high dimensions most of 
the volume within a sphere lies in a thin spherical shell and, 
hence, by adding the volume of the inner sphere to the bound- 
ing region we expect that not too many new lattice points are 
added. The two new key ingredients which make it possible 
to extend the proof in [2, 3] to Theorem 1 can be stated as 

follows. 
Let 5 be the available signal power per dimension and N 

the noise variance. Let R be given such that R < \ log(l + -j|). 

This work was supportedby National Science Foundation Grant 
NCR-9357689 and NCR-9304763. 

Then there exist numbers R' and S" such that R < R = 

\ log (1 + ^ J < | log (l + ■§)■ Let T„ be the n-dimensional 

closed sphere of radius VnS and volume V„, and let T'n be 
the n-dimensional open sphere of radius \JnS' and volume 

VI Further, define T% = Tn - Tn with volume Vf = Vn - 
Vn- Given a lattice A„ with fundamental region Pn and s € 
P„, define the lattice code C„ = Cn{An,s) = (A„ + s) n T„. 

Similarly, define the subcodes C'n = C'n(A„,s) — (An4-s)nTn, 
and C% = C%(An, s) = (A„ + s)C\T£ = Cn(An, s) \ C'n(An, s). 

Let Mn = M„(An, s), M'n = M'n{An, s) and M* = M*{An, s) 

be the cardinalities of these codes. 
The first lemma states that adding the lattice points within 

the inner sphere does not increase the error probability by 

more than the fraction of these points to the total number 
of codewords. More precisely, if P% denotes the average error 
probability of a code C under minimum distance decoding then 

we have 

Lemma 1 < ML + PL, 

The second lemma shows that the translation vector of the 
lattice can indeed be chosen in such a way that there are 
sufficiently many lattice points within the spherical shell but 

not too many within the inner sphere. 

Lemma 2 Let An be a lattice with fundamental region P„ 

and determinant det(An) and define 

V v 77, «"'I s6Pn:MZ(A„,s)> KA K(An, a) 
4det(An)'M£(An,S) -'KA <4- 

Then KA < 2fp, M£{An,s)dV(s). 

These two lemmas are then used together with the methods 
presented in [2, 3] to prove Theorem 1. 
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Abstract — We show that single-user codes and a 
modified successive decoding scheme can be used to 
achieve symmetric capacity of a L-out-of-K additive 
white Gaussian channel in all signal-to-noise ratios. 

A L-out-of-K (LOOK) additive white Gaussian noise 
(AWGN) channel models a multiuser system with K potential 
users, but with at most L simultaneously active users. The 
received signal, when the set of active users is S (\S\ < L), is 
given by 

kes 

where N is white Gaussian noise. We assume that neither the 
transmitters nor the receiver know the set of active users. 

The capacity region of this channel is known [l] and the 
symmetric capacity, defined as the maximum value of R where 
(R,..., R) is in the capacity region, is given by 

Csym(L,w) ■ 
1L 

log[l + Lw], 

when all users have the same symbol signal-to-noise ratio 
(SNR), w. The result remains the same even if the users are 
frame- asynchronous. 

It is important to note that this is the same as the sym- 
metric capacity of a L-user AWGN channel. Hence, the fact 
that the transmitters do not know the set of active users does 
not cause any degradation in the symmetric capacity. 

In low SNR, we show that single-user codes can be used 
to achieve rate very close to the symmetric capacity. In low 
SNR (i.e. v>l(\ + (L - l)w) « 1 or Csym « 1), binary sig- 
naling is close to optimal. If each user uses a low rate convo- 
lutional code and a binary scrambler before transmission, the 
codeword probability of error associated with the single-user 
soft-decision Viterbi decoder is well approximated by assum- 
ing all other users' signals as Gaussian noise. This is mainly 
because the maximum likelihood codeword decision is based 
on the sum of many received symbols (at least D where D is 
the free distance of the convolutional code). When the code 
rate is low, D is large (for sufficiently large constraint length) 
and the Central Limit Theorem applies as the scramblers at 
the transmitters ensure i.i.d. transmit symbols. Hence, the 
capacity of each user, regardless of which set of L users are 
active, is closely approximated by 

\ log 1 + 
1 + (L - l)u> 

Defining the symmetric capacity ratio 

CSuc(L, w) 
Vsuc(L,w) 

*(L,w)' 

1This work was performed at University of Colorado at Boulder 
and was supported by NSF Grant NCR-92-9812. 

we find that lim„,_0 "suc(£, w) = 1 and lim«,-.,» nsuc(L, w) = 
0. Hence, treating other users' signals as noise is near optimal 
in low SNR since background noise is the dominating factor. 

In high SNR, we propose a modified successive decoding 
scheme that uses only single-user coding and decoding tech- 
niques to achieve the symmetric capacity. In the LOOK chan- 
nel, since none of the transmitter knows who are the active 
users, the successive decoding (or onion peeling) scheme used 
in [2, 3, 4] cannot be applied directly. In this modified ap- 
proach, we split each user into iV sub-users and apply the suc- 
cessive decoding scheme on the sub-users of the users, instead 
of on the K users themselves. The receiver consists of a N- 
level successive decoding scheme. In the nth level, the receiver 
decodes the nth sub-users of all users, treating the remaining 
interference from all sub-users of all users as noise. Then, it 
subtracts the re-encoded signals of the nth sub-users from the 
received signal and passes the difference to the n + 1th level. 
Since the sub-users have small signal-to-interference-and-noise 
ratios, binary signaling is near optimal and the aforementioned 
argument for the Gaussian approximation in calculating the 
capacity holds. Hence, the symmetric capacity is closely ap- 
proximated by 

Csuc,sd(N,L,w) = 

1 + 
a„w 

Hi»EL+1«™ + (i-i) 
where the maximum is taken over all a-i,..., aw such that 

„=i <*» = 1- 
Defining similarly the symmetric capacity ratio as 

flLT T     \      Csuc,sd{N,L,w) 
Vsnc,sd{N,L, W) = ' '     '      ', 

Issymyli, W) 

we have that limjv-»oo Vsuc,sd(N, L,w) = l for all L and w. 
Finally, the modified successive decoding strategy can also 

be extended to include multirate users, where each user uses 
different subsets of the sub-users depending on its desired rate 
of transmission. 
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Abstract — We introduce a proper framework of 
coding problems for a quantum memoryless channel 
and derive an asymptotic formula for the channel ca- 
pacity having an operational significance. Some gen- 
eral lower and upper bounds for the quantum channel 
capacity are also derived. 

I. INTRODUCTION 

In order to consider a communication system which is de- 

scribed by quantum mechanics, we must reformulate informa- 

tion (communication) theory in terms of quantum mechanical 
language. However, most of the previous works [1] seem un- 

satisfactory since they hastily invoke a priori analogy between 
the classical and the quantum communication systems based 

on the ostensible similarity of various quantum entropies to 
the classical ones. One of the reason for the immaturity of 
quantum information theory lies in the lack of asymptotic 
approaches, although there are a small number of excellent 
exceptions such as [2]. The purpose of this paper is to present 
a proper framework of coding problems for a quantum mem- 
oryless channel and to derive an asymptotic formula for the 

operational channel capacity [3]. 

II. QUANTUM CHANNEL 

We here restrict ourselves to finite dimensional Hubert spaces 
and to generalized measurements which take values on finite 

sets for simplicity. Letting lJ>(!Kj) be the set of states on 
Hilbert spaces Dij, a quantum channel for an input system 
IKi and an output system $£2 is described by an affine map 
T : yffii) —» J^IH^). In order to investigate asymptotic prop- 
erties, we consider the nth extension of the system described 

71 

by tensor product (££) JC — 3i ® • • • ® !K. This extension 
corresponds to the situation where the sender transmits n 
states {{Tj}"=i successively, which is represented by the state 

n 

o~\ ® • • • <8> Cn on (££) 3"Ci. The extended quantum channel for 
71 71 

extended input and output systems (^) Jti and (^) !K2 is de- 

fined by an affine map r<"> : T((g) %i) -* 0>(<8> 5C2). Now, a 

channel 1^"' is called memoryless if 

r(n)(ff, >er„) = (IVi) i >(rv„). 

Since a memoryless channel T^ is thus determined uniquely 

by T, we often drop the superscript (n) for simplicity. 

III. QUANTUM CHANNEL CODING THEOREM 
n 

We first prepare a finite set of quantum states on (££) "Ki, 

called the quantum codebook, Gn = {o~ (1), • • • ,o~'"'(M,)}, 
each element of which is an n-tensor product of states on 3ii: 
o-(n'(k) = (Ti(fc) ® • ■ ■ ® crn(k). The transmitter first selects a 
codeword <r'n' = <j\ ® • • • ® crn which corresponds to the mes- 
sage to be transmitted (encoding), and then transmits each 

signal o\, • • •, <rn successively through a memoryless channel 

r. The receiver then receives signals IV1, • • •, IVn and, by 

means of a certain measuring process, he estimates which sig- 
nal among C„ has been actually transmitted (decoding).   In 
this case, the decoder is described by a C„ -valued measure- 

71 

ment T(n) over (g) %2- By fixing a decoder T(n) arbitrarily, 

the error probability Pe(Cn,r'n') averaged over the code be- 
comes well-defined in the classical sense. The average error 
probability for this codebook Pe(Cn) is defined as the infimum 
of that over all possible decoder T'"'. Further, the quantity 

R„ = log Mn/n is called the rate for the code Cn. Consider 

sequences of codes {C„}n which satisfy lim„—„o Pe(C„) = 0, 
and denote the supremum of limn^oo Rn over such sequences 

by C(r), which is called the capacity of the channel T. 

We establish the relation between the capacity C(T) and 

the mutual information. By fixing arbitrarily a measurement 
n'™) (the totality of which we denote by 9Jt'n') on a cetain 

71 

finite set (not necessarily C„ -valued) over (££) !K2, we have the 
(classical) mutual information 

/(")(p(")in(");r)d^^p(">(Cr("))Dn(„)(rcrW||V'l)). 

Here p'n'(<r")) = //"'(<7i, • • •, <r„) is an arbitrary joint dis- 
tribution over 7(Dii)n = 7{0ii) X ■•• x T(Mi) (the total- 

ity of which we denote by ^J ), •Dr[(n) is the Kullback- 
Leibler divergence between the classical probability distribu- 

tions Tr[(rV(n))n(n)(-)] and Tr [(iyn))n(">(-)], and p(n) d= 
y^ p*n\o-%, ■ ■ ■, <T„) o~\ ® • • • <8> On- It is shown that, for 
a memoryless channel T, the quantity 

c(n)(r)d=    sup       sup    j("V"\n(n)
;r) 

p<»>e9J(")n(»>e2rt(") 

exhibits the superadditivity C(m+")(r) > C<m>(r) + CW(r), 
which is in remarkable contrast to the classical channel. The 
following theorem gives the quantum counterpart of channel 

coding theorem: 

Theorem 1       For a memoryless channel T, 

C(T) =  lim -—iü = sup -—iü. 
71—>oo      n n        n 

The quantum channel capacity C(T) is compared with other 
capacity-like quantities to obtain general lower and upper 

bounds: C®(r) = C(1)(r) < C(T) < C(T), where C®(T) is 
the capacity when restricted to the recursive decoding, C' '(T) 
the capacity for signals of unit length, and C(F) the pseudo- 
capacity defined via formal quantum mutual information [3]. 
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Abstract We    examine    the    effect    of    a 
randomly    time-varying    channel    on    mutual 
information   between   receiver   and   sender   when 

the channel is m th order Markov. 

We investigate the effect of a randomly time-varying 
channel upon the mutual information between sender and 
receiver. Such channels often occur in mobile 
communications and can affect the achievable rate. If the 
channel is perfectly known, then the mutual information 
between a receiver and an arbitrary number of senders may 
be found, even if the channel is time-varying [1]. In this 
paper we consider the case of a single receiver and sender 
pair to set the framework for the more interesting multiple 
access case. 

We consider a discrete-time matrix model for our 
channel. Let random variable S[i] denote the input at time 
i, Yfj] the output at time j, N[j] the additive white Gaussian 
noise at time j and G[j,i] the multiplicative effect of the 
channel on the output at time j due to the input at time i 
(the channel's tap at time j corresponding to a delay of j-i). 
The channel is assumed to be causal and have finite 
memory limited to A time samples, therefore G[j,i] is zero 

for j-i>A and j-i<0. Let us assume that S[i] for any i<0 is 
zero. Let a subscript on a random variable indicate the 
vector of random variables from times 1 to k, a double 
subscript on G the corresponding matrix and a single 

subscript k on G indicate that we are considering the ktn 

row of Gfc,k- Gfc.k is block-diagonal and Gj is given by 

[0 G[i, i-A]  G[i,i-1], G[i,i]  0], The effect of 
the channel is given by 

Yk=GUsk+Nk 
[1]. 

Let us take the channel to be such that any row of G ^ ^ 

depends on at most m preceding rows, i.e. that the itn row 
conditioned on rows i-1 through i-m is independent of row 
i-m-1. In steady-state, it is equivalent to stating that the 
itn row conditioned on rows i+1 through i+m is 
independent of row i+m+1. Such a model is that of a mtn 

order Markov chain. Under some conditions of wide-sense 
stationarity, we may state that 

the rate of change of the channel. 
Suppose, as a special case, that we can describe the 

channel by a Gauss-Markov model. We assume that, at any 
time, the taps of the channel are mutually independent and 
that the expected energy of the tap corresponding to a 
given delay does not change in time. Let Tc be the 
coherence time of the channel, roughly the inverse of the 
Doppler spread. Let Ts be the time spread of the channel, 

proportional to A. The channel may be modelled as 
becoming decorrelated in time exponentially with rate 
inversely proportional to Tc. We may write that: 

Giji]=aG[j-l,i-l] + HÖ.i] 
[3] 

where a is 1/WTC. Since the expected energy remains 

unchanged, the expected energy of Ejj.i] is proportional to 

(l-a"). We send a white Gaussian signal. 
We mav show, for the channel model described above. 

(Yk^k'Gk.kj-HY,^ 

(l(Gi;SiIYi,(Gi+1...Gi+m})) 

[2] 
where both the RHS and LHS reach a limit. The LHS 

represents the loss incurred by not knowing the channel 
and the RHS is the information that the input gives about 

limn \ limi.^l !. 

■\ 

-HY.cSk) 
/=o 

[4]. 
The smaller A. i.e. the less dispersive in time the 

channel, the faster the LHS of [4] goes to 0. The LHS 
depends both on the coherence time Tc , i.e. on how fast 
the channel decorrelates, and on the coherence bandwidth, 
which is inversely related to Ts. 

The above arguments can be extended to the multi - 
dimensional case. They give some idea of the effect of an 
imperfectly known channel upon interference 
cancellation. In (2), for spread-spectrum systems, when 
the input is perfectly decoded, the effect of the channel 
measurement error on interference cancellation is bounded. 
These results should also give some indication as to the 
usefulness of feedback. When Tc is large, the mutual 
information can be increased by optimizing the input 
distribution for the user appropriately. 
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Abstract — We look at the problem of transmitting 
information over time-varying channels with side in- 
formation, where for time-varying channels the statis- 
tics of the channel change with time and by channel 
side information we mean the current state of the 
channel. We show that when this side information 
is available at both the transmitter and the receiver, 
then for the power-constrained channel, the power al- 
location policy that achieves minimum end-to-end dis- 
tortion is not necessarily the same as the one required 
for maximum transmission rate. 

I. INTRODUCTION 

A new challenge in telecommunication is the transmission of 
informatio' over time-varying channels where the statistics of 
the channel change with time. Examples of such time-varying 
channels are wireless links where due to multi-path fading and 
interference from other users, the received signal strength can 
vary within a few orders of magnitude. Traditionally, the pre- 
ferred transmission method has been to make the channel be- 
have or look like a channel with uniformly distributed error 
- e.g. through use of interleaving. Achieving this, then the 
problem of communication is no harder than it used to be 
and all the classical methods and tools can be used. It is 
well-known that this "average channel" method is inherently 
sub-optimal [1][2]. However, to achieve higher channel capac- 
ity, it is required to provide channel state side information to 
either the transmitter or the receiver. 
II. TIME-VARYING CHANNELS WITH SIDE INFORMATION 

We consider the state process with sample space 1 where at 
each time instant the channel is at one of these states and 
hence has different statistics. For example, consider an AWGN 
channel, where the noise power is modulated in accordance 
with the channel state. Based on the availability of the cur- 
rent channel state side information, we can distinguish the fol- 
lowing four different cases: (I): Informed receiver and trans- 
mitter, (II): Informed receiver, (III): Informed transmitter 
and (IV): Average channel. In this paper, we concentrate on 
case I. Note that providing the current channel state does not 
imply a knowledge about the distribution of the states. In 
fact, we assume that neither the receiver nor the transmitter 
is aware of this distribution. It is well-known that the capac- 
ity of the channel is given by C = ^TqiI(Xi, Yi) where g, 
is the probability of the channel being at state i and I(Xi, Yi) 
is the mutual information between the channel input and out- 
put processes at this state. Note that the policy that achieves 
this capacity is independent of the channel state distribution 
(qi). Also since the distribution of the states is unknown, the 
capacity of the channel is also not known. By policy, here, 
we mean the distribution of the input channel alphabets that 
maximizes I(Xi,Yi). 

We can then show that the minimum end-to-end distortion 
is given by: 

Dm = '£qiD(I{Xi,Yi)). (1) 
«ex 

minimum-distortion policy - 
maximum-capacity policy - 

Fig. 1: Performance of minimum distortion and maximum capacity 
policies vs. ß (D(R) = 2~@R) over a narrow-band Rayleigh fading 
channel. 
Note that had the channel state distribution been also pro- 
vided to the transmitter then the channel capacity would have 
been known and Dm = D (^2i€TqiI{Xi,Yi)). In the follow- 
ing section, we look at the power-constrained channels and 
show that the power allocation policy that achieves minimum 
end-to-end distortion is not necessarily the same as the one 
required for maximum transmission rate. 

III. POWER-CONSTRAINED CHANNEL 
We are considering channels with constraint on the average 
transmitted power 5 = Ylicj 1'^' wnere ^« 's *>he transmission 
signal power at state i. Moreover, we characterize the channel 
states based on the received signal to noise ratio (7). It is 
then straightforward to show that the following policy results 
in channel capacity: S(~/)/S = 1/fc — I/7 if 7 > 7c and 
0 otherwise [2], where yc is the cut-off signal to noise ratio 
which is set so that the constraint on average signal power is 
met. If we now assume that the source has the distortion rate 
function D(R) = 2~l3R then the optimum policy that results 
in minimum end-to-end distortion is given by: 

¥ = {(*)„*" 7 > 7c 

7 < 7c 
(2) 

which is dependent on the source through ß [3]. In fact, the 
more convex the distortion-rate function (the higher the value 
of ß) the more dissimilar the above policies become. Figure 
1 shows the performance of these two policies over narrow- 
band Rayleigh fading channel where the received SNR 7 has 
exponential distribution (/(7) = l/7s exp(—7/73))- 
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Abstract — We extend Partial Response (PR) pre- 
coding [1] to two-dimensions and consider it, as 
well as parallel one-dimensional (ID) PR, for use in 
parallel readout optical memory systems. We also 
develop expressions for optically implementable 
two-dimensional (2D) zero-forcing equalizers to be 
used in conjunction with these forms of PR 
precoding. 

I. SUMMARY 
Figure 1 depicts a behavioral model of an array of abutted rectan- 
gular pixels being retrieved in parallel from a memory with a co- 
herent imaging readout system. The transfer function, H(fx, fy), 

describes the 2D spatial bandlimiting of the readout system and 
also includes a frequency description of the shape of the pixels in 
the memory. 

= H(fX,   fy) 

nx 

Figure 1:  Model of pixels being retrieved in parallel. 

Figure 2 shows the reconstruction of an array of binary phase 
pixels (with values +1 and -1) that have been precoded using what 
we term ID (1+D) PR precoding. ZERO values are formed by the 
overlap of two pixels with opposite signs. ONE values are 
obtained by the overlap of pixels with the same sign. Detection 
of intensity takes place halfway between the centers of the two 
pixels used to form the desired data value. ID strips can be read 
out in isolation [2] or can comprise the rows or columns of a 2D 
array. 

Pixels stored in memory: 

—'+1 '+11 -l, -irm-i. -i rri 

Pixels retrieved in parallel (Intensity'): 

Figure 2:  Example of ID (1+D) parallel PR signaling 

2D arrays can also be precoded using 2D PR precoding. With 2D 
(1+D) PR precoding, each data value is formed at the center of 
four overlapping reconstructed pixels as illustrated in Figure 3. 
This form of precoding can be applied to 2D arrays that experi- 
ence spatial bandlimiting or to ID arrays read out in succession 
that are broadened temporally. We introduce two shift operators 
D^andDy to describe this 2D broadening.   With this notation, 

the system polynomial for a reconstructed pixel   broadened in 
Nx-'Ny-l 

two-dimensions can be written as:     £     l,ayiyxDl 
,=0   j=o 

To accomplish 2D PR precoding, a 2D array can be thought of as 
a ID array, precoded as such, and then returned to its 2D format. 

1This research was supported by ONR grant #N0014-93-I-0414 and by 
the AFOSR under grants #F49620-93-I-0057 and #F49620-93-1-0371. 

Array to be precoded:        Unwrapped impulse response: 
Mmv 1 

1010100 

0010110 

M-l bits 

-lh 

Precoded Array: . * 

M+i M+i+1 

i i+1 

.11.1 .-* 
-r ̂ i -i -i -i +i 
-l -i +i +i -i +i +i -i 
+i +i -i +i -i -i +i -i 

Mmx 

Figure 3: (1+Dx)(l+Dy) PR precoding example. 

Towards this end, the 2D system polynomial is made into a ID 

system polynomial by substituting D for Dx and EM for Dy, 

where M is (Ny-1) plus the number of bits in each row of the 2D 

array to be precoded. For (1 +DX)(1+D J PR precoding performed 

serially, one would arbitrarily choose the first row of the pre- 

coded array and the first bit of the next row. (I+D+D^+DM+I) 
PR precoding is then applied to bits read from the 2D array to be 
precoded, as described above. After precoding M-l bits, an addi- 
tional arbitrary bit would be inserted in the input bit stream of 
the precoder to start a new row. 

Zero-forcing equalizers for both ID and 2D PR signaling applied 
to 2D arrays of binary phase pixels are easily represented in the 
Fourier domain by extending the work in reference [3], These 
equalizers can be implemented as apodizers in the Fourier plane 
of an optical system. Table 1 lists the equalizers and overall 
transfer functions for minimum bandwidth one-to-one imaging 
systems using (1+DX) and (1+Dx)(l+Dy) signaling. 

Signaling Transfer Function Equalizer 

(1+DX) cos(7tfx)rect(fx) 
cosfnfx)rect(fx) 

sinc(fx)sinc(f^) 

(1+D^l+Dy) cosfnf )cos(nf ) 
x            y 

cos(7tf )cos(7tf ) 
•*            y 

sincff )sinc(f' ) 
•*             y 

Table 1: Phase terms are omitted. This is compensated for by de- 
tecting between the centers of reconstructed pixels 
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Abstract- A novel technique for trellis decoding of 
block both RLL and balanced codes on PR channels is 
described. The technique allows performance 
improvement without increament of decoder 
complexity. 

1. INTRODUCTION 

Recently, a simple technique for constructing run length 
limited (RLL) block error control codes (ECC) together 
with their minimal trellises has been introduced [1,2]. 
The procedure adapted for the design of such codes is 
based on taking a linear ECC and incorporating a 
maximum runlength constraint by carefully modifying 
the basis code while retaining the minimum distance 
properties of the parent code. Such codes are 
particularly suited for magnetic recording applications 
where the (1-D) partial response (PR) channel provides 
a good model at low information density rates [3]. 
In this paper we show that the trellis decoder of these 
codes has the same trellis structure as the encoder, thus 
the additional decoding complexity is avoided. We also 
describe how the trellis diagram of the non-linear 
balanced codes can be incorporated within the PR 
channel. 

2. DECODING OF LINEAR BLOCK CODES ON 
PARTIAL RESPONSE CHANNELS 

When binary sequences are transmitted over the (1-D) 
PR channel the received noiseless sequence is ternary 
and due to the memory of the PR channel contains 
some additional structure that can be exploited to 
improve the error performance. For uncoded data, MLD 
in PR channel can be realised by using a Viterbi 
decoder, because the memory introduced by the (1-D) 
channel has a trellis structure [4]. Similarly, for 
RLL/ECCs MLD can readily be achieved by 
incorporating the trellis diagram of the code within the 
decoding trellis of the PR channel. Furthermore, the 
complexity of the trellis does not increase because the 
modified RLL codes have an odd number of Is in the 
labelling of each branch of the trellis and hence the 
state of the PR channel is the same for all branches 

emanating from the same state. Thus all that need to be 
changed is the branch labels of the RLL/ECC trellis. 

3. SIMULATIONS RESULTS AND 
CONCLUSIONS 

The effect of this technique on the decoder performance 
for some codes has been derived by the comparison of 
simulation results for the new decoding strategy with 
the conventional approach. It has been found that the 
technique provides a performance improvement 
exceeding 2 dB at error rates of about 10" . 
The technique has also been applied for the balanced 
codes. Although these codes are non-linear, they 
possess a regular trellis structure which allows their 
Viterbi decoding. The technique has been applied to the 
(16,9,6,5,4) code [5] and simulation results have proved 
the efficiency of the technique. 
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Abstract — We investigate sets of maximal number 
of fixed-length sequences that can be concatenated 

without violating certain constraints often required in 
class-IV PRML channels used in magnetic recording. 

I. INTRODUCTION 
PRML is a technique that combines partial-response (PR) sig- 
naling with maximum-likelihood (ML) sequence estimation in 
order to combat intersymbol interference and noise, which are 
common in high density digital magnetic storage channels [3]. 

One of the most common partial response channels used in 
magnetic recording is the class-IV channel. Such channel pro- 
cesses independently the even and the odd subsequences of 
bits with even and odd indices, respectively. Hence, a Viterbi 
detector can be separately applied to each of the even and 
the odd output subsequences to obtain maximum-likelihood 
estimates of the input subsequences. 

In order to limit the path memory of the Viterbi detector, 
the number of consecutive zeros in each of the input subse- 
quences is upper bounded by some positive integer 7. Also 
to maintain clock synchronization, the number of consecutive 
zeros in the global input sequence is upper bounded by some 

positive integer G. We say that a binary sequence satisfies the 
(0, G/7) constraint if it satisfies the two constraints specified 
by G and 7. Notice that if the number of consecutive zeros 
in each of the even and the odd subsequences of a sequence is 
upper bounded by 7, then the number of consecutive zeros in 
the sequence itself is upper bounded by 27. Hence, we assume 
in the following that G and 7 are positive integers such that 
G < 27. Coding schemes are used to map unconstrained se- 
quences of data into (0, G/I) constrained sequences for trans- 
mission over the channel [2],[3]. In this paper, we consider 
schemes based on block codes. 

II. (0,G/I) CONSTRAINED BLOCK CODES 

A (0,G/I) block code is a set of (0,G/7) constrained 
binary sequences, called codewords, of fixed length such 

that any juxtaposition of a finite number of codewords 
is also (0, G/7) constrained. For given G and 7, let 
M°r'\h,h;ri,r2(

n) be the set oi a11 (°>G/1) constrained se- 
quences (7i,72,...,7n) of length n with at most I, h, 
and h leading zeros at the beginning of the sequence 

(7i>72,.-.,7n)i its odd subsequence (71, 73, • ■ •, 72fn/2T-i), 
and its even subsequence (72, 74,..., 72|n/2j), respectively, 
and at most r, n, and ri leading zeros at the beginning 

of the reversed sequence (yn, yn-i, ■ ■ ■ ,71), its odd subse- 

quence (7„, 7n-2,... ,7Ln/2j-fn/2T+2)> and its even subse- 
quence (7„_i, 7„_3,..., 7rn/2l-[n/2j + i), respectively. Let 
MiG4i,i2;r1,r2(

n) be the cardinality of M^^.^^n). Any 
(0, G/7) constrained block code of length n is a subset of 

■M-i,'a-i\ix,i.2;i-i2,i-iS
n) for some ''  ll> and '2-    Conversely, 

1Most of this work was done while the first author was visiting 
the Dept. of Elec. Eng., Delft Univ. of Tech. The first author was 
also supported in part by NSF under grant NCR 91-15423. 

if n is sufficiently large, any subset of M?'' ,,,,,,,, (n) 

forms a (0, G/7) constrained block code. Hence, to con- 

struct efficient (0, G/7) block codes of length n, it is im- 

portant to determine an option (l,h,h) that maximizes 
Mi,ä-i\i1,i2;i-i2,i-i1(

n)- Such option will be called optimal 
for the given G, 7, and n. Two special cases were investigated 
by Eggenberger and Patel [1]. They determined that the op- 
tion (2,2,2) is optimal in case G = 7 = 4 and n = 9, while 
the option (1, 3, 3) is optimal in case G = 3, 7 = 6, and n = 9. 

III. RESULTS 

The main contribution of this paper is presenting general re- 
sults concerning optimal options for all values of G, 7, and n. 
The results are given in the following three theorems which 
address the cases G = 1, G > 2 and 7 is even, and G > 2 and 
7 is odd, respectively. 

Theorem 1 For G = 1, 7 > 1, and n > 1, (0, 0, |_7/2J) is an 
optimal option. 

Theorem 2 For 2 < G < 27, 7 is even, and n > 1, 
([G/2J, 7/2,7/2) is an optimal option, except in the case 
G = I — 2 and n = 6 where the option (0, 0,1) is optimal. 

Theorem 3 For 2 < G < 27, 7 is odd, and n > 1, at least 
one of the following three options is optimal: 

(min{[G/2j, 7 - 1}, (7 - l)/2, (7 - l)/2), 

(min{LG/2j,7-l},(7-l)/2,(7 + l)/2), 

(LG/2j,(7+l)/2,(7-l)/2). 

Theorems 1 and 2 explicitly specify an optimal option in case 
G = 1 or 7 is even. In particular, the results of Eggenberger 
and Patel follow as special cases of Theorem 2. In case G > 
2 and 7 is odd, our results specify three candidates for an 
optimal option. In general, the optimal options in this case 
may depend very much on the length n as demonstrated in 
the following result. 

Theorem 4 For G = 2, 7 = 1, and n > 1, (1,1,0) is an 
optimal option if n — 1 or n £ 1 (mod 4), and (0, 0, 0) is an 
optimal option if n / 1 and n = 1    (mod 4). 
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Abstract — Let S(N,q) be the set of all words of length 
N over the bipolar alphabet {-1,4-1}, having a g-th order 
spectral-null at zero frequency. Any subset of S(N, q) is 
a spectral-null code of length N and order q. In this pa- 
per, we give an equivalent formulation of S(N, q) in terms 
of codes over the binary alphabet {0,1}. We show that 
S(N, 2) is equivalent to a well known class of single error 
correcting, all unidirectional error detecting (SEC-AUED) 
codes. We derive an explicit expression for the redundancy 
of S(N,2). Further, we give new efficient recursive design 
methods for second-order spectral-null codes, improving 
the redundancy of the codes found in the literature. 

Regard the alphabet {—1,+1} as a subset of the real field. The 
following characterization of S(N, q) is well known [7], [5] (x{ denotes 
the i-th component of a vector X): 

S(N,q)=lx£{-l,+l}N:^Txjj
i = 0, i = 0,..., q - 1 I . 

The problem of finding an explicit expression for the redundancy of 
S(N, q) was left open in [7]. Using a well known result in number 
theory (the problem of partitioning a natural number n into w dis- 
tinct natural numbers less than or equal to a certain bound 6), we are 
able to derive the following explicit expression for the redundancy 
of5(JV,2): 

TV-Llog2|5(iV,2)|J ~21og2JV-1.141,    AT multiple of 4.     (1) 

Further, by replacing the symbol —1 with 0 and +1 with 1 we prove 
that S(N, q) is equivalent to the code 

S(N,q)=lx<={0,l}N: YsXjjiz:llY,ji'  i = °.---'?-1f . 
j=l 

2^' 

where the sums and the products are over the real field. Since 

y~^._ Xjj' is an integer number, if S(N, q) ^ 0 then J^ ._ j' must 

be even for all i = 0,..., q — 1. Note that 

( N N 

S(N,2)=he{0,l}N:J2x 

This is nothing but a particular group theoretic single error correct- 
ing and all unidirectional error detecting (SEC-AUED) code over 
(7L, +) [3]. Clearly, if N is not a multiple of 4 then S(N, 2) = 0. A 
binary code C is a q-th order spectral-null code of length N with k 
information bits iff 1) C is a subset of S(N, q) and 2) C has 2k code- 
words. The authors in [7], presented a recursive method to encode 
k information bits into a second-order (q = 2) spectral-null code of 
length 

N(k) = n(k) + N(2 (log2 n(*)l - 1), (2) 

where n(k) is the smallest integer n such that 1) 

, — k > [log2 n] + 1. (3) 

and 2) n is a multiple of 4. Here, we give a new efficient recursive 
method to encode k information bits into a second-order spectral- 
null code (over the alphabet {0,1}) of length 

N(k) = n(fc) + N(\log2(n(k) ■ (n(k) - 1))1 - 1), (4) 

where n(k) is the smallest integer n such that 1) There exist a first- 
order spectral-null code of length n with k information bits and 
2) n is a multiple of 4. Note that, a first-order spectral-null code 
is nothing but a balanced code [6].   At present, there exist many 

"This work is supported by the grant from National Science Founda- 
tion MIP-9404924. The first author's work is supported by the Italian 
National Research Council (fellowship CNR 203.01.62). 

efficient balanced code designs which require less than log2 k check 
bits (i.e. n — k < log2 k) to make a k bit data word balanced [1], [2], 
[4], [6], [8], and so n(k) > n(k) for infinitely many values of k (see 
(3)). Comparing relations (2) and (4) it is then clear that, for these 
fc's, we get less redundant codes than those presented in [7]. In our 
design methods, first, the data word is converted into a balanced 
word, which in turn is converted into a second-order spectral-null 
codeword. One of the proposed methods is briefly described here. 

Let n be a multiple of 4. Given X G {0,1 }n, let s(X) = ^ ._. xjj 

and w(X) = Y?=i x3- For * = ° n(n _ X)l2< let X^ be the 

binary vector obtained from X by applying the first i exchanges of 
adjacent components starting from the first component. For exam- 
ple, when n = 4, X(°> = X = ^1^1:314, X*-1' = X2X\xzxi, X^2' = 

X2X3X\Xj,  X^ = 12^3^4^! 1  X^' — XiX2XjX\,   X'-5' = XzXjX2Xi, 

X(6' =XjXzX2Xi. A data word Y 6 {0,l}k is encoded as follows. 
Encoding Procedure: 
1) Balance Y using one of the methods given in [1], [2], [4], [6], [8]. 

Let X be the codeword of length n = n(k) associated with Y. 
Note that w(X) = n/2. 

2) Compute .X^'0', where «o is an integer i£ [0,n(ra — l)/2 — 1] (for 
example the smallest) such that S(X('') = n(n + l)/4. 

3) Recursively apply this encoding procedure to the binary repre- 
sentation of i'o. Let E(io) be the codeword associated with to- 

4) Concatenate E(i0) to X1-'0*) to get the codeword E(Y) = 
X(^E(i0). 

Decoding of the received word X I can be done easily once it is 
known that «o = E~ 1(I). In the paper, we give similar procedures 
which require only 0(nlog2 n) bit operations. 
Example: Let k = 32. Using the second construction proposed in 
[8], it is possible to encode the 32 data bits into a balanced code 
of length n = n(32) = 36. In this case, the length of the code is 
iV(32) = 36+JV(flog2(36-35)"]-l) = 36-|-JV(l0). Assume that 

X =01101011101111000000 0000000011111111 

is the balanced encoding of a data word y£{0,l}32 that needs to 
be encoded. Since 28 is the smallest integer i such that S(X^1') — 
n(n + l)/4 = 36 • 37/2 = 333, then Y is encoded as E{Y) = 

X<-28^E(28) = 110101110111100000000000000101111111 £(28). 

Using a table look-up it is possible to encode 10 information bits 
into a second-order spectral-null code of length 20 (see (1)). This 
means that we can encode 32 data bits into a second-order spectral- 
null code of length N(32) = 36 + AT(10) = 36+20 = 56 (instead of 60 
which is what we would get using the method proposed in [7]). 
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Abstract — In this paper, we propose a Viterbi de- 
coding based on Levenshtein distance. We show that 
Levenshtein distance is suitable for metric in a channel 
where both substitution errors and insertion/deletion 
errors occur. Our proposal makes it possible to 
continue Viterbi decoding without re-synchronization 
even if some insertion/deletion errors occur in a chan- 
nel. 

I. INTRODUCTION 

Recently, high recoding density is required in digital record- 
ing systems. However, as recording density increases, error 
rate also increases. Especially, it is known that burst errors 
called a synchronization error caused by insertion/deletion er- 
rors occur in optical recording systems more frequently than in 
other disk systems. In this field, Partial Response Maximum 
Likelihood (PRML) detection is focused on now. In PRML 
systems, Viterbi decoding is used in order to realize maximum 
likelihood decoding. In Viterbi decoding based on Hamming 
or Euclidean distance, even if just an insertion/deletion er- 
ror occurs, it is impossible to continue decoding without re- 
synchronizing, because insertion/deletion errors measured by 
Hamming or Euclidean distance cause a burst error called syn- 
chronization error. In this paper, we propose Viterbi decoding 
based on Levenshtein distance [1]. 

II. CHANNEL MODEL 

In this section, we talk about a binary channel model in 
which not only substitution errors but also insertion/deletion 
errors occur. In this paper, we call such a channel CSID ■ Let p 
be the probability of substitution errors, qr; be the probability 
of insertion errors and gd the probability of deletion errors in 
CSID respectively. In this paper, for convenience, we assume 
that qi = qd = q. 

III. LEVENSHTEIN DISTANCE 

Definition 1 Let x and y be two finite sequences of symbols 
from a given alphabet. If x can be transformed into y by the 
substitution of Ei symbols, the insertion of /; symbols and 
the deletion of gi symbols, then the Levenshtein distance (LD) 
between x and y is defined by 

LD(x,y) = min(Ei + fi + 9i). (1) 

Notice that Levenshtein distance satisfies three axioms of met- 
ric. 

Levenshtein distance is computed by using a graph that we 
call a LD diagram (See Figl). 

This work was presented in part at the IEICE Technical Report, 
July 15, 1995. 

Figure 1: LD diagram for n = 5 

IV. CONDITIONAL PROBABILITY 
In this section, we consider the conditional probability 

P{yt\wt) in CSID. In Binary Symmetric Channel (BSC), 
the conditional probability P(yt\wt) is given by the follow- 
ing equation. 

P{yt\wt) = P
E{i-Py-E (2) 

where E is the number of substitution errors that occur in 
BSC. In this case, -logP(yt\wt) is proportional to the num- 
ber of substitution errors, that is, Hamming distance 

In CSID , there are many way that wt changes yt by both 
substitution errors and insertion/deletion errors. The number 
of ways that wt changes yt is given by the number of paths 
in LD diagram. Thus, the conditional probability P(yt\wi) 
is given by the sum of the probability of each path in LD 
diagram. Thus, 

P(yt\m) = J2pEi(i-p)'- Ei    fi    Qi 
(3) 

where 0 < i < 22„C„, k = fi = g{, I = n - k, and Ei, fi and 
Pi are the number of substitution errors, insertion errors and 
deletion errors in each path, respectively. In this case, what is 
proportional to -logP(yi\wt) ? Let di be d{ = Et + fi + gi, 
and pi be a path labeled i, and P(pt) = m be the probability 
of pi. Assume that di is the minimum value for all i. Here, 
we consider P(pj). 

In the case that Ej = Ei + 1 and dj = di + 1, then 
P(pj) < pm. In the case that f, = fi + l,gj = gi + 1 and 
dj = di + 2, then P(pj) < q2m. Thus, if p,q are relatively 
small, P(Pj) < P(Pi). Thus, it can be said that the value of 
P(yt\

wi) m CSID mainly depends on P(pi). Then, it has been 
shown that - log P(yt\wt) oc min; (£<+/;+#) = dLD{yt,wt), 
which shows that it is possible to continue Viterbi decoding 
appropriately by using Levenshtein distance as metric. 

V. CONCLUSION 
In this paper, we have shown that Levenshtein distance is 

suitable for metric in CSID. This indicates that it is possible 
to continue Viterbi decoding in CSID by using Levenshtein 
distance as metric. 
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Further Results on Cosets of Convolutional Codes with Short 
Maximum Zero-Run Lengths1 
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Abstract — We study the maximum zero-run length, 

Lmax, of cosets of convolutional codes, and show that 
an associated block subcode to a large extent deter- 

mines Lmax- 

I. INTRODUCTION 

A communication system or storage system may use a coset 

of a binary convolutional code for both symbol synchroniza- 

tion and error control. To achieve symbol synchronization, 
the coset must have a short maximum zero-run length, Lmax- 
The shortest values of Lmax can be found in the class of con- 

volutional codes of rate (n — r)/n for which at least one row of 
a minimal parity check matrix is nonpolynomial [1]. We focus 

on this class. Each convolutional code C in the class contains 
an associated block subcode CB, consisting of the union of the 
sets of binary labels in the convolutional code trellis. For any 
binary vector p of length n, let p denote the sequence obtained 

by repeating p indefinitely. We consider some coset C + p, ob- 
tained by adding some vector p to every binary label in the 

convolutional code trellis. It is convenient to express Lmax as 
Lmax = max{LR,PR}, where the label run, LR, is defined 
as the largest number of intermediate zeros between two ones 

in any label of C + p (of Hamming weight at least two), and 

the path run, PR, is the largest number of consecutive zeros 
in any sequence C + p consisting of two or more consecutive 

coset labels. 

II. THE CONNECTION BETWEEN ZERO-RUN LENGTHS 

OF CONVOLUTIONAL CODE COSETS AND ASSOCIATED 

BLOCK CODES 

We consider an (n, n — r) convolutional code C defined by a 
parity check matrix H(D). The maximum degree of the i-th 
row of H(Z>) is denoted Vi. Assume that the first TB rows of 

H(D) are nonpolynomial, and that the remaining r-rB rows 
are sorted according to increasing row degree. That is, V\ — 
... = VrB = 0 < ivB+i < • • • vT. The associated block subcode 

CB is the (n, n - TB) block code defined by the submatrix HB 

which consists of the first rB rows of H(I>). Let PR and 
LR be the path run and label run, respectively, of the coset 
C + p. If we view CB as a zero constraint length (or one state) 
convolutional code, we can let PRB and LRB be the "path 

run" and label run of CB + P- Then we can show the following 

results. 

III. BLOCK CODE ZERO-RUN LENGTHS 
For 1 < i < TB, let \i and pi be the first and last position 

where the i-th row of HB is nonzero. Assume, without loss 

of generality, that the rows of HB are sorted according to 

Pi < pi+i, 1 < i < n . 

Lemma 3 For the coset with all-one syndrome, 

LRB < maxi<j<rB+i{pi - maxo<j<;{Aj}} - 1}, 
where, for convenience, we define Ao = 1 and prB+i = n. 

Lemma 4 For the coset with all-one syndrome, 

PRB < n — maxi<;<re{Ai} + p\ — 1}. 

IV. CONVOLUTIONAL CODE ZERO-RUN LENGTHS 

Definition 1 Let V be the class of (n,n - 2, (0, u)), v > 2, 
binary convolutional codes with the first row of the parity 

check matrices equal to 

Lemma 1 PR < PRB- Further, PR = PRB 

Lemma 2 LR = LRB- 

«/"rB + l  > 2" 

1...1    0...0 

where t is the number of trailing zeros, 0 < i < n — 2. O 

Theorem 1 LetC be a convolutional code in the class V. Any 
coset C + p for which the first syndrome sequence is equal to 

the all-one sequence has the least Lmax = 2n — 2 —t for any 

period n coset representative. 

Definition 2 For r > 3, let £ be the class of (n,n - 
r, (0, 0,1/3,..., vr)) binary convolutional codes for which the 
two first rows (HB) of the parity check matrices H(I>) are of 

the form 

!2 zeros 

ti zeros 

t2 zeros 

^his work was supported by the Norwegian Research Council 
(NFR) under contract numbers 107542/410 and 107623/420. 

The question marks denote unknown binary digits, t\ denotes 
the number of trailing zeros in the first row, and l2 and t2 

denotes the number of leading and trailing zeros in the second 

row. It is assumed that 1 < h + h < n — 2, h > h and 

h < h < n - 2. a 

Theorem 2 LetC be a convolutional code in the class £. Any 
coset C + p for which the first and second syndrome sequences 

are equal to the all-one sequence has Lmax < max{n — 2 — 

t2,2n-2-h -ti). 

We also show, by way of examples, that classes V and £ 
contain codes with excellent error-correcting properties. 
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Abstract—A new modulation coding technique, called Integer 
Multiple Mark Modulation (IMMM) is proposed. IMMM codes 
generate asymmetrical runlength limited sequences with spectral 
nulls in the power spectrum, whose positions are related to a 
specific runlength constraint. This coding technique can be used 
for any channel requiring specific spectral nulls in the code 
spectrum, such as partial-response optical recording. 

I. INTRODUCTION 

Numerous applications of digital data transmission and 
storage systems require the use of runlength limited (RLL) 
codes with certain defined spectral properties. We investigate 
a method to furnish codes with spectral nulls in the power 
spectrum (except DC) of the encoded sequence. An 
application of such codes is providing a gap for the insertion 
of auxiliary pilot tones, used for positioning the servo of 
magnetic or optical disc recorders [1]. In another application, 
codes with spectral nulls in the power spectrum, which 
coincide with the nulls of the transfer function of the channel, 
are used in partial-response optical recording systems [2]. 

II. THE IMMM CODING TECHNIQUE 

The notation for asymmetrical runlength limited (ARLL) 
sequences, as introduced by Karabed and Siegel [3], will be 
used. The class of binary, non-return-to-zero (NRZ), ARLL 
channels can be defined by the 4-tuple (d', k', e', m'), where 
d' and k' are the minimum and maximum runlength of 0's, 
respectively, and e' and m' are the minimum and maximum 
runlength of l's, respectively. The Integer Multiple Mark 
Modulation (IMMM) coding technique, which we introduce, 
requires the runlengths of l's to be of the form je', 
\ <j < m'le {i.e. integer multiples of e'). The l's are usually 
referred to as written marks in optical storage thus the name 
"Integer Multiple Mark Modulation". 

Even Mark Modulation (EMM) was introduced by Karabed 
and Siegel [3] to improve the performance of input-restricted 
partial-response optical recording channels. EMM satisfies the 
runlength constraint (d\ k', e', m') = (1, °°, 2, °°) and the 
requirement that the written marks are of even length [3]. The 
EMM coding technique is therefore a special case of the 
Integer Multiple Mark Modulation technique. 

The IMMM coding technique has the interesting property 
that it has spectral nulls at rational submultiples of the 
symbol frequency, the position of which can be chosen 
merely by adjusting the minimum runlength of l's: 
Proposition 1 

An DV1MM (d', k', e', m') sequence, with k' > d' > 1, and 
m' > e' > 1, will contain spectral nulls at the frequencies 
/= rfje', with re {1, 2, 3, ..., e'-l} and where/, is the 
symbol frequency. ■ 

To calculate the channel capacity for these sequences, the 
following proposition can be used: 
Proposition 2 

The noiseless channel capacity for a binary IMMM 
(<f, k', e', m') NRZ input-restricted channel with k' > d' > 1 
and m' > e' > 1, is given by H = log2X, where X is the 
largest real root of the characteristic equation: 

r\ e'+k'+m'+l _ T\ e'+k'+m' _ rj fc'+m'+l + r\ k'+tri _ 

Dk'*m'-d'^ + Dk'-d'*l + Dm'_l   = Q 

■ 
The generating function is a rational function that can be 

expanded into a power series such that the coefficient of each 
dummy variable equals the number of possible unique 
constrained sequences where the length of the sequences is 
given by the power of the dummy variable. We present the 
generating function for the number of IMMM (d', k', e', m') 
sequences of length i5, for which an arbitrary concatenation 
of code words also satisfies the channel constraints. 
Proposition 3 

The generating function for the number of self- 
concatenable code words for IMMM (d', k', e', m') sequences 
of length •&, where r> > d'+e', is given by: 

7T(*) = . (xe d' ,f-i' + K 
)(l-x, + 1)(*   -*        ) 

[(\-x){\-xe)-(xd'-xk'*x)(xe'-x* ; )](!"*) 

if k'-d' > m   e , and 

T(x)- (xd -xk ^){\-x'e +e){xe -xm ~je *e) 

[(l-x)(l-xe)-(x d'-xk'+l)(xe ')}{\-xe) 

if k'-d' < 

where i 

m 
e 

k'-d' 

, and 

and j = m'-e' 
2e' \ 

The above proposition can be used to determine the 
number of code words when developing IMMM block codes. 
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I. INTRODUCTION 

Recently, a new class of unequal error protection codes[l] 
which protects the fixed-byte in computer words from er- 
rors has been proposed[2]. Here, the fixed-byte, which 
stores valuable and important information such as ad- 
dress in communication messages and pointer in database 
words, means the clustered information having &-bit 
length whose position in the word is determined in ad- 
vance. 

This paper proposes an extended class of optimal fixed- 
byte error protection codes which protects the fixed-byte 
from single-bit errors outside the fixed-byte as well as 
any errors within the fixed-byte, occurred simultaneously. 
This class of codes is called Single-bit plus Fixed b-bit byte 
Error Correcting codes, i.e., (S+F6)EC codes. 

II. PRELIMINARIES 

Theorem 1 A binary linear code, described by the par- 
ity check matrix H, corrects all single-bit plus fixed-byte 
errors, if and only if 

(a) e ■ HT ^ 0 for Ve e {J^ U E2} 

(b) e» • HT ^ ej ■ HT for Ve,-, Ve.,- 6 Eu e; ^ ej 

(c) ep ■ HT £ eq ■ HT for Vep, Ve9 € E2, ep ^ eq 

(d) et ■ HT ^ ep ■ HT for Ve; 6 Ex and Vep € E2 

(e) (e; + ep) ■ HT # (e,- + eq) ■ HT for Ve;, Ve,- £ Ex 
and Vep,Ve9 € E2, e, ^ ej,ep ^ eq, 

where H is the transpose of H, Ex is the error set 
caused by single-bit errors outside the fixed-byte in the 
word, and E2 the error set caused by all possible errors 
in the fixed-byte. 

Theorem 2  The maximal code length of an (N, N - r) 
(S+Fb)EC code is shown as   

Nmax = 2r-b + b-l. 

Thus, the maximum information-bit 
length Kmax can be expressed as 
Kmax = 2x-x-\ where x = r-ft.Table 
1 lists Kmax for check-bit length r = 
b + x. 

III. CODE CONSTRUCTION 

Without loss of generality, the fixed- 
byte is assumed to be located at the be- 
ginning of the word and the check-bits 
be located at the end of the word. Here, 
the H matrix of the code is divided 
into three submatrices shown in (3-1). 
The submatrix HF shows the one cor- 
responding to the fixed-byte having b- 
bit length, the submatrix Ir the one 
corresponding to the check-bits having 
r-bit length, and the intermediate sub- 
matrix Ho the remaining one having 
(N -b- r)-bit length. 

Table 1: Bounds on information-bit length of (S+F6)EC codes 
r = b + x b+6     b + 4     6 + 5     6 + 6     6+7     6 + 8 

ft-max 4          11         26         57        120       247 
Theorem 3   The following H matrix shows the 
(S-f-Fb)EC code  satisfying  the  bounds  on  code  length 
shown in Theorem, 2: 

H     =     [HF\H0\Ir\ 

h    O 
P    Q Ir 

where HF = h 
P ■,Ho — 

O 
Q 

Ib(Ir) '■ b x b (r x r) identity matrix     O : zero matrix 
P :  (r — b) x b matrix whose b distinct binary column 
vectors have weight larger than or equal to two. 
Q : matrix having all possible nonzero (r — b)-bit binary 
columns excluding those in P and weight one columns. 

Let the upper b bits of the syndrome 5 be SF, and the 
matrix GF be defined as GF = \ P \ IV-6 ]. 

With using SF and GF, decoding of the (S+F6)EC 
code is performed according to Table 2. 

IV. CONCLUSION 

This paper has proposed an extended class of optimal 
fixed-byte error protection codes, and has demonstrated 
the bounds on code length and the code construction 
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Table 2: Decoding of (S+F6)EC codes 

S = 0 error free 

5 = one column 
vector in if 

5^0 

H = [HF\Ho\Ir] (3-1) 

corresponding single-bit error correction 

■Gl: 

S i- one column 
vector in H S-GT

F4Q 

fixed-byte error correction 

[byte error pattern: SF] 

S ■ GT
F: corre- 

sponds to one col- 
umn vector in Q 
or Jr_(, in IT 

S -GF: corre- 
sponds to one col- 

umn vector in P 

, e.g., /-th column 
vector 

corresponding one-bit error cor- 
rection and fixed-byte error cor- 
rection 

[byte error pattern: Sp] 

/-th (1 < / < 6) check-bit er- 
ror correction and fixed-byte er- 
ror correction 

byte error pattern: 
i-i 

S'F = SF + @Pl)10---0) 
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Abstract — An analysis of the Generalized Cross 
Constellation (GCC) is presented and a new perspec- 
tive on its coding algorithm is described. We show 
how the GCC can be used to address generic sets of 
symbol points in any multidimensional space through 
an example based on the matched spectral null cod- 
ing used in magnetic recording devices. We also prove 
that there is a forbidden rate region of fractional cod- 
ing rates that are practically unrealizable using the 
GCC construction. We introduce the idea of a con- 
stellation tree and show how its decomposition can be 
used to design GCC's matching desired parameters. 
Following this analysis, an algorithm to design the op- 
timal rate GCC from a restriction on the maximum 
size of its constellation signal set is given, and a for- 
mula for determining the size of the GCC achieving a 
desired coding rate is derived. We finish with an up- 
per bound on the size of the constellation expansion 
ratio. 

I. INTRODUCTION 

The 2TV—dimensional generalized cross constellation (GCC) 
selects a block of TV 2-dimensional points from among a family 
of simply-defined constituent subconstellations by first choos- 
ing a constrained sequence of these subconstellations and sec- 
ond selecting an individual channel symbol from each chosen 
subconstellation. This construction reduces the multidimen- 
sional addressing problem to a series of TV 2—dimensional sub- 
constellation mappings [1]. Furthermore, since the sequence 
constraints select the distinct subconstellations with different 
probabilities, the GCC also makes it possible to reduce aver- 
age transmitted signal power. While this addressing technique 
can be applied to channel constellations of any type, gener- 
alized cross constellations have hitherto found application in 
QAM modems. 

Since it is possible to encode a fractional average bitrate 
into each channel symbol and also possible to use a constel- 
lation whose total cardinality is not restricted to an integer 
power of 2, generalized cross constellations are also powerful 
tools for maximizing the encoding rate of discrete communi- 
cations channels. These qualities are especially attractive in 
coding for channels, other than QAM modems, for which there 
is a predetermined symbol alphabet of size 2n < N < 2n+1. 

An example of such a discrete communications channel is 
the Partial Response Maximum Likelihood (PRML) magnetic 
recording channel. An elementary approach to coding for 
the PRML channel involves the construction of DC-free block 
codes which maintain all of the advantages of the MSN trellis 
codes without the problems of error propagation and decoder 
complexity [2]. A DC-free block code is a set of balanced bi- 
nary TV—tuples, each of which has an equal number of zeros 
and ones. Therefore, the codewords making up a DC-free code 

must be selected from among the 
TV 

N/2 
balanced binary 

TV—tuples and should be chosen to allow a simple address- 
ing scheme from binary user data.  Difficulties occur because 

TV 
N/2 

is never an integral power of 2.    Since a simple 

look-up-table addressing scheme only works for constellations 
of size 2k for A;  g  Z+, a DC-free block code must discard 

TV 
N/2 

>°g2 

N 
N/2 

l°g2 

of the 

N 
N/2 

N 
N/2 

possible code- 

words and encode only 

symbol. 

For example, consider the case TV = 10.  Since 

user bits per channel 

10 
5 

252, the optimal addressing method would encode an average 
of log2(252) = 7.98 bits per channel symbol. Unfortunately, 
due to the integral power-of-two restriction, a simple look- 
up-table addressing scheme only permits a codebook of size 
2l °E2( )J = 128 codewords and can therefore encode only 7 
bits per symbol. Using a GCC, however, a codebook using 
240 of the available 252 DC-free binary 10—tuples is possible, 
and a rate of 7j bits per channel symbol can be achieved. 

II. THEORETICAL RESULTS 
Theorem .1   Given  a generalized  cross  constellation, CB 

with average encoding rate ß 
total cardinality of Cß is 

n + 

\Cß\ = 2n-  J]  Rp 

bits per symbol, the 

(1) 
P'€P' 

where Rp = ^±1, P' = {m—p\p 6 P}, and the set P is defined 
as the ordered set of indices, i, in the binary decomposition of 
d. D 

Theorem .2 There exists a region of values for parameters 
d,mandn, d <2m, for which the associated generalized cross 
constellation requires more than 2n+1 channel symbols.       G 
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Abstract — New linear symbol-spreading strategies 
for efficient single- and multi-user communication in 
environments subject to fading due to time-varying 
multipath are introduced. For given power, band- 
width, and delay constraints, these new systems sig- 
nificantly reduce the computation required to achieve 
a prescribed level of performance. Several aspects of 
these systems and their performance will be devel- 
oped. 

I. SPREAD-RESPONSE PRECODING 

For single-user or frequency-division multiplexed wireless 
systems, we first develop a technique we refer to as "spread- 
response precoding," which replaces the interleaving typically 
used in conjunction with coding in such systems. In tradi- 
tional bandwidth-limited systems for communication over fad- 
ing channels, coding is used to combat the effects of both ad- 
ditive receiver noise and fading. Furthermore, achieving high 
performance generally requires the use of codes with a large 
number of states. However, the computational requirements 
inherent in the use of such large codes typically preclude their 
use in practice. With the new systems described in this pa- 
per, much of the burden of combatting fading is shifted to the 
spread-response precoder, allowing shorter codes to be used 
for a given level of performance. Since this precoding (and 
postcoding) is implemented using linear filtering, the net re- 
sult is a significant reduction in computational complexity in 
the system. 

The precoder is implemented using either linear time- 
invariant or periodically time-varying filters. The key char- 
acteristics of the precoding filters is that they are orthonor- 
mal or near-orthonormal transformations of the input sym- 
bols, and that their impulse response energy is widely spread 
in time. This spreading allows each coded symbol to see, in 
an appropriate sense, the average characteristics of the chan- 
nel. In fact, from the perspective of the coded symbol stream, 
spread-response precoding asymptotically transforms an arbi- 
trary Rayleigh fading channel into a nonfading, simple white 
marginally Gaussian noise channel in which intersymbol inter- 
ference is transformed into a comparatively more benign form 
of additive white noise that is uncorrelated with the input. 

II. SPREAD-SIGNATURE CDMA 

In the multiuser case, spread-response precoding general- 
izes to a new class of orthogonal code-division multiple-access 
(CDMA) systems for efficient communication in environments 

subject to multipath fading phenomena. The key charac- 
teristic of these new systems, which we refer to as "spread- 
signature CDMA" systems, is that the associated signature 
sequences are significantly longer than the interval between 
symbols. Using this approach, precoding is embedded into 
the signature sequences in the system, so that the transmis- 
sion of each symbol of each user is, in effect, spread over a wide 
temporal and spectral extent, which is efficiently exploited to 
combat the effects of fading. 

Analogous to the single-user case, spread-signature CDMA 
systems asymptotically transform the multiuser Rayleigh fad- 
ing channel into a collection of decoupled quasi-Gaussian 
channels. Optimizing the signal-to-noise ratio in the result- 
ing quasi-Gaussian channel with respect to the choice of a 
linear equalizer leads to mininimum mean-square error type 
equalizers. 

An optimum class of spread-signature sets for this appli- 
cation is developed out of multirate system theory, and effi- 
cient implementations are described. Estimates of the capac- 
ity and uncoded bit-error rate characteristics axe computed 
with these optimized systems and compared with those of 
more traditional CDMA systems. The performance advan- 
tages appear substantial for practical systems. Furthermore, 
the use of these new systems requires no additional power or 
bandwidth, and is attractive in terms of computational com- 
plexity, robustness, and delay considerations. Some remaining 
challenges inherent in their use—including managing peak-to- 
average power requirements and developing suitable timing 
recovery strategies—are also described. 

A detailed development of these results is presented in [1] 

[2]. 
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Abstract — Limits on the rate of reliable communi- 
cation over multipath fading channels are presented. 
An idealized channel model is considered first in order 
to determine the loss due to amplitude fading. The 
requirement of channel estimation is demonstrated 
through calculation of limits for channels in which the 
state of the fading process is not completely known. 
Loss incurred due to the limitation of practical chan- 
nel estimation schemes is determined. The particular 
methods of channel estimation considered are pilot 
tone extraction, differentially coherent detection, and 
the use of a pilot symbol. 

I. IDEAL FADING CHANNELS 
The capacity of a discrete-time Rayleigh fading channel 

has been considered by Ericson [1]. His result is based on 
the idealistic assumption that the value of the fading process 
is known at the receiver and is independent with respect to 
discrete-time symbol intervals. For an ideal Nakagami fading 
channel and integer values of the Nakagami parameter m, the 
capacity is 

C = (log2e) 
(-m)m 

r(m) 
Es_ 
No (da) 

—Ei{-s) bits/T 

where s = m (^ ) , T(-) is the gamma function, Ei(-) is the 
exponential integral function, and T is the discrete-time sig- 
naling interval. When compared to the capacity of an additive 
white Gaussian noise channel, the maximum loss in average 
SNR due to Nakagami fading is me"*(m) where ip(-) is Euler's 
psi function. This expression of loss is valid for any m > 0. 
The capacity of a Nakagami fading channel also represents the 
capacity of a Rayleigh fading channel when space diversity 
combining is used. In this case, the Nakagami channel pa- 
rameter m corresponds to the number of antennae used in the 
system. In terms of channel capacity, the gain in SNR achiev- 
able through the use of antenna diversity is e°E — me"""1' 
where CB is Euler's constant. 

II. INCOMPLETE CSI 
In a Rician fading environment with no CSI, a line-of-sight 

(LOS) component exists which is normally strong enough to 
support the transmission of information. In this case, the scat- 
tered component is sometimes viewed as an additional source 
of interference, although it does convey a small amount of 
information. By using entropy power relations [2], one may 
determine an upper bound to the average mutual information 
(AMI) of the form 

Iu - log 
1 + E, 

No 
i    ,   exp(-A/) j^ 
1 +      1+7R      N0 

1This work was performed as part of a Ph.D. thesis at Queen's 
University with support provided by TRIO and NSERC. 

where the Rician channel parameter 7.R is the ratio of power in 
the LOS component to that in the scattered component, and 
Aj = In Es — Ep(x) {ln|x|2} is a positive number obtained 
from Jensen's inequality. As SNR —► 00, Iu approaches a con- 
stant value of Aj log e + log (1 + -fn). For a Rayleigh channel 
and a Gaussian distributed input, the AMI is bounded to less 
than 0.83 bits/T. 

If a receiver can track variations in the phase of the fading 
process, then it is reasonable to model the system as having 
ideal fading phase information but no fading amplitude infor- 
mation. In this case, entropy power relations yield an upper 
bound on AMI for a Rayleigh channel of the form 

Iu = log 
i+ Np 

1    ,   exp(-Aj) B. 
1 T 2TT NO 

which approaches a value of Aj log e + log 2vr as SNR —>• 00. 
With ideal fading phase information and sufficient SNR, data 
transmitted via the symbol phase can be accomplished with an 
arbitrarily small probability of error. In addition, a discrete- 
valued constellation can be used to achieve a higher data rate 
than a continuous-valued input. 

III. USE OF CHANNEL ESTIMATION 

When CSI is obtained by means of practical estimation 
methods, the AMI conditioned on knowledge of the channel 
estimate is a function of both SNR and the Doppler frequency 
fo of the fading process. When considering practical signal 
constellations for coding (i.e. at rates of less than log2 M 
bits/T with an M-point constellation), additional losses are 
incurred due to the limitations of these estimation schemes. 
For a Rayleigh fading channel with a normalized Doppler fre- 
quency of foT = 0.1, systems which use pilot tone estimation 
incur a loss of 1.0-1.5 dB. Under the same conditions, the loss 
experienced through the use of differentially coherent detec- 
tion is roughly in the range of 3-4 dB. Systems based on pilot 
symbol transmission exhibit losses in the range of 4.5-8.5 dB. 
When using differential detection or pilot symbol transmis- 
sion, the equivocation of the channel cannot be made arbi- 
trarily small. The magnitude of this remaining uncertainty is 
strongly affected by the value of foT. 
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Abstract — We derive a compact formulation of the 
computational cutoff rate of binary differential phase 
shift keying (BDPSK) over a correlated Rayleigh fad- 
ing channel. The analysis is more realistic than pre- 
vious finite state Markov models of a fading channel. 

I. INTRODUCTION 

Compared to memoryless channel models, there are few 
capacity and cutoff rate results for channels with memory, 
and most such models are not very realistic [1], We present 
an exact analysis of non-interleaved binary differential phase 
shift keyed signaling over a correlated Rayleigh fading channel. 
The lack of interleaving forces the analysis to deal with the 
channel memory directly. We find that modeling the received 
channel process as a finite order Markov process allows the 
sum-over-codewords portion of the computational cutoff rate 
calculation to be performed combinatorially. This provides for 
a succinct formulation of the cutoff rate, Ro- 

ll. RESULTS 

On a Rayleigh fading channel, the probability density func- 
tion of received signal, y, conditioned on the N symbol trans- 
mitted vector x, can be written 

pjv(y|x) = y^XR~1X^y 

\R\ 

where we assume n samples per channel symbol. The total 
channel correlation matrix, R = R; + a21, is the sum of the 
fading correlation matrix, Rf, and that of the additive white 
noise of variance cr2. The diagonal matrix X takes the vector 
x along its diagonal, i.e., X = diag(x). 

The code ensemble average probability of error can be 
bounded by the combined Union-Bhattacharyya bound [2]. 
Using the above density, and simplifying for the case of 
BDPSK signaling, we have the code ensemble bound 

Pe< 
M ■ 

2N ^ R-i + xR-^xn 

where M is the number of codewords in the code and we 
sum over all binary sequences X. If we assume that the re- 
ceived channel process is auto-regressive of order L, then the 
inverse channel matrix, iJ-1, will be Toeplitz banded diago- 
nal in form, except for L x L sample blocks at each end of the 
diagonal [3]. 

The trick here is recognizing that off-diagonal entries of 
the denominator's matrix will be either zero or a constant 
non-zero value, depending on whether the phase shift between 
symbols in X is zero or x phase shift respectively. This, pro- 
vided we are sampling at at least L samples per symbol. The 
zero off-diagonal entries will then pinch off the matrix into a 

block diagonal form. For example, 

rBBü 
GG. 

R-1 +XR-XX^ 
o. 

QG 
GG 

QG 
GGJ 

Summing over all binary sequences of X in the bound is 
then equivalent to summing over all possible block partitions 
of the matrix. This then corresponds to summing over all 
integer partitions of N. If we define D(m) as the determi- 
nant of the TO x TO symbol band Toeplitz block of Ä-1, the 
combinatorics of the partitioning allows us to write 

^  .   2 
Pe< 2N N! 

N , 

JrEk!BNM 
k=l 

J\ 2!_ (N-k+1)! 

^D(l)'D(2)''"'D(N-k+l) 

where BN,k(-) is the (N, k) Bell polynomial [4]. We define the 
m x m symbol matrix TZ-(m) such that its inverse, 72.-1(m), 
equals the TO symbol inverse channel correlation matrix, iJ-1, 
however, we extend the inner Toeplitz portion of the matrix 
into the L x L sample blocks at either end of the diagonal, 
overwriting them. Thus, |7Z.(TO)| = 1/JD(TO). 

Using a relation between Bell polynomials and the compo- 
sition of Taylor series [4], and between the exponential growth 
of the coefficients of a Taylor's series and its radius of conver- 
gence [5], we can then formulate the computational cutoff rate 
as follows. 
Theorem 1 Define the generating function for the determi- 
nants of the TO symbol Toeplitz extended channel correlation 
matrices as 

g{*)   =   £W™)l'n 

=    \K(l)\t+\Tl(2)\t2 + \K(3)\t3 + --- 

The computational cutoff rate is then given by 

Ro = log2 (21101)    [bits/symbol], 

where to is the smallest magnitude singularity of the function 

1 
h(t) 

1-ffW 
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This paper focuses on the construction of M-PSK block 

modulation codes for the Rayleigh fading channel. We present 
some new codes constructed by two different methods. The 

first method, an exhaustive computer search, is appropriate 
for short block lengths. Some optimum codes are found. The 
second method is for multilevel block codes. In this case we 

use the cutoff rate performance criterion for multistage decod- 

ing. Simulation results are presented. From them we conclude 
that the second method can propose codes which achieve im- 
provement over known codes for low and moderate SNR's. 

CODES FOUND BY A COMPUTER SEARCH 

The block codes, so far supplied by the literature [1, 2], 

were constructed using the multilevel coding technique. Good 
codes can be constructed by the multilevel technique (with the 
intrinsic advantage of a multistage decoder), but this tech- 

nique does not always lead to optimum codes. If the block 
length of the code n is small and M = 4, 8,16, it is possible to 
generate all Mn sequences of M-PSK symbols and store the 
subset of sequences with the greatest number of elements that 
satisfies a specified design criterion. 

Our aim was to construct codes based on the following 
design criterion: "For a given code length n and a given value 

of the desired minimum Hamming distance d,H, find the code 
with the greatest rate R (bits/symbol) such that the minimum 
product distance dp is not less than 7." 

By a computer search, some new codes with lengths n = 
4,5,6,7 (number of M-PSK symbols) and different minimum 
Hamming distances were found for 4-PSK and 8-PSK modu- 
lation. We will show simulation results for a 4-PSK code with 
n — 6,R = 1 and djj = 4 that cannot be constructed as a 
multilevel code. This code has a coding gain of about 14.0 dB 
over the uncoded 2-PSK system, at the bit error probability 

(Pb) IO-3. 

MULTILEVEL BLOCK CODES 

We consider multilevel block codes constructed based on 
a sequence of binary partitions of the 2m—PSK modulation. 
The m-level code consists of the binary component codes 
Bo,Bi,...,Bm-i with rates Ä(0), Ä(l),..., R(m - 1), re- 
spectively. The method for constructing multilevel codes we 
propose deals with the following question: For a given rate 
R = -R(0)+JR(1)+- • ■+R(m—1) of the m-level code and a given 

SNR of the channel, how can the rates R(j), 0 < j < m — 1, 
be chosen in such a way that the word error probability 
(PE) for multistage decoding of the m-level code is mini- 
mized? This question is answered in [3] based on the cutoff 
rate performance criterion. This criterion leads to the rates 
R(j), 0 < j < m — 1, that minimize an upper bound on PE of 
multistage decoding. 

Assuming a Rayleigh fading channel with ideal interleaving, 
ideal coherent detection and perfect channel state information, 
we have obtained the optimum rates for the component codes 
of 4-PSK, 8-PSK and 16-PSK block modulation codes for dif- 
ferent values of SNR's. 

Knowing the optimum rates for a given SNR we can con- 

struct multilevel block codes with the help of Verhoeff's table. 
For example, the optimum rates Rop{j), j = 0,1, 2, for a fixed 
rate R = 2.0 bits/symbol of the 8-PSK block code and a 

SNR of 15.0 dB are: Rop(0) = 0.4362, Rop{l) = 0.7349 and 
RoP(2) = 0.8289. If we choose n = 16, we can approximate the 

optimum rates with the codes: B0 = (16, 7, 6), B\ = (16,12, 2) 

and B2 = (16,13, 2). If we use B0 = (16, 7, 6), Bi = (16,11, 4) 
and B2 = (16,15, 2), we get a code with R = 2.06. 

Figure 1 shows the behaviour of Pb for two different 8- 
PSK block codes. Code X is the above mentioned code with 
R = 2.06. Code Y is a code of same rate R and minimun 
Hamming distance 4 constructed with component codes Bo = 

B\ = f?2 = (16, 11,4). Code X shows better performance than 
code Y for low and moderate SNR's. For Pb = 10-3, code X 
has a coding gain of about 1.0 dB over code Y. For SNR's 
higher than 17.0 dB, the performance of code Y is superior. 
This behaviour can be explained due to the fact that it has 

a larger value of dn, which is the dominanting performance 
parameter for high SNR's. 

10 15 20 

SNR(dB) 

25 

Fig. 1: Performance of 8-PSK block codes X and Y 
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Abstract — In this paper, new block coded 8-PSK 
modulations with unequal error protection (UEP) ca- 
pabilities for Rayleigh fading channels are presented. 
The proposed codes are based on the multilevel con- 
struction of Imai and Hirakawa [1]. It is shown that 
the use of linear UEP (LUEP) codes [2] as component 
codes in one or more of the encoding levels provides 
increased error performance with respect to conven- 
tional multilevel codes. 

I. SUMMARY 

Previous work on combining LUEP codes and PSK modu- 
lation for fading channels is reported in references [3] and [4]. 
Hagenauer et al. [3] proposed rate-compatible punctured con- 
volutional codes combined with DQPSK modulation to pro- 
vide UEP by means of their variable rate structure. Refer- 

ence [4] used Gray labeling of a QPSK signal set to map LUEP 
codes of even length onto block modulation codes with UEP 
capabilities. Seshadri and Sundberg [5] studied the UEP ca- 
pabilities of multilevel codes of length 8 over Rayleigh fading 
channels. The aim of this research work is to design efficient 
block coded modulations (BCM) over 8-PSK signal sets for the 
specific purpose of UEP over Rayleigh fading channels. Over a 
fading channel, the minimum symbol and product distances are 
the parameters that dominate the overall error performance. 

The symbol distance is closely related to the Hamming dis- 
tance of the component codes. Thus it is natural to consider 
binary LUEP codes as component codes in the multilevel con- 
struction to obtain good BCM for UEP over fading channels. 

Let S represent a unit-energy 8-PSK signal set. A la- 

bel £k = 6i + 262 + 463 represents the signal point ejfi7r'4, for 
0 < fc < 8, where j = y/^1, and hi € {0,1}, 1 < i < 3. In mul- 
tilevel block coded modulation [1], codewords of three linear 

binary block codes of length n, dimension fc, and minimum 
distance di, denoted C;, are used to select label bits bi, for 

1 < i < 3. The set of resulting sequences of n 8-PSK signals 
is said to be a block modulation code A of length n and rate 

R = (fcj + fc2 + £3)/« bits/symbol. 
A two-level (n, fc) LUEP code is a linear code that it 

is not spanned by its set of minimum weight vectors. We 

use UEP(n, fc) to denote such a code and refer to its un- 
equal error protection capabilities as follows: separation vector 

s = (si,S2) for the message space {0,1}* x{0,1}* , where 
fc = fc'1' -f fc(2'. This means that codewords in correspondence 

to fc'*' information bits are at a Hamming distance at least S{, 

i = 1,2. Without loss of generality, it is assumed that s\ > si. 
Thus an information vector of length fc bits can be separated 

1This work was supported in part by NASA under grant NAG 
5-931, by the NSF under grants NCR-88813480 and NCR-9115400, 
and by the Japanese Society for the Promotion of Science (JSPS) 
under fellowship no. 93157. 

into a most significant part of length fc'1' bits (the MSB) and 
a least significant part of length fc'2' bits (the LSB). The pro- 
posed multilevel construction uses an (n,£2,^2) linear code, 

or a UEP(n,fc2) code, C2 in the second encoding level and a 
UEP(n, k$) code C3 in the third encoding level. 

As an example, let Ci, Ci and C3 be (8,4,4), (8,7,2) and 
(8,7,2) linear codes, respectively. The Imai-Hirakawa multi- 

level construction results in a block modulation code Aj of 
length 8, rate R — 2.25 bits/symbol, minimum symbol dis- 
tance 6H = 2 and minimum product distance Aj, = 4. [5]. 
By letting C3 be a binary optimal LUEP code, UEP(8, 5), 
from [6] with separation vector s = (3,2) for the message space 

{0, l}4 X {0,1}, a block modulation code A2 is obtained. A2 
has length 8, rate R = 2 bits/symbol, SH — 2 and A2, = 4. In 
addition, 25% of the information bits (the 4 MSB encoded 
by UEP(8,5)) have corresponding symbol and product dis- 
tances equal to 3 and 64, respectively. That is, a subset of the 
coded sequences, those corresponding to the MSB encoded by 
the LUEP code, has increased symbol and product distances. 

It follows that, with no bandwidth expansion over uncoded 
QPSK, higher error performance is achieved. In the presenta- 
tion, simulation results will be presented showing an increase 
in both overall coding gain and that for the most important 
message part. At a bit error rate (BER) of 10-3, the coding 
gain in the third level is at least 13 dB for A2, compared 
to about 8.5 dB for A\. In addition, at a BER of 10~3, an 
advantage of 2 dB in overall coding gain is achieved. 
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Abstract — The statistics of mobile communications 
over frequency nonselective fading channels are deter- 
mined largely by fading bandwidth, which is related 
to vehicle speed. On-line estimation of fading band- 

width can be used to optimize coherent signal trans- 
mission, as well as improve handoff algorithms. In the 

following, level crossing rates of received signal ampli- 
tude, combined with recent on-line change detection 

techniques [1] are used to estimate fading bandwidth. 
The proposed estimator takes AGWN into account 
and has low complexity and processing delay. Ap- 
plied to adaptive on-line tracking of fast fading chan- 
nel parameters as performed in [2], significant BER 
reduction is demonstrated, particularly in situations 
where vehicle speed increases abruptly. 

I. THE MODEL 

Signal xk is transmitted over a frequency-nonselective 
Rician fading channel. The received low-pass equivalent 
discrete-time signal is yk = xkck + nk where ck is the channel 
gain. Let mean a = E{ck} and covariance function 

r0Jo(27rfmnT) = r0 
1      /        J2TT/„ 

*/ — IT 

9d0      (1) 

where J0() is the Oth order Bessel function, T is the symbol 
period and /m = j is the maximum Doppler frequency (fading 
channel bandwidth) with v and A defined as mobile vehicle 
speed and transmission wavelength, respectively. 

II. MONITORING VEHICLE SPEED BY MEASURING 

LEVEL CROSSING RATE 

In [3], it is shown that the number of crossings at voltage 
level, A, is 

n(\ck -a\ = A) = n(R) = V2^fmRe~R 

and the average fade duration is 

t(\ck -a\=A)= t{R) = 
1       1(R2     u (e      -1) 

^fmR 

(2) 

(3) 

with R = -4=, and r0 = Var(ck) = E{c\) - \a\2. Therefore 

measuring the level crossing rate yields an estimate of v and 
fm. By choosing R = -5 dB, i.e., A = 0.56230^ as in [3], 

^ 1.6579A      -11K.nA 
v « — = 6.1154—. 

27rt 27T (4) 

1This   research   was   supported   by  NSERC   Research   Grant 
OGP0041731 

III. MEASURING LEVEL CROSSING RATE USING 

% CHANGE DETECTORS 
Since yk contains noise, rather than count level crossings 

directly, we view the problem as a sequential change detector 

as follows: Letting z; denote the power of y;, it can be shown 
that for reasonably large SNR 

Zi « \ci\   + c*x*rii + CiXin* (5) 

Since c; has small bandwidth relative to n;, a can be treated 
as locally deterministic. Conditioned on Xi, it can be shown 
that Zi is Gaussian with mean E{zi} = |c;|2 and variance 

Var{zi} = 2\ci\
2a2

n (6) 

where <r2 is the variance of m. The channel energy |c;|2 

equals A0 = ro + \a\2 and nominally and drops to below 

Al = 0.56232r0 + \a\2 during a fade. i,From the above, the 
problem can be transformed into one of quickest detection of 
a change from 

H0 fo(zi) 
y/kKÄfal 

iAl'l 
2^2 
$1— -o 

-Aiv 

Hi: Zj~f1(zi)f1(zi)= e     *Al'' 
^4nA2a2 

and vice-versa. We have investigated a two-sided Page's 
cumulative-sum (CUSUM) statistic, as well as an alterna- 
tive change-detection procedure [1] that is well-suited to cases 
where the change-time is known to be finite. The resulting 
fading bandwidth estiamtor has been applied to the adaptive 
fading channel tracker, DFALP, described in [2] as follows: 
the optimal DFALP linear prediction and LPF filter param- 
eters are first recorded off-line for a set of fading bandwidths 
in constant speed conditions. In on-line use, the DFALP pa- 
rameters are then adjusted adaptively in steps of 20 km/hour. 
The BER performance of differential quadrature phase-shift 
keying DQPSK detection is used as a reference. From simula- 
tions, it is shown that when the vehicle speed increases from 
60 to 100 km/hour (in Rician fading with a2/ro = AdB), a 5 
dB gain is observed over both DQPSK and DFALP (without 
parameter adaptation) at BER 6.30 x 10~3 and SNR = 20 dB. 
Noticeable gains are also observed if the SNR is greater than 
12 dB. 
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Abstract — In this paper we consider impulse re- 
sponse statistics of the wide sense stationary — un- 
correlated scattering (WSSUS) multi-path chan- 
nel that results from a stationary scattering field 
with either the transmitter or receiver in motion, 
but not both. 

Summary 

Let h(r; t) denote the time varying impulse response of 
the channel. By delay uncorrelated scattering we mean 

E[h(Ta;t)*h(Tb;t + At)} 2<t>h(Ta;At)6{n-Ta). 

In this paper we derive general formulas for the cor- 
relation function (f>h(i~; At) and the scattering function 
S(T; A) = / 4>h(T; At)e-i2wXAtdAt where A is the Doppler 
frequency shift variable. 

This general family of channels has been the subject of 
a great deal of research. The commonly cited result is the 
correlation function </>/j(r;A£) oc Jo(27rAmAi) where Am 

is the maximal doppler frequency, due to Jakes [2]. Here 
we show that, for arbitrary scattering fields, Jakes' result 
is actually just the Oth term in the series 

oo 

MT;M)   =   2TT ]T VnW"(0o+w/2)J„(27rAmAi) 

where 0Q is the velocity vector angle relative to the base- 
to-mobile baseline. The series coefficients ipn(T) are de- 
termined from the spatial distribution of scatterers and 
propagation path loss factors. 

For the case of a spatially uniform scattering field with 
1/r2 propagation loss factors, we obtain 

■0n(r) 
2cc 

cr((cry + rl) y/\ - a(r)2 

\l + y/\ - a{rY) 

where <f>ß is the spatial scattering intensity, ro is the base- 
to-mobile baseline length, c is the speed of propagation, 
and O(T) = 2CT7-0/[(CT)

2
 + r2]. As opposed to uniformly 

distributed scatterers, Jakes' derivation emphasizes scat- 
tering near the mobile unit. 

In addition to the classical 2-D mobile problem dis- 
cussed above, we also derive results for some 3-D prob- 
lems. 

Our analysis is based on the theory of generalized 
stochastic processes [1]. A generalized process is a con- 
tinuous random linear functional on a topological vector 
space of test functions. This theory is a direct extension 
of the well known theory of generalized functions (also 
known as "distribution theory"). We assume a spatially 
uncorrelated scattering field with spatial scattering in- 
tensity function. The field may be either diffuse (white 
Gaussian) or specular (white Poisson). Our results are 
obtained by application of an elliptical change of vari- 
ables to the appropriate spatial test function integral. 

The channel impulse response h(r; t) is a time-varying 
linear transformation of the spatial scattering field. Thus, 
the channel's 2nd order moments are completely deter- 
mined by the spatial scattering field's 2nd order moments 
and the propagation geometry. The common method of 
analysis first considers discrete elemental scatterers and 
then passes to a limit of increasingly dense but vanish- 
ingly small scatterers. This limiting method is quite cum- 
bersome, it is difficult to identify the corresponding spa- 
tial scattering intensity, and, in our analysis, the limiting 
method is entirely unnecessary. 
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Abstract — We show that particular versions of 
the densest lattice packings present very good per- 
formance over the Rayleigh fading channel. These 
versions not only have high diversity, but also may be 
decoded efficiently since they are binary lattices. 

I. INTRODUCTION 
The practical interest in lattice constellations presenting good 
performance over fading channels rises from the need to trans- 
mit information at high bit rates over terrestrial radiomobile 
links. Constellations matched to the fading channel are effec- 
tive because of their high degree of diversity. By diversity we 
intend the number of different component values of any two 
distinct points in the constellation. The signal constellations 
for Gaussian channels are usually very bad when used over 
Rayleigh fading channels since they have small diversity. We 
constructed signal constellations with high spectral efficiency 
matched to the Rayleigh fading channel using algebraic num- 
ber theory [1]. The signal constellations are derived from the 
densest lattices (D4, E6, E&, Ki2, Ai6, A24) and their diversity 
order is half the lattice dimension. 

II. SYSTEM MODEL 
Consider the following model. A mapper associates an m- 
uple of input bits to a signal point x = (xi,x2,... xn) in the 
n-dimensional Euclidean space R™. Let M = 2m be the total 
number of points in the constellation. The points are trans- 
mitted over a Rayleigh channel giving r = a*x + n, where r is 
the received point, n = (rai, n2,... nn) is a noise vector, whose 
real components m are zero mean, iVo variance Gaussian dis- 
tributed independent random variables, a = (cti,ct2,.. .ct„) 
are the independent random fading coefficients with unit sec- 
ond moment and * represents the componentwise product. 

The signal points x are chosen from a constellation which is 
carved from a lattice A. The spectral efficiency is measured in 
number of bits per two dimensions s = 2m/n, and the signal- 
to-noise ratio per bit is given by SNR = Et,/No, where Eb 
is the narrow band average energy per bit and N0/2 is the 
narrow band noise power spectral density. 

III. NEW CONSTELLATIONS 

An accurate analysis of the symbol error probability shows 
that the most important feature of a good constellation for the 
fading channel is its diversity L. The following theorem en- 
ables us to evaluate the diversity L of any lattice constructed 
from an algebraic number field. 
Theorem. The lattices obtained from the canonical embed- 
ding of an algebraic number field with signature (ri, r2) exhibit 
a diversity L = r\ + r2 ■ 
Since totally complex cyclotomic fields have a signature 
(0,n/2) the diversity of the corresponding lattices is L = n/2. 
We use Craig's work [2, 3], who showed how to construct the 
lattices Es,Es,A2i (Leech lattice) from the totally complex 
cyclotomic fields K = Q(ei2ir/N) for N = 9, 20, 39. We ap- 
plied the same procedure and we found Di (Schlafli lattice), 

Ä12 (Coxeter-Todd's lattice) and Ai6 (Barnes-Wall's lattice) 
from the Bth, 21st and the 40th root of unity. These lattices 
are obtained by applying the canonical embedding to partic- 
ular integral ideals of the above cyclotomic fields. The ideals 
are given in the table below. The lattices are indicated with 
A„.,i,. Two generators for each ideal are given in the last col- 
umn. 

Lattice N Ideal 
£>4,2 8 (2,0 + 1) 
Eej 9 (3,(0+in 
Es,4 20 (5,0-2) 
Kl2,6 21 (7,0 + 3) 
Ai 6,-8 40 (2,0" + e3 + 0* + 0 +1)(5, ef + 2) 
A2442 39 (3,03 + 0* -l)(13,0-3) 

(3,03 + 02 +0 + 1) 

IV. RESULTS 
The figure below shows the performance over the Rayleigh 
fading channel of the rotated versions of the lattices 
D4,Ee, Es,Ki2 and Ai6- Simulations were made up to di- 
mension 8, while for higher dimensions we have plotted upper 
bounds. The bit error probability is given as a function of 
Eh/No for s = 4 bits/symbol. The slopes of the curves asym- 
potically correspond to the diversity order which is 2, 3, 4, 6 
and 8 respectively. At 10~3 the gain over Zs is about 17dB 
and it exceeds 25dB at 10~5.   It is important to notice that 
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the maximal diversity reached with a reasonable trellis coded 
modulation does not exceed 6. The diversity of the rotated 
Leech lattice A24,i2 is 12. This is equivalent to a trellis coded 
QAM with 244 states or a trellis coded PAM with 222 states 
at 4 bits per symbol. 
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Abstract — 
The utilization of real-number DFT codes 

for a multiplicative channel is introduced in 
this paper. By the proposed encoding proce- 
dure, some redundancies can be added into 
the transmitted data. With these redun- 
dancies, syndromes for the parameters of a 
fading channel can be obtained from the re- 
ceived data. The decoding algorithm for real- 
number DFT codes can be used to calculate 
the fading parameters with these syndromes. 

I. INTRODUCTION 

In 1981, Marshall first defined error control 
codes for real or complex data and suggested that 
real-number codes could have applications simi- 
lar to those of Reed-Solomon codes. Wolf, with a 
different view, took real-number codes as a new 
technique for solving signal processing problems 
such as impulsive noise cancellation in informa- 
tion transmission. 

A common feature of previous studies is that 
the channel error model is assumed to be addi- 
tive. In this paper, the real-number decoding 
method for multiplicative channel error model 
(which corresponds to the situation of transmit- 
ting over a fading channel in practice) will be 
investigated. 

II. ENCODING AND DECODING SCHEME FOR 

A FADING CHANNEL 

Usually the effect of a fading channel is mod- 
eled by a slowly varying component multiplying 
the transmitted signal, that is 

ri = yi ■ e; + Hi (1) 

where j/,- is the transmitted signal, e,- the multi- 
plicative parameters of a fading channel, n; the 
background noise, and r,- the received signal. In 
a block coding scheme, we can also assume that 
the index i is in the range of 0,1,2,..., N — 1.    153 

A multiplication can be transformed into an 
addition by taking logarithm. However, since 
the signals under consideration are assumed to 
be complex, complex logarithm function are re- 
quired. It can be easily derived from eqn. (1) 
that 

logcr2- logc yi + logc e; + hi (2) 

where n,- = loe\(T + -rH-). It should noted that 
when rii << yi • e,-, hi will approach 0. Since e; is 
slowly varying, both e; and logc e, can be viewed 
as a lowpass signal. Therefore, it is reasonable 
to assume that logc et- can be obtained from the 
sum of some unknown low frequency components 
Ek, that is 

logc x>, e    N (3) 
1=1 

where k[ is the location for a nonzero frequency 
components, and E^ is the magnitude of that 
component. Now suppose that yi is encoded as 

Vi = 
1       i = 0,l,...,N-K-l 
xi     i = N-K,N-K + l, ,N-1 (4) 

The first N — K equations in eqn. (2) become the 
desired syndromes 

Si = logc r{ - logc e; + hi (5) 

These noisy syndromes can readily be input to 
some decoding algorithms for the DFT codes, 
to compute Ek, provided that the number of 
nonzero terms of Ek in eqn. (5). After Ek is com- 
puted, an estimation of yi can then be derived. 
In this way, one can estimate out the channel 
parameters e,- and, at the same time, the trans- 
mitted data Xi. 
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Abstract — This paper studies the construction of 
good time-varying convolutional codes from the re- 

lation between time-varying and time invariant en- 
codes. 

I. INTRODUCTION 
In this study, we discuss construction of good time-varying 

convolutional encoders, i.e. punctured convolutional codes, 
from time-invariant convolutional encoder. 

In general, an k/n time-varying convolutional code can be 
described by p n X k generator matrices, where p is the pe- 
riod of time varying. Such an k/n time-varying convolutional 
code may have better error protection capability than the best 
convolutional codes which has time-invariant encoder with the 
same number of states. 

The k/k + 1 time-varying convolutional encoders, which 
are discussed here, are realized as k/(k + 1) punctured con- 
volutional codes from l/(k + 1) convolutional codes. Any of 
the encoders may not have better error protection capability 
than the best time-invariant convolutional codes, since such 
a k/(k + 1) time-varying convolutional encoder can translate 
into time-invariant encoder with the same or less number of 
states. 

However such a time-varying convolutional encoder has 
benefit in applications. The Viterbi decoder of a time-varying 
convolutional encoder has smaller complexity than an ordinal 
one. 

The time-varying convolutional encoder have been inde- 
pendently studied from time-invariant codes. We show trans- 
formation k/(k + 1) time-varying convolutional encoders from 
equivalent k/(k +1) time-invariant encoders, and discuss good 
time-varying convolutional encoder. Some of the time-varying 
convolutional encoder which derived from the best known 
k/(k + 1) time-invariant codes, has the same free distance 
as the known time-varying/punctured encodes. 

II. TRANSFORMATION BETWEEN TIME-VARYING 

AND TIME-INVARIANT CONVOLUTIONAL ENCODES 
The k/(k +1) time-varying convolutional encoder discussed 

here (i.e. k/(k + 1) punctured code) has period k, k generator 

matrices, only one matrix is 1 X 2 and other k — 1 matrices 
are lxl.  If 1 X 2 generator matrix is used in i'-th interval, 
the Jt/(fc-|-l) time-varying convolutional encoder can be wrote 
with k + 1 polynomials as 

{Sl(£>), <?,(£>), •••, (gi(D) g0(D)), gi+x(D), •■•, gk(D)}, 

where gj{D) = g° + gJD + g2D2 + ••-. Let the generator 
matrix of corresponding k/(k + 1) time-invariant convolutional 
encoder as 

where g *;,,- (D) = g *°itj +g *\j D + g *?,,• D2 + • ■ •. 
The k/(k + 1) time-varying and time-invariant convolu- 

where 

/ 9*i,i 
<7*2,1 

9*1,2 
9*2,2 

g*h,\   g*k,2 

9*i,k+i 
9*2,k+l 

g*k,k+i 

lers are e quiva ent it gp= gy
z,p, g0= 9, ,k+i 

X = ky - z +p, 

y = x + k - p, 

z = \_(k — x) mod fcj 4- p, 

1 < z < k, 

1 <P <k, 
0 

9*j,r = 0       (for  p< j < k), 
0 

9*j,k+\ = 0       (for   i < j < k), 
(1) 

(2) 

are satisfied, proof and detail discussions are omitted here. 
Most of best time-invariant convolutional codes satisfy the 

conditions (l) and (2) with permutation the inputs and out- 
puts. Let us consider a 2M-states time-invariant convolutional 
encoder which satisfies the conditions. The encoder is trans- 
lated into 2M, 2M+1 ••• or 2*r+p-states time-varying con- 

volutional encoder. The exact number of states is given by 
the discussion from the equations above (omitted here). We 
can easily find 2M or 2M+1-states time-varying convolutional 
encoder from best or good 2M-states time-invariant convolu- 
tional encoder, where we call good code which has maximum 
free distance for given number of states. 

III. EXAMPLES 

Here we show the two examples of transformation. The 
best 32-state 2/3 time-invariant convolutional code 

( \ + D    D + D2     1 + D + D2 \ 
\ D* 1 1 + D + D* + Ds ) ' 

is translated as 64-state 2/3 time varying code; 

{l + D2+D3,  (l + D3 + D5 1 + D + D2+D3+Di+Di+D'i)}. 

the best 64-state 3/4 time-invariant convolutional code 

1 D2 l + D    \ 
D + D2     1 + D + D2    1 + D2    J 

1 + D + D2    1 + D       1 + D 1 J 

is translated as 64-state 2/3 time varying code 

{l+D + D2 +D3 +* +D6,   D + D2 +D3 + D* +De, 

(1 + D2 + D* + £>5 + D* + D7  1 + D + D2 + D3 + D7)} . 

The use of the conditions (1) and (2) with free distance 
bound for convolutional codes gives an efficient algorithm to 
find good time-varying convolutional codes. 
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Abstract — The construction and performance of 
cascaded convolutional codes is investigated. An in- 
terleaver is used between the inner and outer codes 
to redistribute errors out of the inner decoder. In 
addition, the structure of the interleaver is exploited 
to improve the distance properties of the overall cas- 
caded code. This configuration is shown to have a 
performance advantage compared to a single complex 
convolutional code with the same rate and decoder 
complexity. 

I. INTRODUCTION 

In this paper, the design and performance of cascaded con- 

volutional codes [l] for the additive white Gaussian noise chan- 
nel is investigated. A cascaded convolutional code is the se- 
rial concatenation of two binary convolutional codes. They 
are decoded using the serial concatenation of the decoders 
corresponding to the two convolutional codes. In order to re- 
alize the full performance potential of cascaded convolutional 
codes, it is necessary to pass soft information from the inner 
decoder to the outer decoder [2]. In this work, the maximum 
a posteriori (MAP) algorithm developed and described in [3] 
is used to decode the inner code. 

II. A SIMPLE EXAMPLE 

A block diagram of a simple cascaded convolutional coding 
scheme is shown in Figure 1. The outer convolutional code is 

a maximal free distance (MFD) rate fci/ni = 2/3 code with 

total encoder memory vi = 3 and free distance djTeei = 4 
The generator matrix of this (3, 2, 3) code in nonsystematic 
feedforward form is given by 

G1(D): 
1 

D2 
D        1 + D 

1     1 + D + D2 

The inner code is a maximal free distance rate £2/12 = 3/4 
code with total encoder memory v\  = 3 and free distance 

djr 4.    The generator matrix of this (4,3,3) code in 

1 1 1              1 
0 1 + D D             1 

0 D 1 + D2    1 + 

nonsystematic feedforward form is given by 

G2(D) = 

The inner and outer convolutional codes will be referred to as 
the component codes. The overall cascaded code has rate 

Ä_*L*2. = 2_1 

Til «2 4 2' 

If the generator matrices of the two codes in this exam- 

ple are multiplied, ignoring the effect of the interleaver, the 

resulting generator matrix, G(D), is given by 

1 1 

D2    1 + D3 

D+D3 

1 + D2 + D3 + D" 
D2 + D3 

D + D2 + D3 + D4 

(3,2,3) 
Convolutional 

Encoder 
Interleaver 

(4,3,3) 
Convolutional 

Encoder 

Outer 
Decoder 

AWGN 
Channel 

U 

Deinterleaver 
Inner MAP 

Decoder 

Fig. 1: Block diagram of a cascaded convolutional coding scheme. 

and the resulting code is called the composite code. The gen- 
erator matrix G(D) realizes a (4, 2, 7) code with <2/ree = 6. 

Note that the constraint length of the composite code is 
greater than the sum of the constraint lengths of the compo- 
nent codes. (It may be that the (4, 2, 7) code is not in minimal 

form.) Unlike concatenated block codes and product codes, 
the free distance of the overall code is not the product of the 
free distances of the component codes. (Thus, using MFD 

codes for the component codes is not necessarily optimal.) 
However, by carefully designing the interleaver, the free dis- 

tance of the cascaded code may be increased and made larger 
than that of a single convolutional code of the same complex- 

ity. In addition, cascaded convolutional codes tend to have 

less dense distance spectra than a comparable single code. As 
the code complexity increases, the sparse distance spectra of 
cascaded convolutional codes improves their performance at 
low and moderate signal to noise ratios. 

III. CONCLUSION 
Cascaded convolutional codes appear to be a reasonable alter- 

native to complex convolutional codes. The combination of 
soft-output decoding and interleaving enables cascaded codes 

to outperform a single code of the same complexity. Cascaded 
convolutional codes also lend themselves to a form of iterative 
decoding [4]. 
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Abstract — An algorithm is presented to identify 
catastrophic encoders when the original rate 1/6 en- 
coder is antipodal. The key technique is to use the 
syndrome former to determine the constraint length 
of the dual code. The major part of the algorithm 
solves a linear equation of v + 1 variables, where v is 
the constraint length of the original rate 1/6 code. 

I. INTRODUCTION 

Both Viterbi decoding and sequential decoding of high-rate 
convolutional codes are greatly simplified by employing the 
class of punctured convolutional codes, which are obtained by 
periodically deleting a part of the bits of a low-rate code. The 
simple structure of the low-rate code can be utilized to encode 
and decode the high-rate code. 

Good punctured convolutional codes are generally obtained 
by computer searches. During the searching procedure, catas- 
trophic encoders, which result in infinite number of decoded 
errors from finite channel errors, must be identified. This ap- 
pears to be a nontrivial problem since some deleting maps 
may result in catastrophic encoders even if the original code 
is noncatastrophic. Therefore, in order to speed up the search 
for good punctured codes, an efficient algorithm to identify 
catastrophic encoders is highly desirable. 

In this work, we propose an algorithm to identify catas- 
trophic encoders of rate (n — l)/n punctured codes when the 
original encoder is antipodal. The algorithm is computation- 
ally efficient for both large and small constraint lengthes. 

Prom [2], we know that a punctured convolutional encoder 
obtained from an antipodal encoder is noncatastrophic if and 
only if it is minimum. The algorithm to be presented first finds 
a nonzero codeword of the dual of the punctured rate (n — l)/n 
code. Since the dual code is a rate 1/n code, its minimum en- 
coder can be easily found from any nonzero codeword. Thus, 
the overall constraint length of a minimum encoder of the dual 
code is determined. The constraint length of a minimum en- 
coder is always equal to that of the minimum encoder of its 
dual. In this way, the minimality of the punctured encoder, 
thus the catastrophic property, is determined. 

II. THE ALGORITHM 

For a fixed deleting matrix and a finite weight sequence x, 
ext(x) is defined to be a sequence with the property that 
ext(x) redueces to x after puncturing by applying the deleting 
matrix, and those deleting positions are equal to zero. If we 
further define dual of a convolutional code as anti-Laurant se- 
quences orthogonal to all the codewords of the convolutional 
codes. We have the following two lemmas. 
Lemma 1 A finite-weight sequence x of n-dimensional vec- 
tors is in the dual of the punctured convolutional code if and 
only if ext(x) is in the dual of the original rate 1/6 code. 

Lemma 2 For any state of the syndrome former of the dual 
of an antipodal rate 1/6 convolutional code , there exist two 
n-dimensional vectors, say x,xl, such that when the syndrome 
former starts from this state, the input ext(ar) (ext(:r7)) cause« 
the syndrome former to transfer to another state with the all- 
zero output. Any one of the two vectors can be found in no 
more than n(u + 1) binary operations. 

By these lemmas, we can establish the following algorithm to 
identify catastrophic encoders. 

1. Initialize     the    adjoint-obvious     realization     [4]    of 
D"GT(D-1) as the all-zero state. 

2. Find 
a sequence of n-dimensional vectors (xi,X2,- •• ,xv+i) 
such that xi ^ 0 and (ext(xi), ext{x2), ■ • •, ext(x„+i)) 
is a valid input sequence of the syndrome former with 
state transitions (0, Si, S3, • • ■, S„+i). 

3. Find a nontrivial solution (6*, • • •, K+1) of the equation 

1/+1 

^6;S,=0. 

4. Calculate the sum 

K+l 

V=J~]t>i(0,---,0,3)1,•••,Xi)- 

5. Represent y in n polynomials. 

6. If all the degrees of the n polynomials are less than v 
or the degree of their greatest common divisor is larger 
than one, the punctured convolutional encoder is catas- 
trophic. 

END 
This algorithm significantly  redueces the computational 

complexity of all known algorithms [1, 3]. 
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Abstract — Motivated by applications in cryptology 
K. Wei introduced in 1991 the concept of a generalized 
Hamming weight for a linear block code. In this paper 
we define generalized Hamming weights for the class 
of convolutional codes and we derive several of their 
basic properties. 

I. INTRODUCTION 
An important set of code parameters defined for a linear 

block code are the so called generalized Hamming weights first 
introduced by Wei in [1]. By definition the r-th generalized 
Hamming weight dr(C) of a linear block code C is equal to 
the smallest support of any r-dimensional subcode of C. In 
particular do(C) = 0 and di(C) is equal to the distance of C. 

In this way every [», it] linear block code has associated a 
whole weight hierarchy 

0 = d0(C) < di(C) < • • • < dk{C) < n. (1) 

In this correspondence we will study the weight hierarchy of 
a convolutional code. After formally introducing this concept 
we will derive in the next section several of the basic proper- 
ties. In particular we will show that the generalized Hamming 
weights form an infinite strictly increasing sequence di(C) of 
positive integers. The main result (Theorem 4) is a general- 
ized Griesmer bound. 

II. DEFINITIONS 
Let F, be the Galois field of g elements, F<j[D] be the 

polynomial ring over F, and F,(D) the ring of rational func- 
tions. In the following it will be convenient to view ele- 
ments of Fq(D) as infinite (periodic) power series of the form 
5Zfeo x'D%,Xi G F,. Let C be a rate k/n convolutional code 
represented through a non-catastrophic encoder G(D). With- 
out loss of generality we will assume that the matrix G(D) 
which is defined over F,[D] is in row proper form, in other 
words we will assume that the "high order coefficient matrix" 
has full row rank. We also will assume that G(D) has ordered 
row (Kronecker) indices 

V\>--->Vk 

where the indices Vi are formally defined through: 

Vi = max{deg((/,>) | 1 < j < n) , i = 1,..., k. 

We will denote the memory, complexity and constraint length 
of a convolutional code by m, c, and n respectively. In terms 
of the Kronecker indices we have: m = v\ , c = ^2i=1 Vi and 
V = n(vi + 1). 

In an obvious way we can view C also as an (infinite di- 
mensional) linear F, vector space. Let 

{ui(Z>),..., «,(£>)} 

*An extended version of this paper has appeared as a report: 
CWI Report BS-R9507, Amsterdam, The Netherlands, 1995. 

2 This author was supported by NSF grant DMS-9400965 

be r vectors in Fj(D), that are linearly independent over F,. 
Since G(D) has by assumption linearly independent rows it 
follows that 

{Ml(D)G(D),...,ur(D)G(D)} CCC F^(D) 

defines an r-dimensional subspace of C and clearly every r- 
dimensional subspace U C C is of this form. 
Definition 1 Let U CC be a linear subspace of C. Then 

X(U) := {(i,j) | 3 (22*uDj,...,Y,x»>Di) e tf.*y #»} 
M called the support of U and 

dr(C) := min{|x(tOI I V C C anddim U = r) 

is called the rth generalized Hamming weight of C. 

Note that the generalized Hamming weights are well de- 
fined for any positive integer r and not just for r = 0 k 
as it is the case for block codes. Also note that if U is one 
dimensional and « € U is any nonzero codeword then |x(^)l 
is nothing else than the usual Hamming weight w(u) of the 
codeword u. In particular it follows in analogy to the block 
code case that d\ (C) is equal to the free distance of C. 

III. BASIC PROPERTIES. 
Lemma 2 Let C be a convolutional code of rate — and mem- 
ory m. In order to compute d,(C) it is enough to consider 
subspaces of the form 

U = span{ui{D)G(D),..., ur(D)G(D)} 

where Ui(D) C Fj[D] and the deg(u,(i?)) < (m2 + mr)n. 

The following Lemma is a natural generalization of Wei's 
monotonicity theorem [1, Theorem 1] for block codes. 

Theorem 3 The generalized Hamming weights of a convolu- 
tional code form a (strictly) increasing set of positive integers 

0 = d0(C)<d1(C)<d2(C)<--- 

Theorem 4 Let C be a binary convolutional code of rate 
k/n and having a basic encoder G(D) with Kronecker in- 
dices v =  (y\ Vk). Let 7  be a positive integer and let 

K = ]C*_i max(7 — Vi + 1,0). Then the rth generalized Ham- 
ming weight of C satisfies 

dT(C) + yf   dr(C] 
2-t j 2'(2r - 1) 

< T»7 + n. (2) 

Example 5 Let C be the rate | , m = 2, tj = 6 code with 
generator matrix G(D) = (Z>2 + D +1, D2 +1). Then one can 
verify that di (C) = 5 and di(C) = 2(i -1) + V,      Vi > 1. 
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Abstract — In list decoding (M-algorithm) the de- 
coder state space is typically much smaller than the 
encoder state space. Hence, it can happen that the 
correct path is lost. This is a serious kind of error 
event that is typical for list decoding. In this paper 
two upper bounds on the probability of correct path 
loss for list decoding are given. For fixed convolu- 
tional codes counterparts to Viterbi's upper bounds 
for maximum-likelihood decoding of fixed convolu- 
tional codes are proved. Finally, it is shown that there 
exists a fixed convolutional code whose probability of 
correct path loss when decoded by list decoding sat- 
isfies a simple expurgated bound. 

III. UPPER BOUNDS ON THE PROBABILITY OF 

CORRECT PATH LOSS 
The correct path loss on the ith step of a list decoding 

algorithm is a random event £; which consists of deleting at 
the ith step the correct codeword from the list of the L most 
likely codewords. 

To upper bound P(£i) we introduce the l-list generating 
function for the path weights Ti(D). Consider the trellis for 
a rate R = b/c and memory m fixed convolutional code. At 
a given depth consider the set of 2bm paths of least weight 
leading to the 2bm states. Order these paths according to 
increasing weights and let Wj denote the weight of the jth 
path (wo = 0). Introducing 

I. INTRODUCTION 

Viterbi decoding is an example of a non-backtracking de- 
coding method that at each time instant examines the total 
encoder state space. The error correcting capability of the 
code is fully exploited. 

In list decoding (M-algorithm) we first limit the resources 
of the decoder, then we choose an encoding matrix with a state 
space that is larger than the decoder state space. Thus, as- 
suming the same decoder complexity, we use a more powerful 
code with list decoding than with Viterbi decoding. A list 
decoder is a very powerful non-backtracking decoding method 
that does not fully exploit the error correcting capability of 
the code. 

List decoding is a breadth-first search of the code tree. At 
each depth only the L most promising subpaths are extended, 
not all, as is the case with Viterbi decoding. These subpaths 
form a list of size L. 

Since the search is breadth-first, all subpaths on the list are 
of the same length and finding the L best extensions reduces 
to choosing the L extensions with the largest values of the 
cumulative Viterbi metric. 

Ti(D) 

3 = 1 

the Hist generating function of the path weights, we can prove 
the following 
Theorem 1 For the BSC with crossover probability e and 
fixed convolutional codes with l-list generating function Tj(D) 
the probability of correct path loss is upper bounded by 

P(£i) <  min 
KKL L-l + 1 

For the Gaussian channel we have the corresponding bound: 

Theorem 2 For the channel with additive white Gaussian 
noise (AWGN) with signal-to-noise ratio Eb/No and fixed con- 
volutional codes of rate R with l-list generating function Ti(D) 
the probability of correct path loss is upper bounded by 

P(£i) <   min 
KKL 

T,{D) -REb/N0 

L-l+1 

II. THE CORRECT PATH LOSS PROBLEM 

Since only the L best extensions are kept it can happen 
that the correct path is lost. This is a very severe event that 
causes many bit errors. If the decoder cannot recover a lost 
correct path it is of course a "catastrophe", i.e., a situation 
similar to the catastrophic error propagation that can occur 
when a catastrophic encoding matrix is used to encode the 
information sequence. 

The list decoder's ability to recover a lost correct path de- 
pends heavily on the type of encoder that is used. A system- 
atic encoder supports a spontaneous recovery. 

'This work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-661 and 94-83. 

Furthermore, we can prove 

Theorem 3   There exists a fixed convolutional code satisfying 
the following expurgated bound: 

.'°82 V4'(1ZfI 
P(£i) < L   '»MC*

1
- -i) •O(l). 
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Abstract — Rate-fc/n locally invertible convolutional 
encoders are defined. It is shown that a basic locally 
invertible encoder is minimal-basic. Local invertibil- 
ity is used to re-derive Forney's [1] upper and lower 
bounds on the maximum number of consecutive all- 
zero branches in a convolutional codeword. A time- 
domain test for minimality [2] of an encoder is given. 

I. INTRODUCTION: TIME-DOMAIN APPROACH 

A rate-k/n convolutional encoder is characterized in the 

time-domain by a discrete semi-infinite generator matrix G 

[3]. Consider a finite section G[m> m+ß] of G given by 

G [m, m+ß] — 

Gm 

Gm_i 

Go 

G„ 

Gx 

Go G», 

Go 

(1) 

This matrix represents a mapping between a k(m + ß + 
l)-bit information subsequence U[(_m> t+ß] and an n(ß + 

l)-bit encoded subsequence V[t,t+ß]> given by V[t,t+ß] — 
U[t-m,t+ß]Gr[m,m+ß], where t > 0 is the time index and 
U[_m, _i] is the the starting state of the encoder. 

A time-domain approach for analyzing rate-k/n convolu- 
tional encoders has recently been presented in [4, 5, 6]. This 

approach is based on performing elementary column opera- 
tions on a finite section G[TO) TO+„] of G, corresponding to 
(v + 1) output branches, to obtain its column canonical form 
G [m, m+v]' A matrix is in column canonical form if 1) All 

all-zero columns appear as the left-most columns of the ma- 
trix, and 2) The last nonzero element in a column is the only 
nonzero element in its row, is a 1, and appears above the last 

nonzero element in succeeding columns. The last nonzero ele- 
ment in each column is called a pivot if it is the only nonzero 

element in the column. 

II. MAIN RESULTS 

Definition 1 A rate-k/n convolutional encoder is locally in- 
vertible if Gfm m+„i has a pivot in every nonzero row, i.e., if 

all the nonzero rows in G[m, m+v] are linearly independent. 

The time domain test for a rate-fe/n encoder being basic is 
the existence of k pivots in the last k rows of Gfm] m+„i. 

Theorem 1 A basic rate-k/n convolutional encoder is 
minimal-basic if and only if it is locally invertible. 

XH. Koorapaty is with Dept.  of Elec.   & Comp.   Eng., NCSU, 
Raleigh, NC 27695-7911, USA. 

A fast time-domain algorithm for testing whether a rate-k/n 
convolutional encoder is minimal-basic is as follows: 1) Com- 

pute G[m, m+*]> and 2) Inspect G|'ro> m+I/] to ascertain that all 
the nonzero rows have a pivot and that all the last k rows have 
pivots. In [7], it is shown that the test for minimal-basicity of 

an encoder requires a smaller section of G, corresponding to 
only v output branches. 

Upper and lower bounds on the number of consecutive all- 

zero outputs of a rate-k/n minimal-basic encoder starting in 

a nonzero state, given in [1], may also be derived using the 

property of local invertibility. If a basic encoder is locally 

invertible at length (ß + 1), the rank of G[m, m+ß] is equal to 
the number of nonzero rows in it. For such an encoder, an 

all-zero encoded subsequence V[t) t+ß] cannot be produced by 
a nonzero information subsequence U[(_mj t+p\ since there is 
a one-to-one mapping between the information and encoded 
subsequences at length (/3 + 1) [7]. Therefore, the required 
bounds on the number of consecutive all-zero outputs coincide 
with the bounds on the parameter ß at which an encoder may 
achieve local invertibility. These bounds are derived in [7] and 

are shown to coincide with Forney's original bounds. 
A rate-k/n encoder is minimal if and only if it has a poly- 

nomial inverse in D and a polynomial inverse in D_1 [2], The 
time-domain test for minimality is given by the following the- 

orem [7]: 

Theorem 2 A rate-k/n convolutional encoder is minimal if 
and only if Gfm m_i_„i contains k pivots in the band of k rows 
operating on the information block ut. 
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Abstract — It is well known that convolutional codes 
are discrete time linear systems defined over a finite 
field. In this short correspondence we report about 
some important first order representations recently 
considered in the systems literature. Using this de- 
scription we derive a new factorization of the well 
known "sliding block" parity check matrix often en- 
countered in the coding literature. 

I. GENERALIZED FIRST ORDER SYSTEMS 

Let F, = F be the Galois field with q elements and consider 
a n x k matrix G(V) defined over the polynomial ring F[Z>]. 
G(V) generates a [n, k] convolutional code through: 

C := {w(V) | w(V) = G{V)l{V)} (1) 

Note that we follow the convention in systems theory by writ- 
ing all vectors as column vectors. From the point of view 
of systems theory (1) defines an M.A-representation, the k- 
vectors £(D) describe the set of latent variables and the set 
of ra-vectors w(D) describe the so called behavior, i.e. the 
code words. In the sequel we will assume that G(V) is in col- 
umn proper form having column indices ui,... ,ßk and overall 
constraint length c := X2i=o^'- Then one has the following 
equivalent first order description. 
Theorem 1 There exist (c + n — k) x c matrices K, L and a 
(c + n — k) x n matrix M (all defined over W) such that (1) is 
equivalently described through 

C := {w(V) | 3x(V) : Kxt+i + Lx, = Mwt}. (2) 

where w(V) = £) wtV* £ F"[D], and x(V) = ^xtV* G 
FC[P]. In addition the following minimality conditions are 
satisfied: 

Ml: K has full column rank. 

M2: The full size minors of [VK + L  M] are coprime. 

Remark 2 If G(V) is in addition a minimal encoder, then 
one can show (compare with [1, 3]) that the c x c full size 
minors of the pencil VK + L are coprime. 

II. DUALITY 

Let H(T>) be a (n — k) x n full rank polynomial matrix having 
the property that H(V)G(V) = 0. H(V) describes a parity 
check matrix for the convolutional code C introduced in (1) 
through: 

C = {w(V)\H{V)w(V) = 0}. (3) 

Theorem 3 There existcx(c+k) matrices P, Q and a nx(c+ 
k) matrix R (all defined over W) such that (3) is equivalently 
described through 

{w(V) | 3z{V) : wt = Rzt, Pzt+i = Qzt}. (4) 

In addition the following minimality conditions are satisfied: 

Ml': P has full row rank. 

M2':  The full size minors of ■DP+Ql are coprime. 

The minimality conditions (Ml') and (M2') guarantee that 
that after a possible permutation of the external variables the 
matrices P, Q, R in (4) have an equivalent description of the 
form: 

P=(I 0)    Q = {A  B)    R: 
C 
0 

D 
I 

which in turn is equivalent to the representation: 

xt+i = Axt + But,    yt=Cxt+Dut, 

a well known description [2]. 

(5) 

(6) 

III. FACTORIZATION OF THE SLIDING BLOCK MATRIX 

One way of studying convolutional codes is usually through 
the use of the so called 'sliding block matrix' induced through 
the parity check matrix H(T>), In the sequel we provide a 
factorization of this matrix. Let K, L, M be defined as in (2) 
and define: 

K 0 0   " 
r M 0 0 

L K 
n M 

0 L 0 

K 

T = 

.   0 0 
0 
M 

0 0 L . 

2This author was supported by NSF grant DMS-9400965 

(7) 
where we assume that both S and T consists of s + 1 vertical 
blocks. Let U be a matrix with the property, that 

Ker U = lmS. 

Theorem 4 w(V) := £*=0 wtX>' 6 C if and only if 

UT(wt
o,w

t
1,...,wl)t = 0, 

i.e. UT represents a factorization of the sliding block matrix 
of order s. 
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I. ON THE DEFINITION OF CONVOLUTIONAL CODES 

Let 1 < k < n, F be a finite field, F(D) be the field of 
rational function in D over F, and F((D)) be the field of 
formal Laurent series in D over F. 

Definition 1 (Massey [1]) A rate k/n convolutional code over 
F is a fc-dimensional subspace of the ra-dimensional (row) vec- 
tor space F(D)n. 

Definition 2 (Forney [2]) A rate k/n convolutional encoder 
over F is a fc-input «-output constant linear causal finite-state 
sequential circuit. And a rate k/n convolutional code C over 
F is the set of outputs of the sequential circuit. 

An equivalent formulation of Definition 2 (cf. [3]) is 

Definition 2' A rate k/n convolutional code over F is a k- 
dimensional subspace of the «-dimensional (row) vector space 
F((D))n with a basis consisting of «-tuples of polynomials (or 
rational functions). 

Clearly, a convolutional code in the sense of Definition 1 is 
a subcode of a convolutional code in the sense of Definition 2. 

Definition 3 (Dholakia [4]) A rate k/n convolutional code 
over F is a fc-dimensional subspace of the «-dimensional (row) 
vector space F((D))n. 

Clearly, a convolutional code in the sense of Definition 2 
is a convolutional code in the sense of Definition 3. However, 
we have 

Proposition 1 There exist convolutional codes in the sense 
of Definition 3 which is not a convolutional code in the sense 
of Definition 2'. 

Proof: Let f(D) be a formal Laurent series in D which is not 
ultimately periodic, and let C be the 1-dimensional subspace 

F((D))(l,f(D)) 

of F((D))2. Then C is a rate 1/2 convolutional code in the 
sense of Definition 3 but not a convolutional code in the sense 
of Definition 2'. D 

Corollary 2 There exist convolutional codes in the sense of 
Definition 3 which can not be realized by constant linear causal 
finite-state sequential circuit. 

II. ON THE DUAL CODE OF A CONVOLUTIONAL CODE 

Let C be a rate k/n convolutional code in the sense of 
Definition 2'. Define 

CL = {v(D) e F({D))n | v{D)c(D)T = OVc(D) € C}. 

Proposition 3 Let C be a rate k/n convolutional code in the 
sense of Definition 2'. Then C is a rate (« — k)/n convolu- 
tional code in the sense of Definition 2'. 

Using invariant factor theorem Forney [2] actually proved this 
proposition. A simple elementary proof can be given by using 
Definition 1. 

III. A MINIMALITY CRITERION OF ENCODING 

MATRICES 

Let G(D) be a k x n matrix of full rank with entries in 
F(D). HG(D) is realizable and delayfree then G(D) is called 
an encoding matrix of the convolutional code 

C = {v{D) = u{D)G{D) | u{D) 6 F{(D))k} 

in the sense of Definition 2. For any u(D) £ F((D))k, write 

u(D) = u_mD-m + .. 

where «; € F . Define 

u{D)P    = 

u{D)Q    = 

+ 2L-1-0     + UQ-\-^D + u^D  +..., 

JL-mD + ... + «_! D~\ 
UQ + u^D) + u2D

2 + .... 

The set 

{u(D)PG(D)Q | u(D) € F((D))k] 

is called the abstract state space of C relative to the encoding 
matrix G{D). If its cardinal attains the minimum, G(D) is 
called a minimal encoding matrix (cf. [3]). 

Proposition 4 Let G(D) be an encoding matrix. Then the 
following statements are equivalent. 

(a)   G(D) is a minimal encoding matrix. 
(d) G(D) has a polynomial right inverse in D and a 

polynomial right inverse in D~*. 
(e) For any v(D) = u(D)G(D) where u(D) G F((D))k, 

if v_(D) is polynomial in D then so is u(D), and if 
v(D) is polynomial in D~   then so is u(D). 

The equivalence of (a) and (d) was proved in [3]. Now the 
equivalence of (d) and (e) is proved. 
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Abstract — Some improved version of the union 
bounds, expressed in the same terms is proposed. 

Transmission of binary information sequence over the BSC 
with crossover probability 0 <p< 1/2 is considered. It is as- 
sumed that a noncatastrophical time-invariant convolutional 

encoder and Viterbi decoder are used. There are two types of 
performance characteristics that are usually used to describe 
the probabilistic behavior of such communication system. The 
first type characteristics describe the stationary behavior of 

the system (e.g. bit-error probability, averaged decoding de- 
lay, etc.). Usually they are of the main interest. The second 
type characteristics describe the behavior of the system at 

initial moment (e.g. first-error event probability). The most 
commonly used "union bounds" to upperbound any of men- 
tioned above characteristics do not take into account some 
essential difference between these two types of characteristics 

[1,2]. We show that standard "union bounds" for stationary 
characteristics can be considerably improved preserving the 

same form and terms. 

Denote by Pe the conditional probability that at any given 
moment the edge will be decoded incorrectly provided that 
all preceding semi-infinite information sequence was decoded 

correctly. 

Theorem 1. Conditional first-error event probability Pe 

satisfies the inequality 

Pe< EE a(w,l)Aw i 

■A 
(1) 

^EEEt^1-^' 

where a(w, I, i) is the number of codepaths of weight w, length 

I and information weight i. 

Remarks. 1) It is possible to evaluate the critical value 

po ■ 2) If p > po , then the equation (2) will be replaced by 
some similar equation. 3) Both theorems are based on some 
reccurent relations and on a certain inequality from [3]. 
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where a(w,l) is the number of codepaths of weight w and length 
I, and Aw is the error probability when testing two codewords 
of weights 0 and w [If. 

Remarks. 1) Inequality (1) differs from a "standard" 
union bound by presence of factors (1 — Pe) in the right-hand 
side of (1). As a result it gives a nontrivial (i.e. Pe < 1) upper 
bound for any crossover probability p < 1/2 and this bound is 

always tighter then the "standard" union bound (which works 
only for some small p ). 2) Inequality (1) can be expressed in 
terms of the generating function T(D, L) with L = 1 — Pe ■ 3) 
Inequality (1) remains also valid for some other channels (e.g. 

gaussian). 

In the case of bit-error probability Pb we limit ourselves 
here only to the folowing result. 

Theorem 2. There exists some critical value po such that 
if p < po, then Pb < B, where B is defined from the following 

system of equations 

(2) 

*=E£E ia(w, I, i)Au 
(1-E)1, (3) 
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I. INTRODUCTION 

Neural networks have been used to tackle what might be 
termed 'empirical regression' problems. Given independent 
samples of input/output pairs (xi,yi), we wish to estimate 
f(x) = E[Y | X = x]. The approach taken is to choose an ap- 
proximating class of networks M = {?j(a;; w)}„gvv an<l within 
that class, by an often complex procedure, choose an approxi- 
mating network r](-; w*). The distance (in mean squared error) 
of this network from / can be separated into two terms: one 
for approximation or bias — choosing fif large enough so that 
some »/(•; w ), say, models / well — and one for estimation or 
variance — how well the chosen r](-;w*) performs relative to 
t}(-;w ). We address the latter term. 

II. PROBLEM STATEMENT 

Networks are parameterized by weight vectors w £ W Q R 
and take inputs x £ R . In classification, network output is 
restricted to {0,1} while for regression it may be any real num- 
ber. The complexity of the architecture M may be measured 
by the number of weights d or by its Vapnik-Chervonenkis 
(VC) dimension v. Performance of a network is measured by 
£(w) = E(ri(x;w) — y)2 and the optimal net w° minimizes 
this. In practice, the law P is unknown so weights w* 6 W 
are chosen using the training set T = {(au,y;)}"=i by mini- 

mizing vr{w) = i YTi=i (v(xn w) ~ V>) ■ 
The question of determining the relation between architec- 

ture complexity, estimation error, and training set size comes 
down to finding n large enough so that for a given d (or v), 
£(w") — £(w°) < e with high probability. We adopt this as 
a definition of reliable generalization. We can avoid dealing 
directly with the stochastically chosen network w* by noting 
the triangle equality implies 

0 < £(w*) - £(w°) <2 sup \ur(w)-£(w)\    . 

Vapnik [1] shows that n = (9.2v/e2) log(8/e) is sufficient for 
reliable generalization. In cases where vr{w*) = 0, this can 
be lowered [2] to n = (5.8u/e) log(12/e), but both are orders 
of magnitude higher than practice indicates. 

III. APPROXIMATIONS VIA POISSON CLUMPING 

For the large n we anticipate, the central limit theorem 
leads us to replace the original empirical process VT(W) — £(W) 

with the corresponding zero-mean Gaussian process Z(w): 

P(\\\vr(w)-£(w)\\\>e)~P(\\\Z(w)\\\>b) 

for where we have set b — ey/n and used the notation | 
supremum over weights. 

The Poisson clumping heuristic (PCH) [3] is a recently in- 
troduced tool for finding such exceedance probabilities. The 
PCH tells us that the region of weight space where Z(w) ex- 
ceeds level 6 is a group of clumps. The clump centers fall 
according to a Poisson process and the size Cb(w) of a clump 

centered at w is chosen independently of all other clumps. The 
PCH leads to 

P(\\Z(w)\\>b): J Jw 

$(b/a(w)) 
ECb(w) 

dw (1) 

where $ is the complementary cdf of N(0,1) and a2(w) is the 
variance of Z(w). Loosely, the overall exceedance probabil- 
ity is a sum (integral) of the point exceedance probabilities, 
each scaled according to the number of weights that have ex- 
ceedances with it. 

This provides a means to get accurate approximations for 
the exceedance probabilities when the level b is large. For ex- 
ample, if network activation functions are twice differentiable 
and the variance has a unique maximum ä at w € W, then 
n = dä2K/e2 samples are sufficient for reliable generalization, 
where K is determined by P and A/\ Explicit results for the 
problems of recognizing rectangles and halfspaces in R can 
also be obtained. These are again of order d/e but with con- 
stants far lower than previous upper bounds. 

IV. LOWER BOUNDS 

These PCH-based estimates are of theoretical interest, but 
in practice evaluation of the constants is not possible due to 
ignorance of P. Now consider the following related tool for 
obtaining rigorous lower bounds to exceedance probabilities of 
Z(w), where for simplicity we normalize Z(w) by its standard 
deviation a = a{w). 

P{\\Z{w)l*{w)\\ > b) j $(&) 
wE[D^\Z(w)/v>b]-i 

> m f 

dw 

 1  

w E[Db\Z(w)/a > b] 
dw 

where Db is the volume of {w : Z(w)/tj(w) > 6}.    Simple 
computations link this to the correlation p — p(w,w') via 

E[Db\Z(w)/a > b] ~   /   ${{b/a)0dw' 
Jw 

(2) 

,1/2 
with C = CK «')=((! -/>)/(! + P)) 

This link provides the basis for estimating the exceedance 
probability empirically, without knowledge of P. Using the 
training set, compute (y, — r}{xi\w))2 at w and w' for all n 
points. This yields an estimate of p and in turn an estimate of 
£ which can be used to compute the integral (2). Simulations 
for the examples of recognizing rectangles and halfspaces show 
that reasonable estimates of sample size can be obtained in the 
absence of analytical information about P and Af. 
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Optimal Stopping and Effective Machine Complexity in Learning 
Changfeng Wang1,  Santosh S. Venkatesh1, and J. Stephen Judd2 

I. INTRODUCTION 
We study learning in a general class of machines which 

return a (variable) linear form of a (fixed) set of nonlinear 
transformations of points in an input space. A fixed machine 
in this class accepts inputs X from an arbitrary input space 
and produces scalar outputs 

Y = Y_ ^t(X)w* + E, = tb(X)'w* + t. (1) 

Here, w* = (w* , . . . , w^)' is a fixed vector of real weights 
representing the target concept to be learned, for each i, 
tpi(X) is a fixed real function of the inputs, with op(X) = 
(i|>i(X),...,-4,d(X)) the corresponding vector of func- 
tions, and f, is a random noise term. 

We suppose that the learner receives an i.i.d., random sam- 
ple of examples (Xi , Yi), ... , (Xn, Yn) generated accord- 
ing to the joint distribution on input-output pairs (X,Y) 
induced through the medium of the (unknown) relation (1) 
and a fixed (unknown) distribution on input-noise pairs 
(X,£J. The goal of the learner is to infer a hypothesis 
w = (wi,...,Wj)' with small (mean-square) generalisa- 

tion error E(Y — tp(X)'w) on future random examples 
(X, Y) generated independently of the training sample from 
the same underlying distribution. Here E denotes expecta- 
tion with respect to the underlying probability distribution 
generating the examples. Note that, as expected, 

w* =argminE(Y-\p(X)'w)2. 

II. RESULTS 
We develop a rigourous characterisation of the time- 

dynamics of generalisation in this class of machines when 
a finite sample of examples is available and training is car- 
ried out by minimisation of the empirical (or training) error 

En(Y — iJ>(X)'w) via gradient descent, where En denotes 
expectation with respect to the empirical distribution which 
puts equal mass — on each of the n random examples which 
constitutes the sample. More specifically, given the sample, 
the batch-mode gradient descent algorithm provides an itera- 
tive refinement {w(t),t > 0} of a hypothesis weight vector 
w(t) representing the true concept w*. The sequence of 
weight vector updates is specified recursively according to the 
usual gradient formulation: 

w(0) is an arbitrary initial hypothesis in Md; 

w(t)=w(t-1)-ieVEn(w(t-l))        (t>1). 

In the recursion, the integer parameter t denotes the update 
epoch and the positive parameter e controls the rate of learn- 
ing. 

1 Department of Electrical Engineering, University of Pennsyl- 
vania, Philadelphia, PA 19104. The work of the first two authors 
was supported by the Air Force Office of Scientific Research under 
grant F49620-93-1-0120. 

2Siemens Corporate Research, Princeton, NJ 08540. 

The empirical minimum mean-square estimate, 

w = argminETjY-tp(X)'w)2, 

which corresponds to the estimate obtained in the limit of 
training over an infinity of time steps, is unbiased and consis- 
tent. Should we then carry training out to its limit? Surpris- 
ingly, perhaps, the answer is "No." Indeed, we show analyti- 
cally that as training progresses in time three distinct phases 
in generalisation dynamics are evidenced. In the first phase, 

the generalisation error E(Y — \\>(X)'w) (where E denotes 
expectation with respect to the unknown underlying distribu- 
tion generating the examples) decreases monotonically (keep- 
ing pace with a corresponding decrease in the training error); 
this phase is completed in Ö (log n) time steps where n is the 
number of examples. The behaviour grows more interesting in 
the second phase where the generalisation error exhibits com- 
plex dynamics and an optimal stopping time topt is evidenced 
at which the smallest generalisation error obtains; the second 
phase is also ephemeral and takes only Q(logn) time steps. 
Finally, in the third phase, the generalisation error increases 
monotonically to a limiting value of error; this phase takes the 
rest of time. Thus, best generalisation occurs not at the limit 
of training when the global minimum of the training error is 
achieved, but rather after a finite number of steps of the order 
of the logarithm of the sample size. 

One of the key concepts that emerges from our analysis is 
the formal notion of the effective size of a network. This is 
a time-varying, algorithm-dependent quantity which, in the 
limit of training over an infinity of time steps, coincides with 
the VC-dimension of the machine. As is well known, a salient 
characteristic of neural networks is that they often involve a 
very large number of adjustable parameters as compared to 
traditional statistical models (such as classification and re- 
gression models) with a resulting large VC-dimension. For a 
given (small) sample of fixed size, how then does one explain 
empirical claims reporting valid generalisation? Our results 
shed light on this puzzle: stopping learning at the optimal 
time results in a network with small complexity in the sense 
that its effective size at that time is typically substantially 
smaller than its effective size in the limit of training (the VC- 
dimension). More generally, we show that the generalisation 
error of the machine during the training process is determined 
at each training epoch by the effective size of the machine at 
that epoch rather than its VC-dimension. Our analysis pro- 
vides a formal framework within which optimal stopping can 
be viewed as dynamically fitting machine complexity to the 
sample wherein best generalisation obtains when effective ma- 
chine size best fits the sample size. Thus we rescue the pre- 
vailing intuition (Occam's razor) from its impending dilemma. 

The study of generalisation dynamics leads naturally to a 
new network size selection criterion which can be viewed as 
a generalisation of Akaike's information criterion to cover not 
just network complexity (the effective machine size in the limit 
of training) but the time evolution of the learning process as 
well. 
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Abstract — We consider the problem of inferring 
a finite binary sequence vv* e {—1,1 }n from a ran- 
dom sequence of half-space data {u(t) e {—1,1 }n : 
(w*,U(t)) > 0,t > 1 }. In this context, we show that 
a previously proposed randomised on-line learning al- 
gorithm dubbed Directed Drift [1] has minimal space 
complexity but an expected mistake bound exponen- 
tial in n. We show that batch incarnations of the 
algorithm allow of massive improvements in running 
time. In particular, using a batch of j7tnlogn ex- 
amples at each update epoch reduces the expected 
mistake bound to 0 (rt) in a single bit update mode, 
while using a batch of 7tnlogn examples at each up- 
date epoch in a multiple bit update mode lead to con- 
vergence to w* with a constant (independent of n.) 
expected mistake bound. 

I. INTRODUCTION 

Write B = {-1, 1 }n for simplicity and let Bn = {-1,1 }n 

denote the vertices of the binary rt-cube. Let vv* e Bn 

be some fixed (but unknown) vertex. Suppose we are pro- 
vided with a random labelled sequence of positive examples 
{ u(t), t > 1 } of vv* obtained by independent sampling from 
the uniform distribution on the positive half-space of vertices 

B+(w*) i={u€Bn: (w,u)>0). 

Our goal is to infer the finite binary sequence vv* in an efficient 
(on-line) manner from the sample {u^'}. 

II. DIRECTED DRIFT 

Directed Drift[l] is a randomised, on-line learning algo- 
rithm with minimal space complexity. 
Algorithm D (Directed Drift). Given a confidence param- 
eter 6 > 0 and a sample of positive examples { u(t), t > 1 } 
generated by independent sampling from the uniform distri- 
bution onKf(w'), the algorithm generates a hypothesis vv 
which, with confidence in excess of 1 — 6, coincides with the 
concept vv*. 

Dl. [Initialise.] Set epoch t f- 1, confidence counter T <— 0, 
and select an arbitrary initial hypothesis vv e En. 

D2. [Is the hypothesis consistent on the example?] Set Y <— 
(w,u(t)). 

D3. [If it ain't broke, don't fix it.] If Y > 0, increment the 
confidence counter T <- T + 1: if T > y/^f log 8~'' 
output the hypothesis vv and terminate the algorithm; 
else go to step D5. 

D4. [Update hypothesis.] Else (if Y < 0) set T <- 0, J <- 

{ j : wj ^ u.     } and pick a random index 3 from the 
uniform distribution on J.   Set Wj 
the other components of vv unchanged. 

< Wj and leave 

1This work was supported by the Air Force Office of Scientific 
Research under grants F49620-93-1-0120 and F49620-92-J-0344. 

D5.  [Increment time and iterate.] Set 14— t + 1 and go back 
to step D2. 

By a consideration of the equilibrium probability distri- 
bution of the states of the finite Markov chain which rep- 
resents the system we show that the algorithm has mini- 
mal space complexity 2n and exponential time complexity 
a(e°-,39n).2 

Massive improvements in running time result if the algo- 
rithm is modified to run in batch mode. In a single bit update 
batch mode, Step D4 is replaced by 

D4' [Update hypothesis.]    Else 
and call an additional m — 

(if Y  <   0)  set T   <- 
1 examples u(t+1 \ .. 

uK '1'. Define the indicator functions 

T(s)  _ if Wk ^ u-vS)> 
■c (s) if Wk   = Ul      , 

and select the index 3 garnering the most votes:  3 
t+m-l   T(s) Et+ m— J   T Set w —Wj and leave the 

other components of vv unchanged. Set t <— t + m. — 1. 

In a multiple bit update batch mode, Step D4 is replaced by 

D4" [Update hypothesis.]    Else (if Y  <   0) set T   <-  0 
and call an additional m — 1 examples u(t+1), ... , 
u (t+m-l ) Define the indicator functions 

r(s) if Wk 

if Wk 

-1  i(.s) 
Tally the votes bk  =  L^-' ^ 
indices such that bj,   >   bj2   >   • 
Wj  < 

and order the 
>   b. Set 

Wj if 3 € {3 , , .. . J[(i-Y)/2j} and leave the 
other components of vv unchanged. Set t <— t + m — 1. 

Relatively small batch sizes m are needed. We show 
that in a single bit update batch mode, a batch size of 
m = j7mlogn reduces the time complexity of the algo- 
rithm to 0(n) while in a multiple bit update batch mode, a 
batch size of m = 7tn log n reduces the time complexity of 
the algorithm to 0(1), independent of n.. 
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Abstract — This paper describes a novel approach 
for pattern recognition based on the matching be- 
tween coded patterns to feature vectors. Our intent is 
to integrate three individual steps (data acquisition, 
feature extraction and decision making) of a pattern 
recognition problem and to solve them simultaneously 
as a unique problem. The proposed pattern recogni- 
tion method was explicitly illustrated by a numerical 
character recognition problem. 

Coded patterns matched to feature vectors in a pat- 
tern recognition system is conceptually analogous with 
the matching between a group and a set of signal in a 
digital communication system. In order to get a set of 
signals matched to a group it is necessary to set up a cor- 
respondence between the linearity and the distance mea- 
sure. Such arrangement allows us to replace the Ham- 
ming distance measure by the Euclidean distance mea- 
sure [1]. Now we define formally the matching of a set of 
signals to a group (Definition 1) and the transitive group 
(Definition 2). 

Definition 1 [1]: A signal set S is matched to a group 
G if there exists a mapping h from G onto S such that, for 
any gi and g2 in G, d{h{gx), h{g2)) = d{h{g^ *g2), h(e)), 
where e denotes unit of G. A mapping h satisfying this 
condition will be called a matched mapping. Moreover, 
if h is one-to-one then its inverse, A-1, will be called a 
matched labeling. 

Definition 2 [1]: Let 5 be a set of signals and / : 
S —s- S be an isometry. If A is a group of transformations 
of S and s is an element of S, then orbit of s under A 
is the set A(s) = {/(s) : / > A}. The transformation 
group A is called transitive of A(s) = S for some s E S 
(therefore, for all s G S). 

Next we consider only the case of set of signals with 
order 2n. The first Sylow's Theorem which guarantees 
the existence of a group of order 2n is as follows. 

First Sylow's Theorem [2]: Let G be a finite group 
of order pnm, n > 1 and p does not divide m. Then, (1) 
G has a subgroup of order pl for any integer i, 1 < i < n\ 
(2) Each p'-order subgroup H of G is a normal group of 
order pt+1 for 1 < i < n. 

The existence of a subgroup of order 2" allows us to 
form a group of 2n orthogonal matrices which is capable 
of generating a transitive group. It is worth mentioning 
that the product between each element of the group of 
matrices and a signal vector (feature vector) results in a 
signal vector (feature vector) also. 

Numerical pattern recognition: Each input pat- 
tern (numerical character) is an 4-by-8 pixel rectangle. 

Another way to look at each character pattern is that it 
consists of eight "2-by-2 primitive patterns". There are 
in total eight distinct primitive patterns as shown below: 

00 00 01 01 11 11 10 10 
00 11 01 10 11 00 10 01 

Therefore, the procedure for numerical character recogni- 
tion proposed here consists of primitive pattern recogni- 
tion. Next, we map the primitive patterns into a binary 

linear code Z = (000,001,011,010,111,110,100,101). 
which, in its turn, is matched to a set of feature vec- 
tors, S. The set S represents the eight vertices of a cube, 
namely 8l = (1,1,1), s2 = (1,1,-1), s3 = (1,-1,1), 
s4 = (1,-1,-1), s5 = (-1,1,1), s6 = (-1,1,-1) 
s7 = (-1, -1,1) and s8 = (-1, -1, -1). 

From those eight signal vectors of S, we can easily find 
a group of orthogonal matrices B{ which is a transitive 
group. Signal Sj and orthogonal matrix 5, are related by 
the transformation TBi : Sj -* BiSj. Note that TBi trans- 
forms a signal vector into another signal vector. Solving 
the set of transformation TBi results in eight orthogonal 
diagonal matrices. The set of matrices {£; } forms a 
non-cyclic commutative group under the matrix opera- 
tions. Moreover, these matrices define a transitive group 
of orthogonal transformations. 

It can be shown that there is one-to-one correspon- 
dence between elements of sets Z and S. We represent 
this one-to-one correspondence as z,- <—► Bi, which im- 
plies the existence of an isomorphism between groups 
{Z,@) and (5,.), denoted by tp : (Z,0) -f (5,.). It 
can be easily shown that tp is bijective, and for any z\, 
z2 6 Z, tp(zx 0 z2) = tp(zi).tp{z2) Therefore, Z and B are 
isomorphic. 

Noting that the matching between Z and S is a con- 
sequence of the isomorphism between Z and B. Define 
mapping h : Z -»• S as zt -► h(zi) = TBj(Sj) = ß,-Sj. 
The Euclidean distance between any two elements of Z 
satisfies the relation d(h(zi), h(zj)) = d^zf1 * Zj), h(e)) 

It turns out that the primitive pattern classification 
consists of identifying of feature vectors in the feature 
space (signal space). Such a geometric property of feature 
vectors makes the decision procedure simple and straight- 
forward because the decision regions are symmetric. 
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Abstract - New training algorithms for fully recurrent 
neural networks are presented. They are based on 
Hessian matrices estimates. Simulation results show that 
the algorithms yields satisfactory results. 

I. INTRODUCTION 

Recurrent neural networks, having every unit connected to 
every other unit, are the most general case of neural 
networks and are highly non-linear dynamical systems 
exhibiting a rich and dynamical behavior. The architecture 
is inherently dynamic and usually one-layered, since its 
complex   dynamics   confer   it   powerful   representation 
capabilities. Recurrent networks with the same structure can 
display different dynamic behavior, as a result of the use of 
diverse leaning algorithms. The network is determined 
when its structure and learning rule are given, as the 
network is truly a composition of two dynamical systems: 
transmission and adjusting systems. The total input-output 
behavior is therefore a result of the interaction of both. 
Hence, the importance of learning rules in recurrent neural 
networks is readily understood . Learning algorithms used 
for recurrent networks are usually based on the computation 
of   the gradient of a cost function with respect to the 
weights of the network. There are few learning algorithms 
applicable    to    general     recurrent     neural     networks 
architectures   and the most representative is the so called 
RTRL (Real Time Recurrent Learning)  algorithm  [1] 
(Williams and Zipser). This algorithm is truly on line and is 
a gradient descent type although more computationally 
expensive than other recurrent neural network algorithms 
(e.g.  the backpropagation through time).  However this 
undesired feature can be compensated by the fact that 
general fully recurrent architectures usually use far fewer 
neurons than backpropagation structures. 

This paper proposes two new algorithms for fully 
recurrent neural networks using Hessian information 
(second derivatives of the cost function with respect to the 
parameters). The algorithms use estimates to the Hessian 
matrix with different degrees of computational 
complexities. Both algorithms use a matrix that is computed 
recursively on line with elements based on the sensitivity 

parameter as defined by Williams and Zipser [1]. The 
second algorithm uses a less computing demand estimate 
based on a diagonal matrix approximation for the Hessian 
matrix inspired on the Hessian matrix of the first algorithm. 
The idea of using a diagonal matrix approximation for the 
Hessian matrix is not new and was pursued by Becker and 
Le Cun in a backpropagation feedforward architecture [2]. 
These methods are known as pseudo-Newton algorithms 
and have the advantage of faster learning capabilities. They 
re-scale the learning rate of each weight dynamically to 
match the curvature of the cost function with respect to that 

weight. 

II. CONCLUSIONS 

Experiments were done to compare the proposed 
learning algorithms with existing ones (e.g. RTRL and 
pseudo-Newton) in the presence of noise. The new 
algorithms had shorter learning periods, and the first 
proposed one was the faster, at a cost of a higher 
computational complexity. The first proposed algorithm can 
still be an attractive alternative because its high computing 
demands can be compensated by the use of very small fully 
connected neural networks. There are some engineering 
applications that may use as few as two or three fully 
connected neurons. The proposed algorithm is being used to 
neural channel equalizers by the author. The availability of 
prior information could reduce the computing demands of 
on-line learning methods for recurrent neural networks. 
Alternatives in this direction are being studied by the author 
to continue or improve the algorithms. 
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Artificial neural networks (ANN's) have been successfully 

applied in the fields of signal processing and pattern recogni- 
tion. In recent years, efforts have been made to design ANN 

decoders for error control codes. Although the general decod- 
ing problem can be viewed as a form of pattern recognition 
(PR), the information capacity in an error control code is far 
more extensive than that contained in most PR problems. 
Because of this, neural net training, a popular design tool for 
ANN, has not fared well in ANN decoders. So far, trained 

ANN decoders are limited to very small codes like the (7,4) 

Hamming code and convolutional codes with no more than 
2 memory elements. Meanwhile, algebraic structures of the 

error control codes are not efficiently used in trained ANN de- 

coders, resulting in inferior performance relative to that of the 
conventional decoders. For these reasons, the design of ANN 

decoders has become a process of "neuralizing" the existing 
digital decoding algorithms which have themselves been de- 
rived by fully exploiting the algebraic properties of the codes. 
The decoding process can be maximally parallelized by neu- 
ral nets, which greatly increases the decoder throughput. Such 
ANN decoders have been successfully designed for many im- 
portant block codes, such as Hamming codes, the (24,12) Go- 

lay code and the (32,16) QR code [1]. 

This paper presents an ANN Viterbi decoder for convolu- 
tional codes. In the past, Viterbi decoders have always been 
implemented using digital circuits. The speed of these digital 
decoders is directly related to the amount of parallelism in the 
design. As the constraint length of the code increases, paral- 
lelism becomes problematic due to the complexity of the de- 

coder. In this work it is shown that the register exchange type 
[2] of VA can be completely represented by an ANN structure. 
However, for large decoding depth F, the required dynamic 
range goes far beyond what an analog neuron can provide. 
Since the register exchange operation is digital in essence, it 

is natural to adopt a hybrid design, which is shown in Figure 
1 for a standard rate-1/2 code with 2 memory elements. 

The analog part of the design implements the input cor- 
relation and path selection, as well as a scaling algorithm to 
keep each neuron holding the partial metric from saturating. 

The inputs to the decoder are ro and T\ from the binary sig- 
nalling AWGN channel. All connection gains are +1 unless 
marked otherwise. The synchronization circuit is not shown 
in the figure to preserve clarity, The structure in Figure 1 can 
be easily extended to rate-fc/n convolutional codes with M 

memory elements. 

The complexity of a locally connected neural network is 

characterized by the number of neurons, N. In general N is 

found to be 

N = 2M(2k+2 -2) + 2n + l 

which gives N = 389 for a rate-1/2 code with M = 6. The neu- 
rons can be realized using operational amplifiers (Op-Amps). 
If each Op-Amp contains 20 transistors, the network will have 
less than 8,000 transistors. On the other hand, a fully digital 

implementation for the same code requires 50,000 transistors 

just for ACS operations [3].   Some other advantages of the 

Output data F-bit shift registers with 
2-select-l T-bit inputs 

rj        -r0,       r0\       r, 

O  Threshold-logic neuron 

#  Hard-limiter neuron 

Fig. 1: The ANN Viterbi decoder 

ANN Viterbi decoder are: 

• The operations of the ANN decoder are fully parallel. 

• All connections have unit gain, which eliminates weight 

considerations in VLSI implementation. 

• The network is only locally connected. 

• The characteristics of neurons are very simple to imple- 

ment. 

• The modularity brought by the hybrid design allows fur- 
ther improvements by using more sophisticated memory 
management techniques. 

U.S. and foreign patents are currently pending. 
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Abstract - This paper proposes a new robust hybrid isolated 
word speech recognition system which is based on the 
improved quantization accuracy of FVQ, the strength of 
HMM in modelling stochastic sequences, and the non-linear 
classification capability of MLP neural networks. Thus the 
proposed FVQ/HMM/MLP approach combines effectively the 
relative contributions of codebook - dependent Fuzzy 
distortion measures with model - dependent maximum 
likelihood probability information. Computer simulation 
results clearly indicate the superiority in recognition accuracy 
performance of the FVQ/HMM/MLP approach when 
compared to that obtained from FVQ/HMM or FVQ/MLP 
schemes. 

I. INTRODUCTION 
The system employs N FVQ codebooks and N HMM models. 
Given an input word, each FVQ codebook produces effectively an 
associated distortion measure d( O, W: ). In addition, an FVQ 
output vector is interpreted as a probability mass vector which is 
accepted by the associated HMM process to yield a maximum 
likelihood probability P( O/W: ). The above measures can be used 
directly as inputs to an MLP classifier or can be combined to form 
a hybrid measure which is then presented to the MLP network, hi 
our noisy speech recognition study the systems under examination 
are trained on clean speech. Recognition performance is then 
measured with the input signal corrupted by vehicle or white 
acoustic noise at different Signal to Noise Ratio (SNR) values. 

Ü. SYSTEM DESCRIPTION 
The FVQ/HMM/MLP algorithm employs N VQ codebooks and N 
HMMs. Each input set of LSP coefficients is then Fuzzy Vector 
Quantised by C - entries codebooks CB; j = 1, 2, ..., N. Thus an 

input word W; represented by a series \Xi,X2,...,Xj: j of Tj LSP 

vectors, is vector quantised in "parallel" by N codebooks and a 
Fuzzy Distortion Measure FD;[1] is obtained from each VQ 
process applied to the input word. At the same time, the N parallel 
codebooks yield N observation sequences which drive N 
corresponding HMM processes, HMM: j = 1, 2, ..., N. Thus a 
maximum likelihood probability P( O/W: ) is obtained from each 
HMM process in response to an input word. The FD; and P( O/W: 
) measures can be combined to a simple measure [1] and then 
presented to the MLP network whose output OUT( j ) j = 1, 2, ..., 

N assumes values in the range 0 <OUT(j) < 1. The system 

selects the unknown input word W: to be the jth vocabulary word 
if OUT( j ) = max[ OUT( j ) ], j"= 1, 2, ..., N. The three layer 
network used employs P hidden nodes and N input nodes. 

Alternatively, the N FD: and N P( O/W: ) measures can be used as 
inputs to an MLP classifier having 2N inputs and N outputs. Thus 
the relative contribution of the above two similarity measures, 
towards a correct classification, is determined by the neural 
network. This flexible and powerful method, for "fusing" the 
output of the FVQ and HMM parts of the system, has been used in 
the computer simulation experiments discussed in the next 

section. 

El. EXPERIMENTS AND RESULTS 
The performance of the proposed FVQ/HMM/MLP scheme has 
been evaluated, and compared with that obtained from 
conventional FVQ/MLP [2] and FVQ/HMM systems [1]. Two sets 
of input words were used in these experiments: set one is based on 
the ten English digit words, zero to nine, whereas set two employs 
the 26 English letters. Figure 1 shows the performance of the 
FVQ/HMM/MLP, FVQ/MLP and FVQ/HMM systems operating 
on the second set of input words, for different input SNR values, 
when speech is corrupted by car noise. 

Fig. 1. Recognition performance of the FVQ/HMM, FVQ/MLP 
and FVQ/HMM/MLP for the car noise (N = 26 ). 

IV. CONCLUSIONS 
The proposed speech recognition system provides a superior 
performance, under noisy input conditions, when compared to 
conventional schemes [1], [2]. The system achieves a recognition 
rate of 98.33% and 90% at 30 dB and 20 dB SNR values 
respectively, when operating on set one of input words. 
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Abstract — A stochastic model is established for 
fully-connected recurrent neural networks with sig- 
moid units based on Gibbs distributions. EM 
(Expectation-Maximization) algorithm with a mean 
field approximation is then applied to train recurrent 
networks through hidden state estimation. The re- 
sulting EM-based algorithm, which reduces training 
the original recurrent network to training a set of in- 
dividual feedforward neurons, simplifies the original 
training process and reduces the training time. 

I. INTRODUCTION 

The goal of this work is in two-fold. First, we would like to 
develop a stochastic model to train recurrent networks with 
sigmoid units. Second, through the model developed, we will 
derive a novel training algorithm for recurrent networks which 
drastically simplifies the original training process. 

II. A STOCHASTIC MODEL 

Consider a recurrent network with d inputs, L hidden units 
and one linear output unit. Let x(n) € Rd, t(n + 1) 6 R1 and 
z(n + l) € R be an input, a desired output of a recurrent net- 
work and a desired output of hidden units (also called desired 
hidden states) at n-th (and n + 1-th) epoch, respectively. Let 
{x}, {z} and {<} denote all the inputs, desired hidden states 
and outputs up to epoch N. Let 0 contains all the parame- 
ters of the recurrent network: w^\ w^ and w(2), the weights 
between inputs and hidden units, between hidden units, and 
between hidden and output units, respectively. 

A stochastic model can then be established through a con- 
ditional probability model based on the Markov property 
of recurrent networks 1 i.e. P({z} | {t}, {x},z(l), 0) = 

iftliW» + 1) I *(»),*(»+ l),*(n),e) and P({z},{t} | 
{*},*(1),6) = T\"=1P(z(n + l),*(n + 1) | z(n),x(n),e), 
where z(l) is the initial desired hidden states. Further- 
more, Gibbs distributions can be used which eventually lead 
to the following probabilities P(z(n + 1) | z(n),x(n),Q) = 

^exp(-i(2(n + l)-i(Jl + l))I'E-1(2(n-|-l)-f(n + l)))and 
P(z(n+l),t(n + l) | z(n),x(n),e) = Bexp(-\1Ei{n + l)- 
A2-E2(n + 1)), where £i(» + l) = || z(n + 1) - h(n + 1) ||2 and 

Ea(n + 1) = (t(n + 1) - z(n + l)Tu,(2))2. Ai, A2, A and B are 
constants. £(n + 1) is the expectation of z(n + 1) at n + 1-th 
epoch when given z(n),x(n) and 0. h(n + 1) is the actual 
hidden output. 

III. EM ALGORITHM FOR RECURRENT NETWORKS 

Once the stochastic model is developed, a new training al- 
gorithm is derived through EM algorithm[2]. The essence of 
EM algorithm is that certain hidden variables (missing data) 
can be introduced to simplify a maximum likelihood problem. 

'This property comes from the fact that the outputs of a recur- 
rent network and its hidden units at current epoch only depend on 
the actual outputs of hidden units at previous epoch. 

For our case, the hidden variables are desired hidden states 
z(n + l)'s which serve as missing data, whereas the incom- 
plete data consists of pairs of {x(n), t(n + l)}'s. Using similar 
derivations as in [3], we can obtain the expected log likelihood 
Q(0 | 0") = J{z} P({z} | {<}, {x}, e») In P({z} | {t}, {x}, 0), 
where 0 and 0P are the new parameters and the parameters 
at the previous step, respectively. 

Since Q(0 | 0P) is difficult to evaluate directly, a mean- 
field approximation[4] is used to estimate Q(0 | 0P), which 
eventually leads to an EM-based algorithm for recurrent net- 
works. 

E-step: Evaluate the expected desired hidden states re- 
cursively through Ezj(n + 1) = h} (n + 1) + oe(n + 1), where 
hj(n + l) = gixin^w^ + Ez(n)Twf)) for 1 < j < L. g(u) is 

a sigmoid function. e(n + 1) = t(n + 1) - h(n + l)Ti//2), and 
a is a constant. 

M-step: Using the expected desired hidden states ob- 
tained at the E-step as targets for recurrent hidden neurons 
to find new parameters through two steps. 

(a) Find w^ 's and wfhs through minimizing the dif- 
ference between expected desired and "actual'' hidden states 
M»):£||E*(n)-Ä(n)||2. 

n 

(b) Find uA2) through minimizing difference between de- 
sired outputs of the network and weighted expected desired 
hidden targets: £n (E*(n + 1)*V2> - t(n + l)f. 

The algorithm will iterate between the E- and M-steps until 
a convergence criterion is achieved. 

Notice that (a) and (b) are equivalent to training individual 
feedforward neurons and can be solved using a fast training 
algorithm given in [1]. 

IV. SIMULATION RESULTS 
Learning a teacher recurrent network is chosen as an initial 

test problem. When RTRL(back-propagation algorithm for 
recurrent nets), BPTT (back-propagation through time) and 
our algorithm were required to achieve a similar mean-square- 
error, our algorithm can be at least 10 times faster. 

V. ACKNOWLEDGEMENTS 
The   support   from   National    Science    Foundation    (ECS- 
9312505) is gratefully acknowledged. 

REFERENCES 
[1] Breiman, L.E and Friedman, J.H, "Function Approximation Us- 

ing Ramps" Neural Networks for computing, Snowbird, Utah, 
1993. 

[2] Dempster, A.P, Laird, N.M and Rubin, D.B "Maximum Like- 
lihood from Incomplete Data via EM Algorithm," J. of Royal 
Statistical Society, B39, 1-33,1977. 

[3] Jordan, M. and Jacobs, R.A., "Hierarchical Mixture of Ex- 
perts," Neural Computation, vol. 6, pp 181-214, 1994. 

[4] Zhang, J. and J. Modestino "The Mean-field Theory in EM Pro- 
cedures for Markov Random Fields," International Symposium 
of Information Theory, 1991. 

175 



Sufficient Conditions for Norm Convergence of the EM Algorithm1 

Alfred Hero and Jeffrey Fessler 

Dept. of EECS, The University of Michigan, Ann Arbor, Michigan, USA 

Abstract — In this paper we provide sufficient con- 
ditions for convergence of a general class of alternat- 
ing estimation-maximization (EM) type continuous- 
parameter estimation algorithms with respect to a 
given norm. 

9P]T be a real parameter residing in an 
I. Introduction 

Let 0 = pi,...,0,,; 
open subset 0 of the p-dimensional space Mp. Given a general 
function Q : 0 x 0 -* St and an initial point 0° € ©, consider 
the following recursive algorithm, called the A-algorithm: 

A-algorithm: 0,+1 = argmaxee6<2(0,0'). (1) 

If there are multiple maxima, then 0,+1 can be taken to be 
any one of them. Let 0* € © be a fixed point of (1). 

The A-algorithm contains a large number of popular iter- 
ative estimation algorithms such as: ML-EM algorithms (e.g. 
Dempster, Laird, and Rubin (1977), the penalized EM algo- 
rithm (e.g. Hebert and Leahy (1989)) , and EM-type algo- 
rithms implemented with E-step or M-step approximations 
(e.g., Antoniadis and Hero (1994), Green (1990)). 

II. Convergence Theorem 
A region of monotone convergence relative to the vector 

norm || • || of the A-algorithm (1) is defined as any open ball 
B(9*,8) = {0 : ||0 - 0*|| < 8} centered at 0 = 0* with ra- 
dius 8 > 0 such that if the initial point 0° is in this region 
then ||0' — 0*||, i = 1,2,..., converges monotonically to zero. 
Note that as defined, the shape in IRP of the region of mono- 
tone convergence depends on the norm used. However in Mp 

monotone convergence in a given norm implies convergence, 
however possibly non-monotone, in any other norm. 

Define the p xp matrices obtained by averaging V20
Q(«,M) 

and VuQ(u, w) over the line segments u £ 00* and M € 00*: 

A1(9,9) = - f  V2OQ(i0 + (l-t)0*,i0 + (l-i)0*)dt 
Jo 

A2(9,9) =  f VnQ(i0 + (l-t)0*,t0 + (l-t)0*)<ft. 
Jo 

Also, define the following set: 

S(0) = {0e© : Q(0,0)>Q(0,0)}- 

By construction of the A-algorithm (1), we have 0,+1 € <5(0'). 
Definition 1 For a given vector norm ||-|| and induced matrix 
norm | • | define 11+ C © as the largest open ball B(9*,8) = 
{9: ||0-0*|| <8} such that for each9£B(9*,8): 

The following convergence theorem establishes that, if H+ 
is not empty, the region in Definition 1 is a region of monotone 
convergence in the norm || • || for an algorithm of the form (1). 
It can be shown that 72.+ is non-empty for sufficiently regular 
problems (Hero and Fessler (1995)). 

Theorem 1 Let 0* € © be a fixed point of the A algorithm 
(1), where 0'+1 = argmaxee@Q(6,0'), t = 0,1,.... Assume: 
i) for all 0 € ©, the maximum maxe Q(0, 0) is achieved on the 
interior of the set 0; ii) Q{9,9) is twice continuously differ- 
entiable in 9 € 0 and 0 € ©, and in) the A-algorithm (1) is 
initialized at a point 9° € 11+ for a norm || • ||. 

1. The iterates 8', i = 0,1,... all lie in H+, 

2. the successive differences A0" = 0' — 0* of the A algo- 
rithm obey the recursion: 

A0i+1 =[A1(9i+\0i)]-1A2(9i+1,9i)-A9i, (4) 

3. the norm ||A0'|| converges monotonically to zero with at 
least linear rate, and 

4. A0' asymptotically converges to zero with root conver- 
gence factor 

p([-V2OQ(0*,0*)]~1V11Q(0*,0*))<l. 

III. Tomography Application 
In emission computed tomography the objective is to es- 

timate the object intensity vector 0 = [0i,. ..,0P]T , 06 > 0, 
from Poisson distributed projection data Y = [Yi,..., Ym] . 
The Shepp-Vardi implementati~n of the ML-EM algorithm for 
estimating the intensity 0 h       he form: 

A1(9,9)>0, 

and for some 0 < a < 1 

[A1(9,9)]-1-A2(9,9) 

for all 9 e 5(0) (2) 

<a, for all9&S(9).       (3) 

1This   work  was  partially  supported by  grants:    NSF-BCS- 
9024370, DOE-FG02-87ER60561, NIH-CA-60711 

Ek^r. Yd-. 

A^^p^r 
b=l,...,p, (5) 

where Pd\b is a full rank matrix of transition probabilities 
from emission locations to projection locations and Pb  — 

Edli -Pa- 
using Theorem 1 we obtain 

Theorem 2 Assume that the unpenalized ECT EM algorithm 
specified by (5) converges to the strictly positive limit 0*. 
Then, for some sufficiently large positive integer M: 

||ln0i+1 -ln0*|| < a||In0* -In*!, i > M> 

where a = p{{B+ C]_1C), B = B{9*), C= C(0*), the norm 
|| • || is defined as: 

\\uf^SY^Pt0tul (6) 

Lange and Carson (1984) showed that the ECT EM al- 
gorithm converges to the maximum likelihood estimate. As 
long as 0* is strictly positive, Theorem 2 asserts that in the 
final iterations of the algorithm the logarithmic differences 
ln0' — ln0* converge monotonically to zero relative to the 
norm (6). 
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I. Introduction 

Csiszär [1] presented an axiomatic derivation of the use of the I- 
divergence as a discrepancy measure between nonnegative vec- 
tors. Snyder, Schulz, and O'Sullivan [2] then proposed the use 
of the I-divergence as an optimality criterion in deblurring prob- 
lems, and introduced the deterministic version of the EM algo- 
rithm. Byrne [3] used a similar scenario to [2], but also looked 
at reverse entropy measures and included maximum entropy 
penalties. O'Sullivan [4] introduced roughness penalties for use 
in stochastic problems where the use of Markov random fields 
may not arise naturally; these penalties are used here for the 
deterministic problem. Vardi [5,6] has related papers. 

Let 0 € Rp be a vector of parameters to be estimated. 

The available data are y„, = £"=, Hmxn, \<m<M, where 
y e Rf, Hmn > 0, and x e R+ depends on 6. The manner in 
which x depends on 0 yields slightly different algorithms. The 
matrix H is assumed to have at least one positive entry in each 
column. We show that x may be considered to be the complete 
data for 0. The incomplete data I-divergence is shown to equal 
an averaged complete data I-divergence plus an additional term. 
This decomposition is a generalization of the decomposition for 
the stochastic data problem and it simplifies steps used to prove 
convergence in [2]. The deterministic EM algorithm then con- 
sists of minimizing the averaged complete data I-divergence; the 
averaging step corresponds to the E-step, the minimization is the 
M-step. Finally, a maximum entropy penalty and a roughness 
penalty are incorporated into the problem. 

II. Deterministic EM Algorithm Derivation 

The problem is to find the 0 that minimizes 7(ylHx(0)), where 

/(yl'?) = ;£m=ib'mlog— -y„ + Tim], and log means natural 

mgx k _ 

log.     Let    x e R+    and    define    a   function    of by 

gmnvv 
YxnHn , where Y = £m=i ym- Also, denote by h • x 

the N x 1 vector whose nth entry is x„ 2m=1 Hmn. 

Theorem 1: 

it v 

/(ylHx) = £ ^ [/„(g„„(x)lh • x) - 7„(g„,„(x)lgm„(x))] + F(y,x), 

where F does not depend on x, and x is arbitrary. 

The notation /„(•!•) indicates that the I-divergence is com- 
puted over the n index only. The vector y may be referred to as 
the incomplete data and /(ylHx) is the incomplete data I- 
divergence. The theorem states the the incomplete data I- 
divergence equals the sum of three terms. The first is an aver- 
aged I-divergence involving the vector h • x and is called the 
complete data I-divergence; x is the complete data vector. The 
second term is an I-divergence that is used to guarantee mono- 
tonicity of the sequence of likelihood values. The third term is 
an extra term that does not depend on the complete data. 

The deterministic EM algorithm then has the following 

steps at iteration k + 1 given an estimate 0  and the correspond- 

x(0 ) from iteration k: 
M 

E-Step: Compute ß(xlx*) = £ ^ /„(g„ 

M-Step: Find 0k+l = argmin g(x(0)lx*). 

,(x*)lh-x) 

The objective function is nonincreasing since (using x = x ) 
it 

7(ylHx' k+i ) - /(ylHx*) = X ^ [/„(g™(x*)lh • x*+1) 
m=\   Y 

-In(gmn(x
k)\h • x*) - 7„(gran(x<:)lgm„(x*+1))]. 

The sum of the first two terms in the bracket is nonpositive by 
the M-step, and the last term is nonpositive because the I- 
divergence is nonnegative. For discussions of convergence see 
[2,3,7]. If 0 = x, the algorithm derived in [2] results, 

H„ 

M 
ii "m 

E„'=l Hm 

Byrne [3] introduced maximum entropy penalties (7(xl£) 
or 7(£lx)) into the deterministic problem; prior information is 
assembled into a prior guess £. O'Sullivan [4] introduced rough- 
ness penalties that penalize discrepancies with neighbors. Let 
{S,-, 1 < i < 7} be a set of N x N permutation matrices. Then the 

roughness penalties are of the form £;=i 7(xlS,x). Furthermore, a 
generalized EM algorithm was introduced in [4] based on the 
resulting neighborhood structures. The minimum penalized I- 
divergence problem is to compute the vector x that minimizes 

7(ylHx) + a7(£lx) + ß^'i=l 7(xlS,x). The GEM algorithm from 
[4] may be used, replacing the complete and incomplete data 
spaces for that stochastic problem by the corresponding spaces 
from this deterministic problem, to obtain a sequence of iterates 
that converges to the optimum. 
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Abstract — We propose a sequential approach for 
studying the Viterbi algorithm via a renewal se- 
quence of the most informative stopping times which 
allows us in particular to obtain new asymptotic 
"single-letter" decoding conditions of equivalency be- 
tween the Baum-Welch, segmental K-means and vec- 
tor quantization algorithms of the hidden Markov 
models parameters estimation. 

I. INTRODUCTION 

Let {ht} be a finite hidden Markov chain (HMC) indi- 
rectly observed through a process {zt}, Zt G R ,t = 
Q,...,N. Given a sequence of observations zj? and a set 

A = {'"7ioiakt-i'ni&(z</'1*)} of prior, transition and obser- 
vation probabilities, respectively, the Viterbi algorithm (VA) 
allows us to find the most likely state-sequence (MLSS) 

h0 of the HMC via maximizing the next additive criterion 

dN(h0 ) = maxfcw ]nP{h0 ,z^ } by a dynamic programming 
* N—1 

(DP) method. Then the MLSS h0 or the optimal seg- 
mentation of the observations z0 

-1 can be obtained by the 
backtracking  t   =   N — 1,...,0:    ht   =   kt+i(ht+i), where 
- « TV—1 
hN = argmaikj, dN(h0      (hN)), (see, [l]-[3]). 

The direct implementation of VA requires to store the val- 
ues of ht what fills up a table K(m X N) with columns of 
back pointers kt : Ht —► Ht-i,t = N,N — 1,... with 
HN = H = {0,1,... ,7n — 1} but if for a some moment 
s,3j 6 H: k.+1(H.+i) = j for all ht G Ht = H,t > s, then 
h, = j is called a special column (SC) in the table K of 
optimal VA decisions [2] and the moments of the SCs appear- 
ing are the most informative stopping times (MISTs) 
for the Viterbi recognition of HMS [3], [4] because after their 
appearing further observations do not change the previous de- 
cisions of the VA. 

II. RESULTS 

We establish the renewal properties of the MIST sequence and 
the duality between the Wald's sequential analysis and the VA 
which allow us to develop a sequential version of the segmental 
K-means algorithm for reducing the biases of estimates if the 
set of parameters A is unknown. 

Then we consider the asymptotic conditions of equivalency 
between the Baum-Welch (BW), segmental K-means (SKM) 
algorithms and vector quantization (VQ) approach which has 
important applications in speech recognition (see, [5], [6]). 
When the set of parameters {A} is unknown, it can be es- 
timated, for instance, by the BW: A* == argmaxA P\(Z), or 
by the SKM: A = aig max^ maxh Pj(^, A) algorithms what 
can be achieved by the following iterative maximizations re- 
spectively 

BW: Xi+1 =^gianxx^2hPXi(h/Z)hiPx(Z,h), 

SKM: A;+i =argmaxA^h5(A.-fc(A<))mPA(^,/i), 

where h = h^, Z = zfi* and £(•) is the Kronecker ^-function. 
Thus, if Pxi(h/Z) —y S(h — fe(Ai)),Vi, then fc(Aj) is a dominant 
MLSS for Vi and BW A ~ SKM A. A sufficient condition of 
the existence of such a dominant MLSS h% T = ?ij,...,/iy, 
where ht = arg mink D_1 lnb(zt/0h), has been given in [5]: 

-  lim D-1 ]nb{zt/ehl) = Hht, (1) 
D—*oo 

where Hht is a constant entropy depending on ht and 0ht is a 
set of parameters. Furthermore, the probability of deviation 
from the MLSS given Z, decays uniformly exponentially and 
does not depend on the length N of the sequence h. Then from 
[3] one can have 
Theorem 1 Given (1), the dominant MLSS is asymptotically 
single-letter decoding, as D —► oo. 

Thus, in the limit, the MISTs will appear at each step what 
coincides with the case of a generalized single-letter decoding 
[2]. For the Gaussian HMC with the autoregression covariance 
matrix associated with state ht we can, by using the renewal 
properties of the MIST sequence, further strengthen the result 
of [5], [6] that as D —» oo, the SKMA becomes equivalent to 
the VQ approach which in this case minimizes the Itakura- 
Saito distortion measure. 

Theorem 2 Ifptj >6>0, for VSCi (as N -► oo,), then 

Dliml     £     lnPA(,„,M = -     £    [H(zn)+dls{zl'Xh"h 

where H(zn) is the empirical entropy of zn, dis is the corre- 
sponding discrete Itdkura-Saito distortion measure, Tk is the 
kth moment of the SC appearing, and 

lnmaxh P: {Z, h) 
A lim    Um 

D—*oo N~+oo DN 
= -Ei[H(zn) + 

disjz-n, A)ln)1 

REFERENCES 
[1] L. R. Rabiner, "A tutorial on hidden Markov models and se- 

lected applications in speech recognition, "Proceedings of the 
IEEE,   vol. 77, pp. 257-286, 1989. 

[2] J. A. Kogan, "Optimal segmentation of structural experimental 
curves by the dynamic programming method," Automation and 
Remote Control,   No. 7, pt. 2, pp. 934-942, 1988. 

[3] J. A. Kogan, "Exact Viterbi recognition of hidden Markovian 
sequences via the most informative stopping times," submitted 
to IMA Proceedings on "Image models (and thier speech models 
cousins) ". 

[4] J. A. Kogan, "The most informative stopping times for Viterbi 
algorithm: sequential properties," in Proceedings 1994 IEEE- 
IMS Workshop on Information Theory and Statistics, Alexan- 
dria, Virginia, Oct. 1994. 

[5] N. Merhav, Y. Ephraim, "Hidden Markov modeling using a 
dominant state sequence with application to speech recogni- 
tion," Computer Speech and Language, pp. 327-339, 1991. 

[6] N. Merhav, Y. Ephraim, "Maximum likelihood hidden Markov 
modeling using a dominant sequence of states," IEEE Trans., 
on ASSP, vol. 39, No. 9, 1991. 

178 



Model Parameter Estimation for 2D Noncausal Gauss-Markov Random Fields 
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Abstract - An original procedure for estimating the model 
parameters of a noncausal Gauss-Markov Random Field 
(GMRF) from noisy observations is proposed. Starting from 
a suitable 'local' representation of the field and taking Into 
account the symmetry property of the so-called 'potential 
fields' [3] describing the GMRF, a linear equation system 
relating the model parameters to the (generally, non- 
stationary) 2D autocorrelation function (acf) of the observed 
field is derived. Its solution for a known (or estimated) acf 
directly gives the parameter estimates of the GMRF. The 
unkown variance of the eventually present observation noise 
can be also estimated jointly with the model parameters. 

SUMMARY 
A discrete-index 2D zero-mean Gaussian random process{x(s) e R1, 

S G 1} defined over a rectangular lattice I and constituting a noncausal d"1- 
order homogeneous GMRF with respect to (wrt) an assigned 'support 
region' (or 'neighbourhood system' [3,4]) T|(d) admits the 'innovations 
representation' [1,2] 

x(s) = X  <Kö x(s+ö + u(s), se roi(d)). (i) 

In (1) the set Ti(d) is assumed symmetric and constituted by an even 
number of points 2L(d) [4]; l"0l(d)) is the set of 'internal points' of I wrt 
T|(d); {<(>(r)e R1, reT|(d)} are the so-called 'field potentials', related as 
reported in [2] to the acf {Ru(r)} of the 2D stationary zero-mean Gaussian 
'innovations process' {u(s) e R1,sel"(il(d))}, with varianceKu. 

From the obvious symmetry property Ru(r) = Ru(-r) we have: <t>(r)= 

<|>(-l)> Ie !l(d)- This allows to partition of the support region T)(d) in the 
sub-sets T|+(d), Ti_(d)c ^(d), each constituted by L(d) sites and such that 
if r.€Ti+(d) then -r_eri.(d) for every rsT|(d). In this way (1) can be 
rewritten as 

x(s)=  X  4>(r)U(s + l) + x(s-l)] + u(s),  seI'(Tl(d)). (2) 

re n-(<l) 

The representation of the GMRF in (2) is then completed by 
specifying the associated boundary conditions (b.c.), i.e. the statistics of 
the random vector constituted by the r.v.s extracted from the random field 
{x(s)} at the boundary points of the lattice I. 

It is also assumed that the GMRF is corrupted by a 2D stationary 
zero-mean additive white noise process {w(g) e R1, s e 1} independent 
from {x(s)} and with (unknown) variance ow

2, so that the resulting 
observation process (y(s) e R1, s e 1} is defined as: y(s) = x(s) + w(s). 

An original procedure for estimating the model parameters of a 
GMRF of an arbitrary order can be obtained from the 'local' 
representation in (2). In fact, from the model in (2) the following set of 
linear algebraic equations can be built up: 

Ryfe s+m) = X MÜ [RY(S+I; s+m) + Ry(s-t; s+m)] + tow
2 +KU] 8(m), 

m« {r|-(d)u{0_}} (so that 8(m)=0), a matrix linear algebraic equation 
system is directly derived, and from its solution the field potentials {<(>(r)} 
are obtained. Such a system can be considered as the extension to the case 
of 2D noncausal GMRFs of the so-called 'high-order' Yule-Walker 
equations for the parameter identification of ID causal AR processes. 
From the field potentials, writing (3) forsel'Oltd)) and for any mer|.(d) 
such that <|>(m) * 0, the noise variance aw

2 is then calculated; finally, the 
parameter Ku is computed from (3) written for m = Q. 

The illustrated parameter estimation procedure is fully general: in fact 
it is valid for GMRFs defined on both finite or infinite lattices and for any 
kind of assumed boundary conditions, periodic or non-periodic, their 
influence being embedded in the acf of the field itself. Moreover, it can be 
easily particularized to the case when the noise variance ow

2 is known, or 
when the observation noise is absent. 

Comparing the proposed solution to alternative methods available in 
the literature, some improvements can be outlined. More in detail, having 
exploited the symmetry <j>(r) = <t>(-l) gives an algebraic system with half 
size with respect to the system in [1]. On the other hand, the procedure in 
[4] is based on an iterative search algorithm, thus giving a computational 
complexity proportional to the size of the field, while the proposed 
solution is based on a 'local' description of the GMRF so that it does not 
involve time-consuming iterative search algorithms and its complexity is 
independent from the the size of the field. Finally, in the proposed 
approach the variance of the observation noise is estimated together with 
the model parameters while the procedures in [1] and [4] requires that it is 
known (or separately estimated). The results of some computer 
simulations of the above procedure are reported in Tab.I and in [7]. 
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tet|-(<l) Se I*(n(d)),  S+me I,      (3) 

thus relating the unknown model parameters to the 2D acf {Ry(s;0} of 
the process {Y(s)}; the acf is assumed 'a priori' known or estimated from 
the available observations (80a) in (3) is the Kronecker delta). 

Writing (3) for a set of L(d) sites s e r(r|(d)) suitably chosen and for 

True Estimated True Estimated True Estimated 

K-1,-1) 5.0-2 4.27 -2 1.2-1 1.10-1 5.0-2 5.75 -2 

K-1,0) 5.0-2 4.89 -2 1.2-1 1.17-1 9.0-2 8.80 -2 

H-i.+i) 5.0-2 6.92 -2 1.2-1 1.21 -1 5.0-2 5.93 -2 

t>(0,+l) 5.0-2 4.80 -2 1.2-1 1.38 -1 9.0-2 9.80 -2 

Ku 10.0 10.01 10.0 10.23 10.0 9.815 
Tab.I - True and estimated parameter-values for three cases of noisy-free 
second-order (i.e., ow

2=0, d=2) 2D GMRFs with pinned-to-zero 
boundary conditions. The field potentials {<t>(r)} and Ki are calculated as 
in (3) by estimating the acfs {Rxtel)} from 104 independent realizations. 
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Abstract — In this paper we use the uniform 
Cramer-Rao (CR) lower bound [1] to generate bias- 
variance tradeoff curves which separate achievable 
from unachievable regions in the estimator bias vari- 
ance plane. 

I. Introduction 
Let 6_ = [öi,..., dn]T € 0 be a vector of unknown parameters 

which parameterize the distribution of an observed random 
variable Y. Let 6\ = 0i(Y) be an estimator of the scalar #i 
and define the estimator bias function ii = 61 (0) = Eejfii] — 6\ 

and the variance function a2 = tr2(9) = E$_[(8i — 0i)2]. The 
goal of this work is to quantify fundamental tradeoffs between 
the bias and variance functions for any parametric estimation 
problem. When considered as surfaces over the parameter 
space 0, the bias and variance provide a very informative de- 
scription of estimator performance, for example they jointly 
specify the MSE.However, since comparison of performance 
surfaces over a large set 0 is usually impractical, the bias and 
variance in a small neighborhood is of greater interest. In 
this case, the bias gradient Vepi is more useful since it is in- 
sensitive to constant and hence removable biases. It can be 
shown that Veil is directly related to the width of the point 
spread function for penalized maximum likelihood deconvolu- 
tion problems [2]. The weighted norm of the bias gradient is 
indirectly related to the variation of the bias function over 0 
by: |A6i(0_)| < ||Ve&i||i5 + o(det\D\), where \\ufD = uT DT Du 
and D is an invertible matrix whose determinant is propor- 
tional to the volume of the region. 

II. The Bias-Variance Tradeoff Curve 
The tradeoff curve is derived from a generalization of the 

bound on estimator variance presented in [1]. Unlike the 
bound of [1], this bound applies to the case of singular Fisher 
information matrices (FIM), an important case arising in de- 
convolution problems, and permits use of any weighted h 
norm of the bias gradient. 
Theorem 1 For a fixed scalar 6 £ [0,1] let0\ be an estimator 
whose bias gradient satisfies the norm constraint ||Ve&i||£, = 
y? DT Du < 82, where D is an arbitrary non-singular ma- 
trix. Define the oblique projection operator (n x n matrix) 
VFY — FY[FYD

TDFY]
+

 FYD
TD which maps n-dimensional 

space onto the column space of the FIM FY, and define the 
n-element unit vector e^ — [1, 0, ...,0]T. Then the variance of 

0i satisfies: 

In (2) X > 0 is determined by the unique non-negative solution 
of the following equation: 

-2 g(\) =ef   FY(\.DTD + FYy
2FY £.! =6 • (3) 

By calculating the family of points {(B(6_, 8), 8) : 8 € [0,1]} 
we sweep out a curve in the bias-variance plane which lower 
bounds any estimator plotted in the plane. Figure 1 illustrates 
this curve for a simple one dimensional Gaussian deconvolu- 
tion problem and the unweighted h norm (D=identity) [2]. 

Uniform CR bound 

0.2       0.3       0.4       0.5       0.6       0.7       0.8 
delta: Length of the bias gradient 

Figure 1: Bias-Variance Plane and Lower Bound. 

The region above and including the curve is the so called 
'achievable' region where all the realizable pairs of estimator 
variance and bias-gradients exist. Note that if an estimator 
lies on the curve then lower variance can only be bought at 
the price of increased bias and vice versa. For this example 
the regularized least squares estimator attains optimal bias- 
variance tradeoff, i.e. it hits the lower bound for all values 
of 6 [2]. In this case the bias gradient norm 8 was swept out 
by varying the smoothing (regularization) parameter of the 
estimator. 

In general to place an estimator somewhere within the 
achievable region of Figure 1 requires the variance and length 
of the estimator bias gradient. In most cases the variance and 
the bias-gradient length are analytically intractable and must 
be empirically estimated. Since the sample mean estimate of 
the bias gradient norm has severe positive bias some form of 
bias correction is necessary. We have developed a bootstrap 
estimator and a (1 — a)% lower confidence bound for this pur- 
pose. 
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Abstract — A number of new spherical t-designs in 
three and four dimensions are described. Evidence 
is presented to suggest that in three dimensions the 
resulting catalog gives a complete list of all designs of 
strength t < 9. 

I. INTRODUCTION 

A set of N points p — {Pi,... , Pjv} on the unit sphere Q,d = 
S       = {x = (xi,.. .,Xd) G x ■ x — 1} forms a spherical 
t-design if the identity 

AT 

f(x)dfl(x) = j-^f(Pi) / (1) 

(where ß is uniform measure on 0<j normalized to have total 
measure 1) holds for all polynomials / of degree < t ([3]; [4]; 
[2, §3.2]). In the present paper we are concerned only with 
the cases d = 3 and 4. 

II. SPHERICAL ^-DESIGNS IN THREE DIMENSIONS 

In three dimensions it is trivial that 1-designs exist if and only 
if N > 2, and Mimura [7] showed that 2-designs exist if and 
only if N = 4, > 6. Bajnok [1] found 3-designs for N = 6, 8, 
> 10 and conjectured that they do not exist for N = 7 and 
9. In [5] we showed that 4-designs exist for N — 12, 14, > 16, 
and conjectured that no others exist. Reznick [8] showed that 
5-designs exist for N = 12, 16, 18, 20, 22, 24, > 26. We have 
found 5-designs with N = 23 and 25, and, our search having 
repeatedly failed in the remaining cases, conjecture that 5- 
designs do not exist for N = 13-15, 17, 19 and 21. 

Let T(7V) denote the largest value of t for which an TV-point 
3-dimensional spherical t-design exists. Since a t-design is also 
a t'-design for all t' < t, an TV-point spherical t-design exists 

if and only if T(N) > t. Our results lead us to believe that 
the following are the values of r(l),... ,T(50): 

0,1,1,2,1,3,2,3,2,3, 
3,5,3,4,3,5,4,5,4,5, 
4,5,5,7,5,6,5,6,6,7, 

6,7,6,7,6,8,7,7,7,8, 
7,8,7,8,8,8,8,9,8,9 

This is part of a much larger table that will appear in [6]. 
The results of this table then suggest that, in three dimen- 

sions, spherical 6-designs with N points exist for N = 24, 26, 
> 28; 7-designs for N = 24, 30, 32, 34, > 36; 8-designs for 
N = 36, 40, 42, > 44; 9-designs for N = 48, 50, 52, > 54; 
10-designs for N = 60, 62, > 64; 11-designs for N = 70, 72, 
> 74; and 12-designs for N = 84, > 86. The existence of some 
of these designs is established analytically, while others are 
given by very accurate numerical coordinates. 

The 24-point 7-design was first found by McLaren in 1963, 
and — although not identified as such by McLaren — consists 

of the vertices of an "improved" snub cube, obtained from 

Archimedes' regular snub cube (which is only a 3-design) by 
slightly shrinking each square face and expanding each trian- 
gular face. 

One of our constructions gives a sequence of putative spher- 
ical t-designs in three dimensions with N = 12m points 
(m > 2) where N = \t2(l + o(l)) as t -» oo. 

III. SPHERICAL ^-DESIGNS IN FOUR DIMENSIONS 

Analogous results have been obtained in four dimensions and 
will be described if time permits. 
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Abstract — A computational algorithm is described 
for the numerical evaluation of some lattice parame- 
ters such as density, thickness, dimensionless second 
moment (or quantizing constant), etc. By using this 
algorithm, previously unknown quantizing constants 
of some interesting lattices can be obtained. 

I. INTRODUCTION 

The complete geometric structure of a lattice can be found 
from the description of its Voronoi cell. The knowledge of the 
Voronoi cell solves at once the problem of the computation of 
relevant lattice parameters such as packing radius, covering 
radius, kissing number, center density, thickness, normalized 
second moment (or quantizing constant). 

The Voronoi cell of certain highly symmetric lattices can 
be determined analytically but no such result is available for 
an arbitrary lattice. In this paper we propose an algorithm 
which exactly computes the Voronoi cell of a full-rank arbi- 
trary lattice. The exact knowledge of the Voronoi cell (i.e., 
knowledge of the coordinates of its vertices, edges, etc.) en- 
ables one to compute all the lattice parameters within any 
degree of accuracy. 

The Voronoi cell of lattice is an O-symmetric convex poly- 
tope, i.e., a bounded region delimited by a finite number of 
hyperplanes symmetric about the origin. The basic elements 
of a poly tope V are its k-faces, where k is the dimension. The 
0-faces are called vertices of V, the 1-faces, edges of V and 
the (d — l)-faces, facets of V. For convenience we identify V 
with the d-face and the empty set with the (—l)-face. To give 
a complete description of a polytope we must know all the 
relations among its faces. For —1 < k < d — 1 a fc-face / and 
a (k + l)-face g are incident upon each other if / belongs to 
the boundary of g; in this case, / is called a subface of g and 
g a superface of f. The d-ia.ce represents the whole polytope 
and is the only superface of all the facets. The (—l)-face has 
no subfaces and is the only subface of all the vertices. The 
incidence graph I(V) of V is an undirected graph defined as 
follows: for each fc-face (k — —1, 0,1,...d) of V, I(V) has a 
node v[f); if / and g are incident upon each other then v{f) 
and v(g) are connected by an arc. 

II. THE DIAMOND-CUTTING ALGORITHM 

This algorithm computes the incidence graph of the Voronoi 
region V of a lattice. Its name was chosen due to its resem- 
blance to the procedure for cutting a raw diamond into a bril- 
liant. Let us consider a lattice A defined by an arbitrary basis 
{vi,...,Vd}. Given a point p we will denote with h(p) the 
hyperplane passing through the point p and normal to the 
vector p. The distance of /t(p) from the origin is equal to 

IIPlI- 

Preparation Given the lattice basis {vi,...,Vd} construct 
the parallelotope Q defined by the hyperplanes h(±^Vi) 
for t = 1,..., d. Q contains the Voronoi cell. The cor- 
responding incidence graph I(Q) has 3d nodes. Finally, 
set V := Q. 

Cutting Consider all hyperplanes h(^-Vi + -^-v2-| ^f-Vd), 
with A, integers, which cut V and update 7(V), by in- 
troducing the nodes corresponding to the new faces arid 
erasing those corresponding to the faces which are left 
out. For this operation we have adapted Edelsbrunner's 
algorithm for the incrementation of arrangements [2]. 

Finish Compute vol(V), the volume of V. If vol(V) > 
det(A)1'2 keep on cutting, else end the algorithm and 
output the incidence graph 1(V). 

III. RESULTS 

By introducing some additional information into the nodes of 
the incidence graph, it is possible to compute all the lattice 
parameters once the Voronoi cell is found. In particular we 
easily find the packing radius, the kissing number, the covering 
radius and the related parameters. Finding the quantization 
constant requires a slightly more complex procedure which 
recursively computes the volume and second order moment 
of V about 0 in terms of the volume and of the second-order 
moment of the subfaces. 

Using the diamond-cutting algorithm we have computed 
some previously unknown values of the quantizing constants 
for some particularly interesting lattices. Of special inter- 
est are the previously unknown quantizing constants for the 
two locally optimal lattice coverings in R4 found by Dickson 
(Diia : 0.076993; Diib : 0.077465) and for a 5-dimensional ex- 
treme lattice covering, which belongs to the class introduced 
by Barnes and Trenerry (0.076278). As these lattices do 
not improve upon the best known lattice quantizers, the con- 
jecture about the optimal lattice quantizers being the duals of 
the densest lattices still holds. 

Most of the computational problems related to lattices are 
either known or conjectured to be AT-hard [1, p. 40]. The 
principal limitation in the application of the diamond-cutting 
algorithm is the exponentially increasing memory require- 
ment. The possibility of reducing the memory requirements 
appears remote especially if we want to preserve the generality 
of the algorithm. 
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Abstract — We describe a new nonlattice sphere 
packing J20 C R20 which is denser than any previously 
known sphere packing in R20. Properties of J20 are 
investigated, ans several alternative representations 
of the new packing are presented. One of these was 
recently recognized by Conway and Sloane as the first 
example of the so-called antipode packings, leading 
them to the discovery of new densest-known sphere 
packings also in dimensions 22 and 44-47. 

I. INTRODUCTION 

It is well-known since the celebrated work of Shannon [4] 
that the design of efficient transmission codes for band-limited 
channels with additive white Gaussian noise is equivalent to 
the problem of constructing dense arrangements of nonover- 
lapping spheres in Rn. In the study of dense sphere pack- 
ings in Rn, a particular effort has been devoted to dimen- 
sions n < 24. For n < 24 major progress was achieved by 
John Leech with the construction of his famous Leech lat- 
tice A24, and the sequence of laminated lattices Ao, Ai,... A24, 
which may be obtained as cross-sections of A24. Presently, the 
laminated lattices are the densest packings known in dimen- 
sions n < 29, except for n = 10,11,12,13. For n = 12 the 
Coxeter-Todd lattice K\i is the densest known packing. For 
n = 10,11,13 nonlattice packings denser than the laminated 
sequence were found by Leech and Sloane [3] in 1970. Notwith- 
standing the vast body of research devoted to constructions of 
dense sphere packings in recent years — see [1] and references 
therein — no further progress for n < 24 has been reported 
in the intervening two and a half decades. 

II. THE CONSTRUCTION 

Given a sequence of binary codes Co, C\,..., Cm, consider a 
packing A consisting of all the points i£Z" with the follow- 
ing property: the 2'-s row in the coordinate array of x is 
a codeword of C; for i = 0,1,..., m. We use the notation 
A = Co + 2Ci + ••• + 2mCm + 2m+1Z", to describe such 
a packing. Now, let C and C* be two orthogonal (n, Afi.di), 
respectively (n,M2,(i2), binary codes with di,d2 > n/4 + 2. 
We shall use 0,1 to denote (codes consisting of) the all-zero 
and the all-one «-tuples, respectively. The (n,2n-1,2) binary 
code consisting of all the vectors in W" of even weight, respec- 
tively odd weight, is denoted £„, respectively ö„. Consider 
two sphere packings Je, J0 C Rn, denned as follows: 

Je    =    0 + 2C' + 4£„ + 8Zn 

Jo    =    1 + 2C* + AOn + 8Z" (1) 

where C = 1+C Let J = JeUj0. We show that for n < 24, 
the center density of J is given by 

X(7\  -   (" + 8)n/2(Mi + M2) 
°W  ~ 23n+1 (2) 

Although (2) holds for all n < 24, it is clear from the condition 
di,d2 > n/4+2 that the construction of (1) would be most suc- 
cessful for n divisible by 4. For n = 8,24, we take the (8,24,4) 

'This work was supported by the NSF Grant NCR-9409688 

Hamming code and the (24,212,8) Golay code and, by virtue 
of the fact that these codes are self-orthogonal, reproduce 
the lattice packings Es and A24, respectively. For r» = 20 
our construction calls for two orthogonal (20,512, 7) codes. 
A (20, 29,7) linear code C is known (cf. [1, p.248]), and the 
question is whether its dual contains another (20, 512, 7) sub- 
code. This question is settled in the affirmative using a qua- 
ternary representation for C and CL, similar to the construc- 
tions of the Golay code from the (6,43,4) hexacode, and of 
the Nordstrom-Robinson code from the (4,42,3) quadracode 
over IF4. Thus, the codes C and C* may be identified with 
certain binary images of two different (5,42,4) subcodes of the 
(5,43,3) perfect Hamming code over IF4. The resulting non- 
lattice packing J20 has center density 710 • 2-31 = 0.1315 ... 
This is denser than the best previously known packing A20 
whose center density is 1/8. 

III. PROPERTIES OF J20 
We provide several alternative representations of J20 and in- 
vestigate some of its properties. In particular, we show that 
J20 may be constructed as an TZ-packing, where % is the ring 
of Hurwitz quaternions. Furthermore, we prove that although 
J20 is not a lattice it is distance invariant. This allows us to 
express the theta series of J20 in terms of the theta functions 
62(z),O3(z),04(z) and the weight distribution of the (20, 29,7) 
binary code C. Precise enumeration of the first six shells of 
the new packing is presented. In particular, the kissing num- 
ber of ,/2o is shown to be 15360, which is slightly less then 
the kissing number of A20 given by 17400. This demonstrates 
once again that in general the answers to the packing problem 
and the kissing number problem may differ (cf. [1, p. 23]). 

Although we establish the distance invariance of J20, we 
were unable to determine whether J20 has the stronger prop- 
erty of geometrical uniformity. This was recently settled by 
Conway and Sloane [2], who showed that the affine automor- 
phism group of J20 is not only transitive on the spheres, but 
also doubly-transitive on adjacent spheres. In fact, Conway 
and Sloane [2] provide a complete characterization of Aut( J20) 
in terms of the automorphism group of the Leech lattice. 

Finally, we provide yet another representation of J20 as 
the union of four cosets of 2A20 • Conway and Sloane [2] show 
that this representation of J20 is a special case of their new 
antipode construction of sphere packings. The antipode con- 
struction of [2] is remarkable in that it readily establishes the 
existence of sphere packings in dimensions 22,44,45,46,47 that 
are denser than previously known. All these packings were 
discovered in [2]. We note here that in most cases (including 
Ji6 and J20), the antipode set is a simplex. 
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Abstract — A new class of spherical codes is pre- 
sented which are designed analogously to laminated 
lattice construction. For many minimum angular sep- 
arations, these "laminated spherical codes" outper- 
form the best known spherical codes. In fact, for 
fixed dimension it < 49, the density of the laminated 
spherical code approaches the density of the (k — 1)- 
dimensional laminated lattice At_i, as the minimum 
angular separation 0 -► 0. In particular, the three- 
dimensional laminated spherical code is asymptoti- 
cally optimal, in the sense that its density approaches 
the Fejes Töth upper bound as 0 -> 0. The laminated 
spherical codes are also structured, which simplifies 
decoding. 

A spherical code C(k, 0) is a set of points on the surface of 
a fc-dimensional unit radius sphere Sk having minimum angu- 
lar separation 0. The density of C(k,0), denoted Ac(fc,e), is 
the ratio of the surface area of \C(k, 0)\ disjoint spherical caps 
centered at the codepoints and with angular radius 0/2, to 
the surface area of Sk- Let A(k, 0) = maxC(fc,e) AC(/t,<>). Note 
that the maximum number of codepoints in any fc-dimensional 
spherical code with minimum angular separation 0 can be de- 
termined directly from A(k,0). We refer to a family of codes 
C(k,0) as asymptotically optimal if AC(fc,e)/A(fc,0) -+ las 
0 — 0. 

For fixed dimension k and small minimum angular separa- 
tion 0, [Fej59] (k = 3) and [Cox68] (k > 4) provide the tight- 
est upper bound and [GHSW87] provides the tightest known 
lower bound on A(ib, 0). However, there is a gap between these 
bounds as 0 —»■ 0. In this paper we introduce a new spheri- 
cal code construction analogous to laminated lattice construc- 
tion. We call these codes laminated spherical codes. These new 
codes have larger asymptotic (for small 0) densities than any 
previously known spherical codes. 

The laminated spherical codes are obtained by placing 
codepoints on concentric (k — l)-dimensional spheres and pro- 
jecting each codepoint onto Sk by adding a fcth coordinate 
to form a vector of unit norm. The set of points on each 
(Jfc — l)-dimensional sphere is either a (k — l)-dimensional lam- 
inated spherical code, or another code formed from its deep 
holes. By nesting the concentric spheres closely, and placing 
codepoints of one sphere at the radial extension of the deep 
holes of codepoints of the previous sphere, a method similar to 
constructing laminated lattices (e.g., [CS93]) is used to con- 
struct our spherical codes, which we denote by C .As more 
of these concentric spheres are stacked up, codepoints start 
spreading out, and the density lessens. To counteract this, a 
buffer zone is placed between concentric spheres, and a new, 
tighter packed (k — l)-dimensional spherical code is placed in 
the next sphere. A recursion describes the sequence of radii 
necessary to insure that both the desired minimum angular 

separation is maintained and the desired density is obtained. 
Our construction has similarities to those of [Yag58] and 

[GHSW87] in that a projection from k — 1 dimensions to k di- 
mensions is used; the difference lies in the placement of points 
prior to the projection. Our technique is practical for cre- 
ating codes of any size and thus provides a lower bound on 
achievable minimum distance as a function of code size. 

Let ACA(A:) = limsupe_0 AcA,fc ey and let A\k be the 

density of the sphere packing constructed from the laminated 
lattice A*. In the laminated spherical code, layers ((k — 1)- 
dimensional spheres) are stacked similarly to layers of lattices 
in a laminated lattice, and as a result, A-A (k) is equal to the 
density of the sphere packing generated by A/c-i. 

Theorem 1 ArA(fc,<0 'AA^-OO*
1
'*). 

Corollary 1 CA(3,d) is asymptotically optimal and the Fejes 
Toth upper bound is asymptotically tight. 

Corollary 2 // there exists a family of spherical codes C(k, d) 
whose asymptotic density is higher than ACA {k, d), then there 
exists a (k — 1)-dimensional sphere packing denser than that 
generated by Ak-i- 

Theorem 2 There is an optimal decoder for CA(k,0) using 

O(y/\CA(k,0)\) space andO(log\CA(k,0)\) time, or an opti- 

mal decoder using 0(1) space and O(\J\CK(k,0)\) time. 
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Abstract — «r-trees are a class of geometric struc- 
tures that include lattices as a constrained special 
case. These structures allow for signal sets that are 
more spherical in shape than lattices in spaces of arbi- 
trary dimensionality. In this paper, the use of cr-trees 
in the construction of non-lattice TCM codes is estab- 
lished and investigated. 

I. INTRODUCTION 

A P-level <7-tree signal constellation P(i:p) consists of a set 
of 2P points in JV-space that is formed from the direct sum 
of an ordered P-member collection binary constituent sets 
(Gi, G2, ■.., Gp). One vector (called a generator), gpj £ 
GP, j 6 {0,1}, is selected from each constituent set and all 
selected vectors are summed to form a point, t, in the signal 
constellation. A (P — Q + l)-level subtree T(q:p) of T(up) is 
a cr-tree that is formed from the last (P — Q + 1) constituent 
sets; i.e. T(Q.P) = GQ + GQ+I + • • • + Gp. The design of 
these constellations is based on an iterative algorithm that 
uses training data drawn from multidimensional probability 
distribution functions [1, 2]. More interestingly, a cr-tree sig- 
nal constellation T has a sequence of subtrees T' that induces 
a partition of T into partition chains with expanded intra- 
subtree minimum distances. 

II. O--TR.EE TCM CODES 

A cr-tree coset code C(T/T';C) is based on a cr-tree T, a a- 
subtree T', and a binary encoder C. Figure (la) illustrates 
the general encoder structure. The order of the constituent 
sets Gi, G2,... Gm+r plays an essential role in determining a 
useful partition of T. For the one-dimensional cr-tree T, the 
constituent set with the lowest energy has to be in the first 
level of the tree, then continuing in ascending order until we 
have the constituent set with the largest energy in the last 
level [3]. To transmit m bits per N dimensions, the signal 
constellation must be based on an (m + r)-level cr-tree T, par- 
titioned into 2k+r subsets, each consisting of 2m~k points from 
a different coset of the (m — fc)-level cr-subtree T'. Constituent 
sets are divided into coded and uncoded constituent sets, based 
on the data bits to address them. The direct sum of the un- 
coded constituent sets form the cr-subtree T', while the direct 
sum of the coded constituent sets form a system of cosets. 
Of the incoming m data bits, k bits are applied to a binary 
encoder to get a (k+r)-coded bits with which to select a sub- 
set of the «T-tree TCM code. This is performed with each of 
the (k+r)-coded bits selecting one generator from the binary 
coded constituent sets. The direct sum of the generators form 
a coset representative, c. The remaining (m-k) uncoded bits 
selects a point t' from the cr-subtree T^+r+i-.m+r) > added to 
the coset representative to form the transmitted signal point 

coded constituent sets fonn a system of cosets 

uncoded constituent sets form a subtree 

(a) Encoder. 

—?©— —|GQ 
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(b) Decoder. 

Figure 1: <r-tree TCM encoder and decoder 

t = c+t'; i.e. t(j) = J2m*^ gp(ip) where jp is the pth element 
of the (m-(-r)-tuples binary label j. 

An optimum subset decoder shown in Fig. (lb), devel- 
oped for the one-dimensional case, works as follows. For a 
(P — Q + l)-level subtree TQ of a P-level binary cr-tree Ti, 
there are 2F_C*+1 parallel transitions between each pair of 
states. To choose one of these parallel transitions, (P — Q + l) 
decisions are needed. First, the received channel output is 
translated by a coset representative c(j'3_1j''_2 • • • j1) of the 
signal subset SQ) assigned to the parallel transitions. Then 
the translated channel output is applied sequentially to the 
(P — Q + l) constituent sets of TQ starting with Gp, the con- 
stituent set of largest energy. At each stage, a generator is 
determined, then is subtracted from the current stage's input 
and the result is passed to the next stage (constituent set) till 
we end with the constituent set GQ. The direct sum of the 
decoded generators <7p,jP, <7p_i,jP-i, ■ • ■ 9QJQ and the coset 
c(j) forms the decoded signal i. 
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Abstract — Low complexity soft decision decoding 
algorithms for Reed—Müller codes and Barnes—Wall 
lattices are presented. These algorithms are con- 
structed based on the usage of generalized minimum 
distance (GMD) decoding recursively. Evaluation of 
the algorithms on AWGN channel through computer 
simulation indicates a slight degradation in perfor- 
mance, compared to maximum likelihood decoding, 
but with considerable reduction in complexity. 

I. INTRODUCTION 

Decoding Reed-Muller codes and Barnes-Wall lattices be- 
come veiy important because of extensive studies of various 
codes and lattices in coded modulation application in recent 
years. Most previous decoding algorithms relied on trellis 
decoding. However, trellis can become very complicated for 
codes of longer length or lattices of higher dimension. There- 
fore, following the approach suggested by Forney [3], we apply 
hard decision decoding algorithm via GMD decoding [1] to 
realize low complexity soft decision decoding of Reed-Muller 
codes and Barnes-Wall lattices. In [4] Taipale and Pursley 
proposed an improvement to Forney's GMD decoding algo- 
rithm. However, it still may fail to find an acceptable code- 
word. In this paper, we provide a measure of compensation 
and present low complexity soft decision decoding algorithms 
for Reed-Muller codes and Barnes-Wall lattices by recursively 
using GMD decoding. Evaluation of the algorithms on AWGN 
channel through computer simulation indicates a slight degra- 
dation in performance, compared to maximum likelihood de- 
coding, but with considerable reduction in complexity. 

II. GMD DECODING OP REED-MULLER CODES AND 

BARNES-WALL LATTICES 

We first show that the original majority logic decoding al- 
gorithm for Reed-Muller codes [2] can be easily extended to an 
error-and-erasure decoding procedure. Then we can incorpo- 
rate the criterion in [4] to derive an improved GMD decoding 
procedure. Our soft decision decoding algorithm is then re- 
alized, based upon the (it|tt + v) construction of Reed-Muller 
codes, by recursively applying the improved GMD decoding 
procedure. Namely, if a received vector can not be decoded 
to a codeword in RM(r, m), then decode it to codewords in 
RM(r — 1, m — 1) and RM(r, m — 1) respectively. Finally, 
an acceptable codeword in RM(r, m) can be obtained. The 
complexity of this algorithm for decoding Reed-Muller codes 
in the worst case is n = 2m or 22(m_r) < n2 , while in the 
average case, it will be much lower. 

It is known that the connection between Barnes-Wall lat- 
tices and Reed-Muller codes can be described by various code 
formulas. Therefore it is obvious that the decoding of Barnes- 
Wall lattices can be directly derived from the decoding of 
Reed-Muller codes. 

III.  SIMULATION RESULTS 
The error performance of the proposed algorithm for de- 

coding RM(1,3) and RM(2,4) in AWGN channel is shown in 
Fig. 1, and further, performance for decoding BWt{Et) and 
BWiefAie) assuming 16QAM signaling in AWGN channel is 
shown in Fig. 2. 

bLO RMh£) -*- 
Ml RW1.S -•— 

ULD RM2.4] -■- 

Figure 1: Proposed algorithm vs MLD algorithm for de- 
coding RM(1,3) and RM(2,4) 

lThis work wu supported by the NSF Grant NCR^9406043. 

Figure 2: Bit error rate of coded 16QAM using B W% and 
BW16 lattices 
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Constellation Shaping for the Gaussian Channel1 
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Abstract — In this paper we present a new view 
to the problem of constellation shaping. Both a new 
procedure and information theoretic analysis are dis- 
cussed. The talk presents an approach to understand- 
ing constellation shaping that avoids the "continuous 
approximation" analysis of performance. A unique 
"type-mapping" approach to shaping is derived and 
related to monomial orderings on a ring of polynomi- 
als. 

I. INTRODUCTION 

Constellation shaping is method of improving the effective- 
ness of digital communications over noisy, bandlimited chan- 
nels. This topic has drawn considerable interest in recent days 
[1, 2, 3]. The roots of the topic go back to the paper on Lat- 
tice Codes and Cosets by Conway and Sloane[4], while the 
current framework for discussing the topic was outlined by 
Forney and Wei [5]. Three basic approaches to the problem 
were given by Lang and Longstaff [6], based on "shell map- 
ping", Calderbank and Ozarow [7], based on "nonequiproba- 
ble signaling", and Forney[8] based on "trellis shaping". The 
recent high-speed telephone modem standard, v.34 ("v.fast") 
incorporates a version of shell mapping in the standard. 

II. DISCRETE ANALYSIS 

The paper presents an approach to constellation shaping 
that avoids the "continuous approximation" (CA) analysis 

of performance. The crux of the CA method is related to 
the asymptotic shaping gain that can be derived from the 
entropy power of the uniform distribution. If X is a uni- 
form random variable on the interval [—A, A], then it has a 
"power" P(X) = E(X)3 = A2/3 and a differential entropy 
h(X) = |log(4j42); a Gaussian random variable Y, with zero 
mean and variance a2, has "power" P(Y) = <r2 and differ- 
ential entropy h(Y) = |log(27recr2). For equivalent entropy, 
the Gaussian power P(Y) = ^P(X) which is -1.53 dB less 
then the Uniform power. This means, for transmission over 
power constrained channels, Gaussian distributed signaling 
has a 1.53 dB advantage over uniformly distributed signals. 

In practice, however, discrete signal sets are always used. 
For example, consider how 2 bits might be transmitted over 
a TZ valued channel. The basic approach is to use the 4- 
PAM signal set {-3,-1,+1,+3} with a uniform distribu- 
tion (j, J,J,J). Then the entropy (rate) is 2 bits and 
the average power §1 + |9 = 5. To achieve a shaping 
gain, the signal set is increased and a code is used to in- 
duce a non-uniform distribution. For example, if the 6- 
PAM signal set, {-5, -3, -1,-1-1, +3, +5} is used a gain 
can  be  achieved  by  selecting  a  blocklength  n   =   4  and 

signaling with the 2nR = 24'2 = 256 least power sig- 

nals. These signals induce a non-uniform marginal dis- 
tribution of (1,28,35,35, 28,1)/128 resulting in a power of 

4.875, a .11 dB improvement over 4-PAM . The optimum 
distribution for rate 2, 6-PAM is iid with marginal distri- 

bution (0.0155, 0.1258, 0.3587, 0.3587, 0.1258, 0.0155); this has 
entropy of 2 bits and power 3.7569, a 1.2414 dB improvement! 
By going to 8-PAM , a 1.2525 dB is feasible with the maxi- 
mum gain tops out at 1.2526 dB. Thus for a rate of 2 bits, 
the 1.53 dB gain is never obtainable (i.e., for the 1.53 dB gain 
both n and R must grow to infinity). 

The basic methods of studying tradeoffs are developed and 
explicit formulas are derived. The relationship to the capacity 
of the additive white Gaussian channel are discuss where it is 
shown that shaping techniques bridge the "uniform distribu- 
tion" gap. 

III. TYPE-MAPPING 

The basic methods of constellation shaping can be roughly 
characterized as forms of coset coding (i.e., codes for which 

messages are associated with cosets of a subgroup such as lin- 
ear subspace) and enumerative coding (i.e., codes for which 
messages are enumerations of vectors). A unique "type- 

mapping" approach, an enumerative technique, is derived and 
related to monomial orderings on a ring of polynomials. It is 
shown how this approach provides a rate flexible and optimal 
tradeoff between peak and average power 
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Random Exploration of the Three Regular Polytopes 
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Abstract — There are just three regular polytopes 
in Euclidean (n > 4)-space. Their dimensions are de- 
termined, including the distance from the centroid to 
the periphery in a random direction—that of a white- 
Gaussian-noise vector. As n —► oo, this distance be- 
comes very predictable. It differs from the distance 
near which almost all of the volume and surface of the 
polytope lie. 

There are infinitely many regular polygons, and there are 5 
or 9 regular 3-dimensional solids. In Euclidean 4-space there 
are 6 or 16 regular polytopes. The second number—9 or 16— 
includes the possibility that faces will intersect one another 
internally and may also intersect themselves, as in the case 
of the regular pentagram (five-pointed star). But in spaces 
of 7i > 5 dimensions there are only 3 regular polytopes: the 
hypercube, which, for n = 2, 3, and 4, is a square, cube, 
and tesseract, respectively; the cross polytope, which is the 
dual of the hypercube and, for n = 2, 3, and 4, is a square, 
octahedron, and 16-hedroid; and the simplex, which is self- 
dual and, for n = 2, 3, and 4, is a triangle, tetrahedron, and 
pentahedroid. 

The discrete set of different signals that might be transmit- 
ted during any signaling interval may be represented by a set 
of points in such a space. To each of these signal points belongs 
a Voronoi-polytope decision region. White Gaussian noise in 
the transmission channel will add random contributions to 
the coordinates of the transmitted-signal point, moving it a 
somewhat random distance in a uniformly distributed random 
direction and causing a reception error if it moves the signal 
point outside its Voronoi polytope. It is therefore of interest 
to understand how far such a polytope extends in a random 
direction and to compare that distance with the rms distance 
to a random point distributed uniformly over the volume of 

the polytope. Such questions are most easily answered for the 
simplest polytopes, i.e., the regular polytopes, and some of 
the phenomena exhibited by the regular polytopes will also 
occur in the others. 

In each case we suppose that the regular polytopes have 
edges of unit length. Table I lists the height H„, the distance 
Ink from the center to the i-dimensional faces, the volune Vn, 
the radius In = In,n-i of the inscribed sphere, the length Ln 

of a ray in a random direction from the center to the periphery, 
the radius S„ of a sphere having the same volume, the rms 
distance pn to interior points, and the radius Cn = I„Q of the 
circumscribed sphere for the 3 unit-edge regular polytopes. 

The last five dimensions appear in the order of increasing 
size when n > 15. When n < 15, pn

TOSS < Sc
n
T°"; when n < 10, 

Pnube < Sc
n
uh*; and when n < 5, pimp < Ssjmp. Moreover, 

pn < In for the cross polytope if n < 4, for the cube if n < 3, 
and for the simplex if n = 1. For n > 1 the radius of the 
sphere having the same area as any of the three polytopes is 
asymptotically equal to its S„. 

Comparison of the fourth moment of the distance from the 
center of each regular polytope with the square of the second 
moment, pn, shows that, for n > 1, nearly all of the volume 
lies within a thin spherical shell of radius pn- The fact that 
Ln < Pn for large n indicates that nearly all of the volume 
of these polytopes lies within a very small hypersolid angle 
about the center when n > 1. Setting pn equal to Ink, we find 
the largest k such that the boundary faces of dimensionality 
less than it he wholly outside the spherical shell containing 
nearly all of the volume of the polytope, viz., k = n/2 for the 
simplex, k = 2n/3 for the hypercube, and k = |n + 1 for the 
cross polytope. Full details should appear next year in the 
IEEE Transactions on Information Theory. 

Table I 

Dimensions of the Regular Polytopes Simplex Hypercube Cross Polytope 

Edge 1 1 1 

Height, Hn V    2n 1 y/l 
From center to fc-dimensional face, Ink /         n-fc 

Y 2(*+l)(n+l) 2 
i 

v^c'fc+i" 

Content, Vn 
l/n+T 
2"/2n! 

1 
2»/2 

n! 

Inradius, Jn = In,n-i 1 1 
2 

1 
\/2n V^n(n+1) 

Length of random ray from center, L„ 1  „, V 4n V »log " 2.^/nlog n 

Radius of equal sphere, S„ V   4l"> V  2JTC 

RMS radius, pn V 12 
/             A /            n 

V 2(n+l)(n+2) V (n+l)(n+2) 

Circumradius, C„ = Ino 2 
1 

v5 
/      » 

V 2("+l) 
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Codes for the Lee Metric and Lattices for the /i-Distance 
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Forney has proposed an iterated construction called the 
squaring construction for simplified derivation and represen- 
tation of the Barnes-Wall lattices. He used as a starting par- 
tition chain the two-dimensional infinite two-way partition ... 
Z I Z I HZ I 2Z I 2TZZ2/ ... with minimum Euclidean 
distances ... 1/1/2/4/8/ ..., where It is a two-dimensional 
rotation operator . We apply this construction to the one- 
dimensional infinite two-way partition ... Z/Z/2Z/4Z/8Z/... 
with minimum h-distance ... 1/1/2/4/8/ ... which has clearly 
the same properties as the previous partition.The resulting 
lattices of dimension N = 2n for the Zi-distance can there- 
fore be regarded as the duals of the Barnes-Wall lattices of 
dimension 2N for the Euclidean distance. Since the 2-depth 
of each of these lattices is equal to n they necessarily contain 
the 2nZ lattice. The coset representatives of these lattices 
in v2nZ , where v is an arbitrary nonnegative integer, are 
good codes for the Lee distance since they outperform the ne- 
gacyclic codes in low dimensions. Maximum Likelihood (ML) 
soft detection can be performed easily on these lattices and 
codes since they have a simple trellis structure. Furthermore 
low complexity detection algorithms such as multistage decod- 
ing can be used without noticeable performance degradation. 
This is not the case for negacyclic codes where only algebraic 
hard decoding is performed easily using for example Euclid's 
algorithm. 

The explicit expression of the lattices obtained by the 
Squaring Construction motivates us to consider a more 
general construction based on multilevel coding first pro- 
posed by Imai and Hirakawa. We consider jointly a /j-level 
code C — [Co, Ci,.. ., CM_i] and a finite partition chain 
Z/qZ/q2Z/.../q"Z, where each code C, is an (N,Ki,di) 
block code over the Galois Field GF(q = pm) with Hamming 
distance </,, and m is an arbitrary nonnegative integer. An 
A-dimensional code A can be defined as the set of integer 
A-tuples A that are congruent to qß~1cll-\ + ■ ■ ■ + c\q + Co 
modulo (jrM, where a is a codeword in the code d, i.e., the 
coefficients of q' in the g-ary representation of A are code- 
words in Ci, 0 < i < ß — 1. The resulting code A is generally 
nonlinear and a necessary condition for it to be a lattice is 
that the component codes C; satisfy the condition C; C C;+1. 
Afso for a good design of A the Hamming distances of the 
component codes CM_i,..., C\, Co should be chosen in the 
form ?,..., g*""1, gM. For the lattices obtained by the Squar- 
ing Construction q = 2 and the component codes are Reed- 
Muller codes that satisfy the two previous conditions on the 
component codes Ci. 

In Section I we apply, as we have mentioned before, the 
Squaring Construction to the one-dimensional infinite two- 
way partition ... Z/Z/2Z/4Z/8Z/ .... We generalize the no- 
tion of the 2-depth of a binary lattice introduced by Forney 
to the case of nonbinary lattices and nonlinear codes and use 
this notion as a measure of the implementation complexity of 
the corresponding lattice. Furthermore, we derive the two- 
dimensional density of each lattice obtained by this construc- 

tion and determine its behavior when the lattice dimension 
goes to infinity. We give also an explicit expression of the 
asymptotic value of this density as a function of the lattice 
2-depth, which we assume fixed, when the lattice dimension 
goes to infinity. 

For comparison reasons, we present in Sections II and III 
the negacyclic and shortened BCH codes designed for the Lee- 
metric, introduced respectively by Berlekamp and Roth and 
Siegel . We apply Construction A to these codes and derive 
dense lattices for the h -distance. Moreover, we give an explicit 
expression of the behavior of the two-dimensional density of 
these lattices when their dimension goes to infinity and show 
that it is the same in the two cases. We show also that the 
expression of the two-dimensional asymptotic density for fixed 
lattice 2-depth is identical in both cases to that found for the 
lattices obtained by the Squaring Construction. 

Multilevel coding is considered in Section IV. As we have 
said before this construction provides a class of lattices and 
nonlinear codes which includes the lattices obtained by the 
Squaring Construction. We show that when considering 
the one-dimensional two-way partition Z/2Z/22Z/ ■ ■ ■ /2ß~1 Z 
and using binary BCH codes as component codes we obtain an 
approximate lattice density which is one quarter that obtained 
in the case of negacyclic and shortened BCH codes. However, 
for fixed 2-depth, the asymptotic two-dimensional density is 
found to be equal to that obtained for lattices based on nega- 
cyclic and shortened BCH codes. 

In Section V we consider two applications of Lee-metric 
codes and Zi-distance lattices. The first one is concerned with 
shift, insertion and deletion error correction in peak-detection 
magnetic recording channels. The second one deals with error 
correction when transmitting data through the Rician chan- 
nel. We have considered two four-dimensional constellations, 
with (2 bit/s)/Hz as spectral efficiency, based on the Schlfli 
lattice D4, which is dense for the Euclidean distance, and the 
lattice E\, which is dense for the h -distance and obtained by 
the Squaring Construction. The simulation results show that 
a coding gain of the order of 2 dB can be achieved by the 
constellation based on E\ over that based on Di for symbol 
error rates of the order of 10-4 when considering a Rician 
channel with specific characteristics to be detailed later. We 
show also that even if the lattice Ag obtained by the Squaring 
Construction, which is dense for the h-distance, can achieve a 
large asymptotic coding gain over the Gösset lattice Eg, which 
is dense for the Euclidean distance, it cannot provide positive 
coding gains for moderate signal-to-noise ratios because its 
kissing number is too large compared to that of Eg. 
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On the Redundancy of Lossy Source Coding* 
Zhen Zhang1, En-hui Yang2, and Victor K. Wei3 

I. INTRODUCTION 

The redundancy of a source code is the difference between its 
expected performance and the optimum performance theoret- 

ically attainable(OPTA). The redundancy problem of source 
coding is to investigate the trade-off between the minimum 

redundancy over a class of codes having a common parame- 
ter( such as block length ) and the common parameter. The 
significance of the redundancy problem is obvious when one 
takes into account the following facts: first, as compared with 
OPTA, the minimum redundancy gives the second-order the- 
oretical performance and, therefore, is one of the basic prob- 
lems in source coding theory; second, the redundancy prob- 

lem provides a basis for comparison of different source cod- 
ing algorithms; and finally, the minimum redundancy can tell 

algorithm-designers how much room they do have to improve 

the performances of their algorithms. 
In this paper, we shall assume that the common parameter 

associated with the codes considered is block length. We shall 
refer the minimum redundancy over the class of all codes hav- 
ing block length n and some specified type as the ?ith-order 
redundancy. (In what follows, different names will be given for 
different types of codes.) In lossless source coding, the OPTA 
is the Shannon entropy and there exists extensive literature 
studying the nth-order redundancy. Typical results are: (1) 

when source statistics is known, the 7ith-order redundancy is 
0(n-1); (2) when the statistics of a source is unknown, the 
nth-order redundancy grows as 0(lnn/n). 

In lossy source coding, the OPTA of a memoryless source 
p is its rate distortion function R(p, d) when the memory- 

less source p is encoded by block codes at fixed distortion 
level d, i.e., d-semifaithful codes, and is its distortion rate 
function d(p, R) when p is encoded by block codes at fixed 
rate level R. If R(p,d)(d{p, R), resp. ) is the OPTA, then 
the corresponding nth-order redundancy shall be refered to 
as the nth-order rate(distortion, resp. ) redundancy. Un- 
like the case of lossless coding, in lossy source coding only a 
few research works on redundancy have been done. Specif- 
ically, Pilc[l] considered for the first time the problem of 
nth-order distortion redundancy. For a memoryless source p 
with finite source and reproduction alphabets, he proved that 
the n-th order distortion redundancy of p is upper bounded 

by (-(1 + e)-^d(p, Ä)lnn/2n)(l + o(l)) and argued that 
the n-th order distortion redundancy is lower bounded by 
(--^d(p,R) In n/2n)(l + o(l)), where ~d{p, R) is the deriva- 
tive of d(p, R) with respect to R. Recently, Yu and Speed[2] 
proved that for memoryless sources with finite source and re- 
production alphabets, the n-th order universal rate redun- 
dancy is upper bounded by (KJ+ 7 + 4) In n/n + o(n~') and 
conjectured that 0(ln n/n) is the optimal rate at which the 
n-th order rate redundancy converges to 0 as n —> oo, where J 

"This work was supported in part by National Sciences Founda- 
tion under grant NCR 9205265. 

1Commun. Science Institute, Dept. of EE-Systems, University 
of Southern California, Los Angeles, CA 90089-2565. 
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3Dept. Infor. Eng., Chinese University of Hong Kong, Hong 
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and K are the sizes of the source alphabet and the reproduc- 
tion alphabet, respectively. Linder, Lugosi and Zeger recently 

considered the case of real alphabet and proved that for mem- 
oryless sources, the n-th order universal distortion redundancy 
is upper bounded by 0(^/ln n/n). Unfortunately, Pile's ar- 
gument to his lower bound is heavily based upon the unjus- 

tified assumption that the output of any block code can be 
approximated by an independent and identically distributed 

random vector. Whether or not the Pile's lower bound is true 
is a question left open for more 25 years. Before our work, 
therefore, nontrivial lower bounds are still unknown to either 

the n-th order rate redundancy or the ?t-th order distortion 

redundancy. 
The aim of this paper is to answer the above open ques- 

tions. We derive a closed formula for the nth-order distortion 
redundancy and prove that the jtth-order rate redundancy is 

upper bounded by (In n)/n + o((hi7i)/n) and lower bounded 
by (In n)/2n + o((lnn)/n). As by-products, these results give 
positive answers to both the Pile's open problem and the re- 

cent Yu-Speed's conjecture. 

II. STATEMENT OF MAIN RESULTS 

Let {Xi}i° be an I.I.D source taking values in a source al- 
phabet A and having a generic distribution p. Let B be our 

reproduction alphabet. Denote by J and K the cardinalities 
of A and B, resp. . Let p : A x B —► [0, oo) be a single letter 
distortion measure. Denote by R(p, d)(d(p, R), resp. ) the rate 
distortion(distortion rate, resp. ) function of p with respect 

to the fidelity criterion generated by p. If C„ C B" is a block 
code of order n with |C„| < enÄ(in this paper, coding rates 

are measured in nats), the distortion redundancy Dn{Cn) of 
Cn is defined as /J„(C„) — d(p,R), where pn(Cn) is the av- 
erage distortion resulting from the encoding of {X,} by C„. 
The nth-order redundancy Vn(R) is the minimum number of 

D„(C„) over all block codes Cn of order n with |CTl| < e" . 
For (Z-semifaithful codes of order n, we can similarly define 

the nth-order rate redundancy 7?.„(r/). The following two the- 

orems give the asymptotic» of Vn(R) and 'Jln(d). 
Theorem 1   Let R > 0. For sufficiently large n, we have 

Vn{R) 
dR   u '    ; 2w •(¥)■ 

Theorem 2  Assume R(p,d) > 0.   Then for sufficiently large 

n, 
Inn /ln7t\   , ,„   , ,,   _ Inn flnn\ 

+ 0         < nn(d) <   + o (■     . 
2?( \   n   J n \   n   ) 

During the process of proving Theorems 1 and 2, we develop 
a deep theory on types and d-ball covering, which is also very 

interesting on its own. 
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Abstract — We derive some information theo- 
retic inequalities to evaluate channel capacity and 
mean square error. We prove an inequality for the 
capacity of an additive noise channel with feed- 
back. We also prove an inequality for mutual in- 
formation and mean square error. The inequality 
is applied to bound minimum mean square trans- 
mission errors. 

Summary 

We first study the capacity of an additive noise chan- 
nel with feedback. In general, especially in non-Gaussian 
cases, it is a hard task to calculate the capacity exactly. 
So it is important to give effective lower or upper bounds 
on the capacity. Let £ be a stochastic process repre- 
senting an additive noise. We employ the notation (* 
to denote a Gaussian process with the same mean and 
covariance functions as the process (. Corresponding to 
the channel with additive noise £, we consider a Gaussian 
channel with additive noise £*. 

Theorem 1 Assume that the channels are with feed- 
back. Then, under an average power constraint, the ca- 
pacity C of the channel with additive noise £ is bounded 
by 

C* < C < C* + H(t\\C), (1) 

where C* is the capacity of the corresponding Gaussian 
channel and .ff(£||£*) is the relative entropy (or informa- 
tion divergence) of £ with respect to £*. 

In the case where the channels are without feedback, 
(1) has been obtained in [2]. 

It is interesting to recall the duality between the result 
(1) on the channel capacity and a result due to Binia et 
al. [l] on the rate distortion function. Denote by R(D;£) 
the rate distortion function of a stochastic process £ with 
mean square distortion. Then it is known that 

R(D;C) - H(t\\C) < R(D;0 < R(D;C),     D > 0, 

or equivalently 

D[R + HUWO; £*] < D(R; £) < D(R; £*),    R>0, 

where D(R;() is the distortion rate function of £. 
The second result relates the mean square error to the 

mutual information.    We denote by d(£, -q)2 the mean 

square error between stochastic processes (or random 
variables) £ and t). 

Theorem 2 The mean square error is lower bounded by 

d(t,v)>D[I(t,r,) + H(t\\Cy,C], (2) 

where /(£, ??) is the mutual information between £ and r). 

The results (l) on the channel capacity C and (2) on 
the mean square error d((,,n)2 are expressed in terms 
of the capacity C* of the related Gaussian channel, the 
distortion rate function D(-;(*) of the related Gaussian 
process, the mutual information, and the relative entropy. 
Results on the capacity of Gaussian channels are available 
in the literature [3] (and references therein). The rate 
distortion function R(D; £*) of the Gaussian process £* 
is given in a closed form of D, and D(R; £*) is the inverse 
function of #(£);£*). The relative entropy #(£||£*) may 
be regarded as the non-Gaussianness of £. 

The inequality (2) is useful to evaluate the reproduc- 
tion error in information transmission over a channel. 

Theorem 3 Let a stochastic process £ be a message to 
be transmitted over a channel of capacity C. Then the 
minimum mean square transmission error A(£)2 over the 
channel is bounded by 

Mt)>D[c + H((\\ey,c]. 

If a message £ is a random variable with variance a2, then 

A«) >*exp[-C +ff(£||r);**]• 
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Critical Distortion of Potts Model 

Zhongxing Ye1 

Dept. of Applied Math. 
Jiao Tong University 
Shanghai 200030 
P.R.China 

Abstract — It is shown by developing the previous 
technique that the critical distortion d0 of the q- 
ary Potts models on a number of lattices is related 
to the radius of convergence R of the Mayer's series 
by dc=(q-l)R/(l+R). A recursive approach is applied to 
estimate R as well as d c by using the matrix 
representation of Mayer's series. For those Potts models 
of which the Mayer's series are not available, we 
derive an unified form of lower bound for dc. 

SUMMARY 
A q-ary Potts model on Zv is a random field X= { Xi( 

i6Zk} with the following Gibbs distribution 

it   ^ = =exp{x -=i.j=-.rii-jii-iJ(l-«  (Xi.xj)}    (1) 

where 

6    (Xi,Xj)= 
JO     if 

\l     if Xi^Xj 

xieQ={0,l,2,-,q-l} 
and    the summation    is   taking    over    all    the    nearest 
neighboring pairs of   sites   on   lattice   Z fe . The   Ising 
model is recovered when q=2. 

The per-site e -entropy for X-V^fX^ieV<T*> } on an 

finite subset V<*° ={i=(ii,—,ik),|ijKn} C_ Z v ,is defined 
by 

1 
Rxv<»(d)=inf- -I(X-V5»>,TV^) 

such where   the   inf is   over all random fields Y-^1 u 

that 

-^-E fi    (Xi.YiXd 

where P    (.,.) is Hamming distance on A*A.Then the per- 
site e   -entropy for X is defined by 

if the limit exists. 
Bassalygo and Dobrushin[ 1] proved for a wide class 

of q-ary random fields on Z fe that for sufficient 
small d: 

H,(d)-H_(X)-^ (d)    (2) 
where fL^X) is the entropy rate of the random field X, 
and <p (d)=-dlogd-(l-d)log(l-d)+dlog(q-l). 

The critical distortion dc is defined by 
dc=sup{d:E,(d)=H==,(X)-<p (d)}    (3) 

They   proved   the   existence of positive dc using cluster 
expansion   method, but didn't   provide any estimation or 
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Toby Berger2 
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bounds of dc. 
In this work we show that for random field in (1), 

dcis related to the radius of convergence R of the 
Mayer's series associated with the Potts model by: 

We have provided a recursive approach [2] to compute 
R as well as dc by the matrix rerepresentation of 
Mayer's series. In particular, we have applied this 
method to calculate the dc for Ising models defined on 
several 2 or 3-dimensional even lattices.Let N denotes 
the number of the nearest neighboring sites of each 
site on the lattice.We found that dc decreases as N 
or the dimension of lattices increase. 

In the case that the series expansions are not 
available we can bound dc using Ruelle's Theorem [ 3] 
from statistical mechanics. We derive the following 
lower bound for dc: 

dc> 
J       1+b?* 

l^      l+bg* 

if J<0 

if J>0 

where 
q-1- [ (q-1) (q-l-Hg) q-e*) ] v2 

(q-l)(q-2+e^) 

(q-2+e J)- [ (q-l+e J) (e J-l) ] 1/2 
2     (q-2)(q-l+eJ)+l 

When q=2,k=l,this bound coincides with the exact value 
of Gray's critical distortion. 
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Abstract — Using a codebook C, a source sequence is 
described by the codeword that is closest to it accord- 
ing to the distortion measure do{x,xo). Based on this 
description, the source sequence is reconstructed to 
minimize the distortion measured by di(x,xi), where 
in general di(x,xi) ^ d0(x,x0). We study the mini- 
mum resulting di(s,£i)-distortion between the recon- 
structed sequence and the source sequence as we op- 
timize over the codebook subject to a rate constraint. 
Using a random coding argument we derive an up- 
per bound on the resulting distortion. Applying this 
bound to blocks of source symbols we construct a se- 
quence of bounds which are shown to converge to the 
least distortion achievable in this setup. This solves 
the rate distortion dual of an open problem related to 
the capacity of channels with a given decoding rule— 
the mismatch capacity. 

Addressing a different kind of mismatch, we also 
study the mean squared error description of non- 
Gaussian sources with Gaussian codebooks. It is 
shown that the use of a Gaussian codebook to com- 
press any ergodic source results in an average distor- 
tion which depends on the source via its second mo- 
ment only. The source with a given second moment 
that is most difficult to describe is the memoryless 
zero-mean Gaussian source, and it is best described 
using a Gaussian codebook. Once a Gaussian code- 
book is used, we show that all sources of a given sec- 
ond moment become equally hard to describe. 

I. MISMATCHED DESCRIPTION 

The design and implementation of lossy block source compres- 
sion is usually done in three steps. The first step is to find a 
single-letter distortion measure that best describes the needs 
and sensitivities of the end-user (reconstructor). Based on 
this distortion measure and on the probability law that gov- 
erns the source behavior, a codebook is designed to minimize 
the average distortion subject to some rate and complexity 
constraints. Finally the source output sequence is described 
by the index of the closest codeword to the source sequence 
according to the distortion measure. The end-user then recon- 
structs the source sequence based on the index, the codebook 
and the distortion measure. 

Our interest is in a situation where the distortion measure 
di(x,xi) that best describes the sensitivities of the end-user 
is different from do{x,xo) according to which the source is 
encoded. Such a situation can arise if encoding according 
to do(x,xo) is easier to implement than encoding to mini- 
mize d\(x,x\), or when one attempts to reconstruct a source 
that was compressed using a standard lossy compression algo- 
rithm over which one has no control. The codebook and the 
two distortion measures are known to the end-user. Only the 
codeword nearest to the source sequence, not the source se- 
quence itself, is available to him, and he needs to reconstruct 

the source sequence to minimize the d\{x, £i)-distortion. A 
formal statement of the problem follows. 

A blocklength n code C of size 2nR over a finite alphabet X0 

is used to encode a memoryless source of law p{x) that takes 
value in a finite alphabet X. A source sequence x is described 
by the codeword x0(i) that is nearest to x according to the 
single-letter bounded distortion function d0(x,xo). Based on 
the description x0(i) and the knowledge of the codebook C, 
we wish to reconstruct the source sequence to minimize the 
average distortion defined by the bounded distortion function 
di(x,xi), where in general di(x,£i) ^ d0(x,xo). In fact, the 
reconstruction alphabets X0 and X\ may well be different. 
We study the minimum, over all codebooks C of rate R, of the 
average distortion between the reconstructed sequence xi(i) 
and the source sequence x. This quantity is denoted by D\ (R). 

Using a random coding argument, an upper bound on 
D\ (R) is derived. We show that this bound is in general not 
tight, and derive a monotonic sequence of upper bounds which 
converges to Di(R). This solves the rate distortion dual of an 
open problem related to the capacity of channels with a given 
decoding metric [1]. 

II. A RATE DISTORTION SADDLEPOINT 

Here we focus on a different kind of mismatch—one where 
the source distribution is not the one for which the codebook 
was optimized. We consider real-valued ergodic sources and 
the mean squared error distortion measure. We study that 
performance that one can expect when one describes such a 
source using a "Gaussian codebook", where a Gaussian code- 
book is a random codebook whose codewords are drawn in- 
dependently and uniformly over an n-dimensional Euclidean 
sphere. Using a result due to Wyner [2] we show the following. 
Theorem 1 Consider the ensemble of codebooks generated by 
drawing 2n codewords independently and uniformly over the 
n-dimensional sphere of radius rn centered about the origin. 
Let x be an n-length source sequence generated by an ergodic 
source of second moment a2, and let 0 < D < a2. 

(a)  If R < | log(cr2/D) then irrespective of the radii 

Pr(3xeC s.t. < nD) n- 0. 

(b)  IfR > \\og{a2/D) and rn = y/njo^ 

Pr(3xeC s.t. ||x- 

D) then 

<nD) 
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Abstract — The Shannon lower bound on the rate 
distortion function of sub-Gaussian vectors is consid- 
ered. It can be shown that the Shannon lower bound 
can be decomposed into a sum of the rate distortion 
function of a corresponding Gaussian vector and a 
correction term which accounts for the differing dis- 
tribution shape. This correction term is numerically 
evaluated. 

I. INTRODUCTION 

Sub-Gaussian random vectors can serve as source models 
for speech samples, coefficients in image transform or subband 
coding or as model for displaced frame differences as they oc- 
cur in hybrid video coding. This is due to mainly two aspects. 
First, sub-Gaussian vectors show elliptically shaped contours 
of equal distribution, thus belonging to the class of spherically 
invariant random vectors; second, the univariate distribution 
shape is peaky and "thick-tailed" compared to the Gaussian 
distribution. Both, spherical invariance and peaky distribu- 
tion fit well to the actual statistics of a wide variety of sources. 

Leung and Cambanis [1] gave the Shannon lower bounds 
of spherically invariant random processes and vectors. Except 
for using the squared error distortion criterion their work was 
very general. In this contribution the Shannon lower bounds 
of sub-Gaussian random vectors will be evaluated. In order to 
keep the average distortion finite, the absolute error criterion 
is employed using results from [2]. 

II. SUB-GAUSSIAN RANDOM VECTORS 

Let X be a random vector with pdf /(x). The (multi- 
variate) characteristic function (cf) of X is then defined by 

$(t) = EeJt x, where t denotes a vector of same dimension 
as X and E denotes expectation. 

A spherically invariant random vector (SIRV) is a random 
vector defined by the property that its characteristic function 
(cf) can always be written as 

$(t) = h(u)  with tTCt, (1) 

$x(t) = exp (* 
Tct)a/2 

case a = 2. Compared to Gaussian random vectors of same 
dimension, sub-Gaussian vectors are parameterized with only 
one additional parameter a which accounts for different dis- 
tribution shapes. 

III. EVALUATION OF SHANNON LOWER BOUNDS 

Following [1][2], the Shannon lower bound Rgl(D) of a 
sub-Gaussian random vector with cf (2), decomposes into a 

sum of the Shannon lower bound RglG(D) of a Gaussian 
vector with the same matrix C and a correction term K(n, a) 
depending only on the vector dimension n and the parameter 
a. Interestingly, the correction term does neither depend on 
the matrix C nor on the distortion D. 

Because sub-Gaussian random vectors are SIRVs, the 
bounds can be determined via Hankel transform of the func- 
tion exp(—\t\a) (see e.g. [5]). Values for the correction term 
in case of a = 1 are given in the table. In this case the 
sub-Gaussian distribution is spherically invariant with Cauchy 
marginals. For a between 1 and 2 the correction term falls into 
the range between zero and the corresponding value in the ta- 
ble and can be determined (at least in principle) numerically. 

where C is a positive definite matrix. Note, that Gaussian 
random vectors are included here as a special case with h(u) = 
exp(—w/2) and C being the covariance matrix of the vector. 

Spherically invariant vectors are completely specified by the 
univariate marginal density function and the linear statistical 
dependencies (expressed in terms of C) between the compo- 
nents. 

A random vector X is called sub-Gaussian, if and only if 
its characteristic function is given by 

(2) 

where C is a positive definite matrix and 1 < a < 2 [3]. 
Note, that sub-Gaussian random vectors are SIRVs [4] and 

that zero mean Gaussian random vectors are included in the 

n 1 2 4 8 16 32 CO 

K(n,l) 1.10 0.94 0.79 0.66 0.57 0.51 0.39 

1 E-mail: mueller@ient.rwth-aachen.de 

Tab. 1: Correction term (in bit/sample) for sub-Gaussian 
random vector of dimension n with a = 1. 

Addition of the Shannon lower bound of a Gaussian vector 
(which is well known) leads then to the Shannon lower bound 
of a sub-Gaussian vector for any parameters C, a and n. 
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Abstract — Traditional subband coding, where each 
subband is encoded independently, has been shown by 
Fischer to be suboptimal in the rate-distortion sense. 
We show that if we use prediction across subbands, 
the resulting coder is asymptotically rate-distortion 
optimal at high rate. 

I. INTRODUCTION 

In a typical subband coding system, the signal is first decom- 
posed into subsignals, then a bit allocation algorithm is used 
to determine the rate to encode each subsignal, and finally 
each subsignal is encoded independent of the others. It is 
shown [1, 2] that for Gaussian sources and for ideal (brick- 
wall) subband filters, subband coding can achieve at high rate 
a coding gain over PCM. Recently, Fischer [3] showed that 
subband coding for Gaussian sources with QMF niters is gen- 
erally suboptimal in the rate distortion sense. 

Theorem: (Fischer 1992) Consider a Gaussian process x„ 
with spectral density Sx(f), which is decomposed by a QMF 
system into the subsignals sn and dn. If we encode sn and dn 

independently of each other, the optimal performance satisfies 

°iyl < W°hl<rhd 

= exp I /       loge [A(/) + Sx(f)Sx(f + 0.5)] df\ ', 

where 

A(/) = \H(f)\2\H(f + 0.5)|2 [Sx(f) -Sx(f + 0.5)f . 

The inequality is strict if A(/) > 0 on a subset of [—0.25, 0.25] 
of positive measure. | 

The implication of the inequality is that the performance 
of subband coding at high rate is strictly lower bounded by 
the rate-distortion function of the source except for several 
special cases where A(/) = 0, e.g., when the filter H{f) is ideal 
(hence also the complimentary filter G(/)), or when Sx(f) is 
symmetric about / = 1/4. 

II. SUBBAND CODING WITH CROSSBAND PREDICTION 

Consider the subband coder with crossband prediction as 
shown in Fig. 1. We first encode sn to get s"n- We then use a 
linear predictor to generate d„, a predicted version of d„, from 
sn, and then encode the prediction error e„ = d„ — dn. To cal- 
culate the energy of the prediction error, we assume that sn is 

encoder i            decoder 
G 12 

dn tfs Encode- »ITI > T2 G 
-r1 1    +¥, 
Z. *n 

Predicto [" Predicto r 
i X"V 

H 12 's. i«.   I . 1 2 H 

available at the predictor input. This obviously cannot be the 
case at the decoder, and hence the results in this summary 
is only asymptotically exact at high rate. The mean square 
prediction error achieved using an optimum linear predictor is 
(see, for example, pages 432-435 of [4]) 

E[e2
n) = E[(dn - dnf] =   i     [Sd(f) - \Sds(f)\

2S?(-f)] df, 
J-o.s, 

where 

e m _(!/«(/)    if or(/) > 0 
KJ) ~ \ 0 if a(f) = 0. 

It is clear that the predictor error is also Gaussian. If we 
encode the components s„ and en using the optimum bit al- 
location, the resulting distortion is 

D(R) = 2yJahW.ll 2~2R. 

We can then prove the following theorem: 
Theorem: Let xn be a Gaussian process with spectral den- 

sity Sx(f). It is decomposed using a two band QMF system 
into s„ and dn, and then optimally encoded using the cross- 
band predictive coder. The equality 

2y/aiHaiH = <r27* (1) 

holds,  which implies that the subband coding system with 
cross band prediction is asymptotically optimal in the rate 
distortion sense at high rates. 

Proof: Proceed with 

2\A?7?^7e2 

exp 
U 0.25 

logeC 
■0.25 

4S,(2/)Sd(2/)-4|Sd.(2/)|: !K} (2) 

Figure 1: A subband coder with crossband prediction. 

As shown in [3], 

4S.(2/)5„(2/) = Sx{f)Sx(f + 0.5) + A(/). (3) 

Using the equality G(f) = e-j2nfH(-f - 0.5), we have 

MSäs(2f)\2 

= \e-^fH{-f - 0.5)H(-f)Sx(f) 

+e-327rU+0-b)H(-f)H(-f - 0.5)54/ + 0.5)|2 

= A(/). (4) 

Substituting (3) and (4) into (2), we get the desired result. | 
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The paper treats data compression from the viewpoint 
of information theory where a certain error probabil- 
ity is tolerable. We obtain bounds for the minimal rate 
given an error probability for blockcoding of general sta- 
tionary ergodic sources. An application of the theory of 
large deviations provides numerical methods to compute 
for memoryless sources, the minimal compression rate 
given a tolerable error probability. Interesting connec- 
tions between Cramer's functions and Shannon's theory 
for lossy coding are found. 

1.   The deterministic partition approach 

Given u £ U and v 6 V a distortion-measure is any 
real positive function d : [U x V] —+ TZ+. Let pi(ü;v) - 
denote the distortion for a block- the average of the per 
letter distortions for the letters that comprise the block. 
pi(ü;v) — jJ2i=id(üi;vi). Let D be a given tolerable 
level of distortion relative to the memoryless distortion 
measure d(u,v). 

The set of all possible codewords is partitioned into two 
disjoint subsets: Codebook and its complement set. The 
Codebook contains all the codewords in the code. Each 
sourceword ü of length / is mapped onto exactly one 
of the codewords in the Codebook provided the distor- 
tion of the block is not larger than ID. Otherwise, the 
sourceword is included in the Error set and a coding 
failure is said to have occurred. 

,V)<D\. 

Definition 1:     AD — Ball covering of a codeword 
v, denoted T(ü), is a set of all sourcewords such that 

T(v) = \ü\pi( 

That is, we define spheres around all the possible code- 
words v. But these spheres do not define probabilities 
on the codewords. Each sourceword should be mapped 
to exactly one codeword. Thus, we denote the set of the 
sourcewords that map to the codeword v after a parti- 
tion, as A.(v). Consequently the induced /-order entropy 
is, Hv(l) = -\E\ogFx(v). 

Definition 2: An acceptable partition of block- 
length / is a partition on the space of / length source- 
words such that for all v, the associated subset A(v) 
satisfies A(ü) C T(v) and that lim;_oo Hv(l) exists. 

Definition 3:     The set D — Ball(u) is denned as, 

D- Ball{ü) = \v\pi{ü,v) <D\. 

mal code set is, Ti(D,6) = < v\Pi(v) > e 

Lossy AEP Theorem: 
For any acceptable partition of blocklength / and given 
any 6 > 0, the set of all possible sourcewords of block- 
length / produced by the source can be partitioned into 
two sets, Error and Error", for which the following 
statements hold: 
1. Assuming a stationary and ergodic output process, 
the probability of a sourceword belonging to Error, van- 
ishes as / tends to infinity. 
2. If a sourceword ü is in Error0 then its associated 
codeword v is in the Codebook and its probability of 
occurrence is more than e-KHvO)+s) _ 
3. The number of codewords in the Codebook is at most 
eJ(ff„ (/)+*)_ 

Given is a stationary ergodic source u with known 
probabilities for all blocklengths I, an acceptable av- 
erage distortion D and a tolerable error probability 
Pe. Assuming the / order entropy induced by the 
chosen  acceptable partition is  Hv(l),   then  the opti- 

where a value 6 is determined by the error proba- 
bility.    The error  set  is  defined by,   Error;(6,D)   = 

I ulmixiy-.p^^^D -\\ogPv(v) - Hv(l) > s\. 

2.     Bounds on Memoryless Sources. 

For a given Pe, a bound on the average distortion level D 
and a blocklength /, we find the best compression rate. 
The results, developed for memoryless source might be 
generalized for classes of sources for which there is a 
well-developed body of large deviations results for the 
source output process. 
Our approach to the problem is based on transforma- 
tion of the deterministic problem to a stochastic one 
and calculation of the error probability and the rate, 
using large deviations theory. Optimizing over all pos- 
sible transitions matrices for a given error probability 
provides the solution. The loss of \PQ(<5) amount of in- 
formation in the transmission results in the compression 
by gaining V'Q(^) nats. The term 6 is determined by the 
tolerable error probability. We obtain a "conservation 
law", where the amount of the lost information is equal 
to the gain in the compression, only in the lossless case. 
It is an interesting interpretation for the two Cramer's 
functions in context of lossy data compression. 
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Abstract — We apply the relative entropy functional 
to sets of Line-Spectrum Pairs (LSPs) and transform- 
based generalized spectral pmfs of [1] and present ex- 
perimental results for sequence segmentation and vec- 
tor quantization which show that the relative entropy 
of these quantities is a useful indicator for variable- 
rate speech coding. 

I. ACTIVITY MEASURES 

Numerous methods for evaluating spectral differences (or 
distortion) have been explored in the literature. Many of 
the popular techniques pertain to optimal one-step-ahead lin- 
ear prediction, or LPC models in speech processing systems. 
These approaches have been used to minimize distortion in 
vector quantizer (VQ) design for fixed-rate coding and for per- 
formance evaluation of different coding systems. 

Recently, spectral entropy has been proposed as a different 
indicator of spectral information content and coefficient rate 
[1]. Here, we combine previous results which use subband 
spectral flatness measures for time-domain speech segmenta- 
tion [2, 3] with a different application of the concept of spectral 
distance. This approach produces encoding cues which allow 
for the efficient allocation of rate in both the time and fre- 
quency domains. 

The information-theoretic functional relative entropy is a 
convenient indicator of distance, since it produces a measure 
of the difference between a target distribution and a source 
distribution. The usual entropy functional is a special case 
of relative entropy where the source distribution is assumed 
to be uniform, and this case is of particular interest in wave- 
form segmentation [1-3]. Thus, the use of relative entropy on 
appropriately normalized spectral data can be helpful in de- 
scribing the flatness of the spectrum with respect to an average 
energy level, or in determining the evolution of nonstationary 
spectral representations. 

For example, by dividing the normalized spectrum into up- 
per and lower halfbands and applying the entropy functional 
to each halfband, we can derive an instantaneous indicator of 
useful bandwidth. This technique can be applied recursively 
to further refine the estimate. These halfband indications can 
be used to reduce encoding rate in the context of a scalar 
coder [3] by dynamically changing the sampling rate of the 
signal and in the context of a vector coder [4] by changing the 
allocation of rate for spectral VQ. 

II. LINE SPECTRAL ENTROPY 

The Line Spectral Frequencies (LSF) or Line Spectrum 
Pairs (LSP) introduced by Itakura are an alternative LPC 
spectral representation with several convenient properties (or- 
dering/interlacing, independence, dynamic range) which have r.-, 
been examined closely in the context of LPC quantization. As ^ * 
a result of these properties, an LSP vector can be interpreted 
as a generalized pmf of vocal tract resonances, and so applica- 
tion of the entropy functional produces intuitive results. High 
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values of the "line-spectral entropy" indicate a flat spectrum, 
and low values indicate a textured spectrum. 

The relative entropy between two pmfs is defined by 

(i) 

Considering the pmfs in (1) to be derived from LSPs (as gen- 
eralized pmfs), the relative entropy can provide some indica- 
tion of the similarity between two spectral envelopes. This 
leads to some interesting interpretations for the selection of 
optimal paths to minimize distortion and detection of change- 
points in speech waveforms. In this case, the relative entropy 
provides a measure of stationarity for the AR process esti- 
mates which have been derived from local segments of speech 
data. Since D(p||g) is minimized by q ta p, a small value of 
D(Pi\\p>-i) (where the subscript indicates a frame time) indi- 
cates a slowly varying spectrum whereas large values indicate 
a rapidly changing spectral envelope. This measure can be 
applied to any subset of elements of the LSPs to determine 
the rate of evolution of that group of resonances. Also, if we 
assume for each i that the spectrum of the current (ith) frame 
has evolved in one frame time from complete whiteness, 

D(pi\\pi-i) = \ogm- H(pi) (2) 

since p;_i is the uniform distribution of m resonances. So, the 
line-spectral entropy can be seen as a particular interpretation 
of relative entropy which measures the spectral evolution with 
respect to whiteness at each frame time. 
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Multiple-Access Channels with Correlated Sources 
to a Fidelity Criterion 

Coding Subject 
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Abstract — Characterization of the achievable dis- 
tortion region, when correlated information sources 
are transmitted via a multiple-access channel, is stud- 
ied. An inner bound for the set of achievable distor- 
tions is obtained and it is shown that certain known 
results in multi-terminal source and channel coding 
can be considered as special cases of this result. 

I. INTRODUCTION 

Transmission of arbitrarily correlated information sources over 
a multiple-access channel was first addressed in [l], where suf- 
ficient conditions for reliable transmission were derived. How- 
ever, determining the necessary conditions for this commu- 
nication model still remains an open problem. In particular 
it has been shown that the conditions derived in [1] are not 
in general necessary conditions. Nevertheless, so far no other 
conditions that are more general than those in [1] are known. 

Coding of correlated information sources subject to a fi- 
delity criterion has been considered in a number of works in- 
cluding [2], [3], and [4]. This problem, in general, also remains 
an open problem and characterization of the rate-distortion 
region for this case is not yet known except for some special 
cases. 

In this work we consider a communication model in which 
two correlated information sources are to be transmitted via a 
multiple-access channel and to be reproduced at the receiver 
subject to two distortion measures. We derive a set of achiev- 
able distortions for this source-channel configuration and show 
that many of the previously known results on transmission of 
correlated information sources via a multiple-access channel 
and rate-distortion region for correlated information sources 
can be considered as special cases of this result. 

II. THE COMMUNICATION MODEL 

Two discrete memoryless correlated information sources 
{(Sk,Tk)} are modeled by independent drawings of two ran- 
dom variables S and T which are distributed according to 
p*(s,t). The corresponding alphabets are denoted by S and 
T. A discrete memoryless multiple-access channel with two 
transmitters and one receiver is described in terms of its in- 
put alphabets X\ and X2, the output alphabet y, and the 
conditional probability mass function p*{y\x\, x2). 

Sources S and T are connected to the first and the sec- 
ond transmitters respectively. It is assumed that for each 
(S,T) pair generated by the sources, one (Xlt X2) pair can be 
transmitted over the channel. At the receiver the decoder esti- 
mates {(Sk,fk)} as the source outputs, where {Sk,fk) £Sxt 
and S and T denote the reproduction alphabets for the two 
sources. Two distortion functions d\ : S x S —► R+ and 
d2 :TxT^R+ represent the corresponding fidelity criteria. 

^his work was partially supported by the NSF Grant NCR- 
9101560. 
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A distortion pair (Di,D2) is achievable if for any *i > 0 
and 62 > 0 there exist an integer n, two encoding functions 
/i : <S" —► X? and f2 : Tn —> X2 , and one decoding function 
g:y-+Snxtn such that 

n 

k = l 

n 

■^^2E[d2{Tk,fk)]    <D2+S2 

fc=i 

Let V C -R+   denote the set of all achievable distortion pairs 
(DUD2). 

III. MAIN RESULT 
Our main result is the derivation of an inner bound for the 

set V as stated in the following theorem. 
Theorem: If there exist 

1. Auxiliary random variables U and V taking values in 
finite sets U and V such that U -* S —<■ T —► V make a 
Markov chain. 

2. Functions fti :U x V ->■ S and h2 :K xV -^f. 

such that 

I(S;U\V) < I{X,;Y\X2,V) 

I(T;V\U) < J(X2;Y\XltU) 

I(S,T;U,V) < I(XUX2;Y) 

for some 

p(s,t,u,v,xi,x2,y)    =    p*(s,t)p(u\s)p(v\t) 

xp(xi \u, s)p(x2\v, t)p*(y\xi, x2) 

and D\ and D2 are given by 

D,     =    £[i1(S,ll1(l7,V))] 

D2    =    E[d2(T,h2{U,V))] 

then (DUD2) eV. 
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Abstract — We address the problem of finite- 
state code construction for the costly channel. 
Adler et al. developed the powerful state- 
splitting algorithm for use in the construction 
of finite-state codes for hard-constrained 
channels. We extend the state-splitting 
algorithm to the costly channel. We present 
several examples of costly channels related to 
magnetic recording, the telegraph channel, and 
shaping gain in modulation. We design a 
number of synchronous and asynchronous 
codes, some of which come very close to 
achieving    capacity. 

I.    INTRODUCTION 

In a costly channel, sequences of symbols are assigned 
costs (possibly infinite). A constraint in the form of an 
average cost is imposed on the sequences. A costly channel 
is a natural generalization of a hard-constrained channel (or 
subshift), where sequences are assigned either cost zero or 
infinity. Many hard-constrained channels of interest have a 
finite-state structure, and can be represented by finite 
directed graphs. Similarly, finite-state costly channels can 
be represented by finite directed graphs with an additional 
cost labeling. 

We present a method for constructing finite-state 
codes for the costly channel. Our finite-state codes come in 
two varieties. The first is a synchronous (fixed-length to 
fixed-length) code. The second is an asynchronous 
(variable-length to fixed-length) code. The latter has a 
higher rate, but it has the drawbacks common to all 
asynchronous schemes, in particular the potential for error 
propagation. At the heart of our method is a modified 
version of the state splitting algorithm of Adler, 
Coppersmith, and Hassner. The capacity-cost function 
C(p) is the maximum code rate for a given target cost p. 
Our asynchronous codes come very close to achieving 
C(p), while the synchronous codes achieve a lower rate, but 
still come pretty close to C(p). Given a graph G 
representing the costly channel, C(p) is achieved by a 
Markov chain defined on the edges of G. We associate with 
G a modified adjacency matrix B that reflects the target 
cost p. Then 

C(p) = log X + u. p log e 

where X is the largest eigenvalue of B, and |X = dC/dp. 

II.    CODE CONSTRUCTION 

Our construction is summarized as follows. For a given 
p, we choose n > 1 and m > 1 such that mln does not 
exceed a function related to C(p). Then we construct an 
asynchronous encoder graph with power n and with 
smallest state outdegree equal to 2m (and every outdegree a 
power of 2), and consequently, whose rate exceeds mln. 
We also' construct a synchronous encoder with every 
outdegree equal to 2m, and rate mln. 

We assume that the information source is binary HD 
with a uniform distribution. The source induces a stationary 
Markov chain on the encoder graph, where the edges 
leaving a state have a uniform conditional probability. It 
also yields a coding rate, and a coding cost. 

The idea of the code construction is to obtain an 
encoder graph such that the source-induced Markov chain 
coincides with the optimal Markov chain that achieves 
capacity. Then the code will actually achieve capacity. It 
turns out that in most cases, we can only approximate the 
optimal Markov chain, but the resulting codes are still very 
good. 

Our construction consists of three stages. It uses state 
splitting and edge pruning. First, we use state splitting to 
obtain a uniform cost graph, that is one where all edges 
leaving a state have the same cost. Secondly, we use state 
splitting in a way similar to Adler et al. Let v denote the 
eigenvector corresponding to X. We perform a sequence of 
state splittings to obtain a graph whose v (or a related 
approximate eigenvector x) is equal to the all ones vector. 
Thirdly, we use edge pruning to obtain a graph with the 
appropriate state outdegrees. Edge pruning must be done 
carefully, since it affects both the coding rate and the 
coding cost. 

III.    EXAMPLES 

We introduce costly channel models for magnetic 
recording, namely variations on the (1,3) and (2,7) hard- 
constrained channels. We also consider Shannon's 
telegraph model as a costly channel, and relate his 
definition of capacity to our capacity-cost function. 
Finally we show an application of our technique to the 
problem of shaping in amplitude modulation. Our codes are 
consistently good, and several almost achieve capacity. 
Their complexity is low, judging by the number of encoder 
states. 
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On the Capacity of M-ary Run-Length-Limited Codes1 

Steven W. McLaughlin2, Jian Luo2 and Qun Xie3 

Abstract — We present two results on the Shannon 
capacity of M-ary (d, k) codes. First we show that 
100-percent efficient fixed-rate codes are impossible 
for all values of (M, d, k), 0 < d < k < oo, M < oo, 
thereby extending a result of Ashley and Siegel to M- 
ary channels. Second, we show that (unlike the binary 
case) for k = oo, there exist an infinite number of 100- 
percent efficient M-ary (d, k) codes and we construct 
one such code. 

I. SUMMARY 

Traditional magnetic and optical recording employ saturation 
recording, where the channel input is constrained to be a bi- 
nary sequence satisfying run-length limiting (RLL) or (d, k) 
constraints. A binary (d, k) sequence is one where the num- 
ber of zeroes between consecutive ones is at least d and at 
most k. 

The recording media in [l] supports unsaturated, M-ary 
(M > 3) signaling while requiring that run-length-limiting 
constraints be satisfied. Assuming an M-ary symbol alphabet, 
A = {0,1,..., M — 1}, M < oo, an M-ary run-length-limited 
or (M, d, k) sequence [2] is one where at least d and at most 
k zeroes occur between nonzero symbols. Binary (d, k) codes 
are M-ary (d, k) codes with M = 2. 

In [3] (and the applicable corrections in [4]) it was shown 
that for binary (d, k) codes, there exist no 100-percent effi- 
cient codes. Specifically, the Shannon capacity of all binary 
RLL (d,k) constraints is irrational for all values of (d, k), 
0 < d < k < oo, and hence, there exist no fixed rate codes 
that achieve capacity. In this paper we present two proposi- 
tions on (M, d, k) codes. First, for any integer M, 100-percent 
efficient fixed-rate codes are impossible for all values of (d, k), 
0 < d < k < oo, thereby extending [3] to the M-ary channel. 
Secondly, unlike [3], for k = oo there do exist (an oo num- 
ber of) 100-percent efficient codes, and we construct one such 
code using the state splitting algorithm [5]. 

The RLL (M, d, k) constraint is often represented by a finite 
state transition diagram (FSTD) G. Associated to the FSTD 
with k + 1 vertices is a state-transition matrix T, a (k + 1) x 
(k + 1) matrix defined by T = [tij] where tij is the number of 
edges in G from state i to state j. 

Shannon showed that if the FSTD G has distinct labels on 
the outgoing edges of each state, the capacity of a system con- 
strained by sequences from G is C = log2A (bits per symbol) 
where A is the largest real eigenvalue of the adjacency matrix 
T associated with G. We have assumed base-2 logarithms 
because it is the most common case, but all results are ex- 
tendable to non-base-2 logarithms. 

We consider fixed rate r = m/n encoders that map m user 
bits to n channel symbols satisfying the (M, d, k) constraints. 

1This work was sponsored by the National Science Foundation 
under award no. NCR-9309008. 

2Electrical Engineering Dept., Rochester Institute of Technol- 
ogy, Rochester, NY 14623. 

3Mathematics Dept., University of Rochester, Rochester, NY 
14627. 

The capacity C is therefore an upper bound to all achievable 
rates r, and the code efficiency E = r/C is the ratio of the 
actual coding rate to the largest rate achievable. We give the 
following two propositions and one new capacity achieving 
code. Denote the binary capacity of the (M, d, k) constraint 
as C(M,d,k). 

Proposition 1:  C(M,d,k) is irrational for all (M, d,k), 
0<<f<ifc<oo,M<oo. 

Since this capacity is irrational, there exist no 100 percent 
efficient fixed rate r = m/n codes, namely r < C(M, d, k). 

Proposition 2:   For any 0 < d < oo, and k = oo the 
set of M's for which C(M, d, oo) is rational is {M : M = 
2dm(2m - 1) + 1,integer m > 1}. 

Since this capacity is rational for some M, there exist 100 
percent fixed rate r = m/n = C codes that achieve capac- 
ity C(M,d,k). What follows is a construction of one such 
code satisfying (5,2,oo) constraints using the state splitting 
algorithm. For details on the state splitting algorithm see [5]. 

(5, 2, oo) code: The adjacency matrix for the (5, 2, oo) is 

T = 
0 1 0 
0 0 1 
4    0     1 

(1) 

with capacity C = 1. Choosing m = n = 1 one can design 
a rate r = m/n = 1 = C code. An approximate eigenvector 
v satisfying Tv > 2v is v = (1,2,4)T. After two rounds of 
splitting and some simple merging a five-state encoder results 
[6]. A sliding block decoder with a sliding window six symbols 
wide (corresponding to memory m — 3 and anticipation a = 2) 
is sufficient. 
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Runlength-limited (RLL) codes, also known as (d, k) RLL 
codes, are used in digital magnetic recording and have poten- 
tial use in Soliton optical communication. Let 0TO denotes a 
sequence of TO successive zeros. We define the alphabet: 

Hdk = {"0dl", "0d+1l",..., "0*1"} 

A [d, k) phrase is an element in Hdk- A (d, k) runlength- 
limited sequence is defined as the concatenation of such 
phrases. 

We have presented in ISIT'94 a new approach for construct- 
ing simple and efficient variable-length (d, k) RLL codes which 
can be decoded with no memory and no anticipation. An TI- 

dimensional RLL code C%£ is defined as 

CTlL 
dk =    {p = (PuP2,..-,Pn)e(Hdk)n: 

l(Pi) + 1{P2) + ■■■ + l(pn) < nL} 

where l(p) is the length of an element p in Hdk and £ is a 
normalized threshold. 

We show here that if the size of Hdk, k — d + 1, is equal 
to bm for some arbitrary integers 6 and TO all greater than or 
equal to 2, the encoding/decoding algorithms can be greatly 
simplified, using TO parallel simple codes, called component 
codes, with the same properties as the original code Cjf'. 

The block diagram of the proposed coding system is de- 
picted in the Figure. A binary information sequence I is 
demultiplexed into TO binary subsequences Io,Ii,.. . ,im-i. 
Each subsequence is encoded by an independent fr-ary shap- 
ing set, denoted by Si,i = 0,1,...,TO — 1. The rate of the 
code Si is Ri = ki/ni. Its output fr-ary iij-tuples sj,j = 
..., —1,0,1,..., are concatenated into a fc-ary infinite sequence 
x*. Let Zb denote the fc-ary alphabet {0,1,..., b — 1}, and x\ 
the output (in Zb) of the encoder for Si at time t, where t 
is an integer. The fr-ary symbols x°t,x\,... , a:™-1 € Zb, are 
mapped synchronously onto a phrase length 

lt=d + l + J2*tbi> (1) 
t=0 

to the decoding circuit. The estimates in of the code- 
words x* are obtained from the final estimated sequences 
{..., x\_j., x\, £J+1,...}, i = 0,1,..., TO — 1. These sequences 
are split into the n;-tuples £*■, j = ..., —1,0,1, These m- 
tuples, which are estimates of the rii-tuples sej at the encoder 
side, are concatenated into the estimate £' of the sequence a;' 
at the output of the shaping sets St. 

The decoders for Si use these sequence estimates and de- 
liver the estimates Ii, i = 0,1,... ,m — 1, of the component 
information sequences Ii. The estimate I of the desired final 
information sequence I is constructed by combining the digits 
of the sequences Ii, i = 0,1,..., TO — 1. 

Moreover; we show that this approach to RLL coding can 
naturally incorporate multilevel error correction coding. Re- 
call that the most common type of errors in digital magnetic 
recording are: Shift errors, Drop-in errors, Drop-out errors, 
Insertion errors and Deletion errors. Although deletions and 
insertions are not as common as the other types of errors, they 
can involve a catastrophic propagation of errors when using 
a conventional rate p/q finite state encoder , since they can 
change q, the length of the (d, k) constrained sequences gen- 
erated by this code. Deletions and insertions of zeros ("0") 
as well as shift errors do not change the number of phrases in 
the (d, k) RLL codewords. From this, we conclude that our 
approach to RLL coding allows us not only to correct shift 
errors but also insertions and deletions of zeros. The main 
idea for achieving this is to use Lee-metric codes. The compo- 
nent codes of the multilevel block code are chosen such that 
this code has a large minimum Lee distance and such that 
the (d, k) RLL code combined with the error correction mul- 
tilevel code provides the highest possible rate. We emphasize 
that multilevel (d, k) RLL coding combined with multilevel 
block coding for error correction is well suited to multistage 
decoding . 

We also show that for an appropriate choice of the nor- 
malized thresholds of these parallel codes, the rate of the cor- 
responding (d, k) RLL code converges to the capacity of the 
(d, fc) constraint, as the dimension of each of the parallel codes 
goes to infinity. 

Jdk='{d + l,d + 2,...,k + l}. 

The phrase length lt is then mapped into the phrase pt, in Hdk, 
with length equal to lt. The resulting phrase pt is subsequently 
recorded on the magnetic media or transmitted using soliton 
pulses. 

To simplify the notations, we assume that the readback sig- 
nal is available after a null time delay. The phrase at time t 
in the readback (for recording systems) or received (for fiber 
optic transmission using solitons) signal, denoted by p\, is as- 
sumed to be in Hdk- Denote by lt the length of pt. The inverse 
mapper outputs the estimates x\ € Zb,i = 0,1,... ,m —1, ver- 
ifying 
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Abstract - In magnetic and optical storage systems, 
RLL (run length limited) modulation code is widely 
used. An RLL code having a limited amount of error 
propagation and high density ratio is attractive for high 
density storage system. This paper presents a new 
fixed-length RLL modulation code with d=4 and k=20, 
and coderate rn/n=4/ll. A code design is based on the 
Look-Ahead method. This code has finite error 
propagation limited to at most two codewords. 

I. INTRODUCTION 

To increase storage-capacity, runlength limited 
modulation code has been widely used for data storage 
systems such as magnetic disk/tape and optical disk, 
because RLL code has density ratio (DR) larger than 1. 
Most RLL codes for practical storage systems have low 
DR. EFM (Eight to Fourteen Modulation) code and (1, 7), 
(2, 7) RLL codes which are widely used for contemporary 
storage systems have DR less than 1.5. Thus these codes 
are less attractive for high density storage system. As 
storage system evolves to high density storage system, it 
is necessary to design an RLL code with high DR and low 
hardware complexity and encoding/decoding delay[l]. 

(d, k) RLL code is a binary sequence, where the 
number of "zeros" between consecutive "ones" must be at 
least d and at most k. Density ratio is determined by d 
and coderate R-m/n where m is information length and n 
is codelength. DR increases as d increases. However DR is 
limited by C which is the capacity of the (d, k) constrained 
noiseless channel[l], [2]. Many class of design techniques 
have been proposed. Alder, Coppersmith, and Hassner 
showed that Sliding-block code algorithm can produce an 
m/n (d, k) RLL code if R(=m/n) < C for positive integers 
m and n[3]. Jacoby and et al. developed and have evolved 
Look-Ahead coding method (LA) which is attractive for 
practical consideration, if m and n are small[4]. RLL code 
has error propagation and it is not always simple to 
achieve the minimum amount of error propagation. Blaum 
showed that the error propagation is a major issue in 
storage system adopting error correcting codes[5]. 

In this paper, we suggest a new fixed-codelength (4, 
20) RLL code with coderate R=4/ll which is based on 
Look-Ahead coding method with full-codelength look-ahead. 
We will show that (4, 20) RLL code has error propagation 
limited to at most two codewords and DR of 20/11. 

IL (4, 20) RLL MODULATION CODE 

For high density storage system, it is necessary for 
RLL code to have high DR, small error propagation, and 
low (k+l)/(d+l)[ll In NRZI recording scheme, DR is 
(m/n)(d+l). It was shown that for positive integers m and 
n, a (d, k) RLL code with R=m/n exists if R<Q where C 
is the capacity of (d, k) constrained noiseless channel. 
Channel capacity of (4, °°) RLL code is 0.4056. Therefore 
an RLL code with d=4 and R=4/U is feasiblefl], [2]. 

(4, 20) RLL code is a fixed codelength RLL code with 
R=4/ll and it translates   information block of 4 bits   into a 

codeword block of 11 bits. (4, 20) RLL code is composed of 
16 codewords. All codewords satisfy d=4 constraint. There 
is always the possibility that consecutive codewords violate 
d-4 constraint. When d=4 constraint is violated, we require 
substitutions in order to eliminate successive "ones". There 
are three  cases  of  violation.  Let a precursive  codeword 
P=(Pi,p2 Pn) be the first codeword and a successive 

codeword S= (s,, s2,—, sn) be the second codeword among 

consecutively two codewords. In TABLE I, three violation 
cases are given where V denotes don't care bit. 
Precursive and successive codewords are substituted by 
Rule I, II, HI when violation cases occur. 

TABLE I.   CASES OF VIOLATION AND SUBSTITUTION RULES 

Case Check-Bits for Violation Rule 

Pi Pi Pi Pw Pl\ *1 *2 S3 
(1) xxl00:01x 
(2) xxl00:lxx 
(3) 01000:lxx 

Rule I 
RuleU 
Rule m-1 ( P3="0') 
Rule m-2 (Pj=T) 

'This work was supported by a grant from the SAIT (Samsung Advanced 
Institute of Technology), Korea. 

Density ratio of (4, 20) RLL code is 20/11 which is 
38% greater than (1, 7) RLL code and 29% greater than 
EFM code. Also (k+l)/(d+l) is 21/5 which is similar to 
that of (1, 7) RLL code. (4, 20) RLL code has finite error 
propagation limited to at most two codewords because all 
substituted codewords have always "five zeros" at the 
position of 7, 8, 9, 10, W'th bits. Thus encoding is 
completed by considering only two consecutive codewords 
and it is impossible for errors on a codeword to propagate 
into codewords more than two. 

IE CONCLUSIONS 

We designed a fixed-codelength (4, 20) RLL 
modulation code for high density storage systems. Density 
ratio of (4, 20) RLL code is greater than (1, 7) RLL code 
and EFM code. Also it has finite error propagation limited 
to at most two codewords. (4, 20) RLL code has low 
complexity of hardware and it is feasible to be implemented 
by look-up table of small size. 
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Abstract — We present the most remarkable re- 
sults obtained from a numerical analysis of relevant 
statistical properties of binary maxentropic DC-free 
runlength-limited (DCRLL) sequences. In particular, 
we consider the sum variance and its relation to the 
low-frequency characteristic or the redundancy. Fur- 
ther, we present an approximation of the runlength 
distribution of binary maxentropic pure charge con- 
strained sequences. 

I. INTRODUCTION 

Binary DC-free runlength-limited (DCRLL) sequences are 
widely applied in digital storage systems, for example in the 
CD player [2]. The fact that there is still no profound knowl- 
edge of the relevant statistical properties of these sequences 
motivated us to investigate these properties for a wide range 
of constraints. We will briefly present the most remarkable 
results obtained in the maxentropic case. We characterize 
DCRLL sequences by three integer parameters (d,k,N), de- 
noting that the runlengths occurring in these sequences are 
constrained between d + 1 and k + 1, and the charge or run- 
ning digital sum (RDS) assumes N distinct values. Note that 
we consider sequences of symbols drawn from { — 1,1}, and 
that the constraints satisfy 0<d<k<N— 2. In order to 
represent the (d, k, N) constraints we use the concept of run- 
length graphs described by Kerpez et al. [1], and we interpret 
a maxentropic DCRLL sequence as generated by a stationary 
Markov chain based on such a graph. This Markov chain de- 
scription allows the evaluation of the power spectral density 
function H(u>), the sum variance a2

z(d,k,N) (i.e. the vari- 
ance of the RDS), the runlength distribution, and the average 
runlength of maxentropic DCRLL sequences [1]. 

II. THE MAIN NUMERICAL RESULTS 

The analysis of the sum variance (rz(d, k, N) in the practi- 
cally interesting range of constraints, (0<d<2,<i</c< 
N — 2,9 < N < 30), reveals that it is in good approxi- 
mation determined by N, and roughly independent of the d 
and k constraints. Hence, we can approximate az{d,k,N) 
by the known expression for the sum variance of maxen- 
tropic pure charge constrained sequences, i.e., <rz(d, k, N) « 
(l/12-7r-2/2)(/V + l)2 [2]. For the analyzed range of (d, k, N) 
constraints, this approximation is within 5% accuracy as long 
as k — d > [N/2\. For k constraints only slightly larger than 
d, the true sum variances a2(d, k, N) are somewhat less than 
the above approximation. 

In the case of maxentropic pure charge constrained se- 
quences, there is a simple relation between sum variance and 
low-frequency characteristic [2]. We are interested whether 
a corresponding relation exists for maxentropic DCRLL se- 
quences. We express the low-frequency characteristic by a 
well-defined cut-off frequency. In order to provide a clear 
physical interpretation, we define the cut-off frequency LUC of a 
maxentropic DCRLL sequence by H(uc) = H0(d,k)/2, where 

Ho(d,k) denotes the DC-content of a maxentropic runlength- 
limited sequence with parameters (d,k) [2]. Indeed, for N >■ 1 
we could find the relation wc x Ho(d,k)[2az(d,k, N)]~l be- 
tween sum variance and cut-off frequency. For d constraints 
0 < d < 2, this approximation is within 10% accuracy as 
N > 17. We conclude that for N sufficiently large the sum 
variance a2

z(d, k, N) is a useful criterion of the low-frequency 
characteristic of a maxentropic DCRLL sequence, a fact which 
again justifies the definition of the cut-off frequency wc. 

As shown in [2], maxentropic pure charge constrained se- 
quences have the fundamental property that the product of 
sum variance and redundancy is approximately constant. By 
introducing a refined redundancy definition, it turns out that 
for N ~^> 1 a corresponding relation also holds for maxentropic 
DCRLL sequences. Let the extra redundancy be defined as 
C{d, k, oo) — C(d, k, N), where C(d,k, N) denotes the capacity 
of the (d, k, N) constraint. In other words, the extra redun- 
dancy describes the increment in redundancy from the (d, k) 
runlength constraint to the (d, k, N) constraint. For maxen- 
tropic DCRLL sequences, we found that the product of sum 
variance and extra redundancy for W>1 assumes a constant 
value which is determined by the d and k constraints. In the 
absence of a specific k constraint (i.e. k = N — 2) and for d 
constraints 0 < d < 2, for example, this sum variance-extra 
redundancy product appears to be constant for about N > 20. 

III. A NEAT ANALYTICAL RESULT 

Kerpez et al. [1] present a closed-form expression for the 
Markov chain description of a maxentropic pure charge con- 
strained sequence, where the constraint is represented by a 
runlength graph. Using this result, we are able to derive a 
closed-form expression for the runlength distribution of such 
a sequence. For Af > 1, we can substitute the sums occur- 
ring in this expression by integrals which can be solved using 
some trigonometric manipulation. In this way, for N ~^> 1 
we approximately obtain the probability of occurrence of a 
run of length I in such a sequence by Pr(l) « kN(l)\~l, 
where I € {1, 2,..., N — 1}, log2 A denotes the capacity of 
the charge constraint (i.e. A = 2COS,[K(N + l)-1]), and 
kN{l) = (l-N + 1){N + l)-1 cos[n(N - 1 + l)(N + l)"1] + 
7T-1 sin[7r(iV - 1 - l)(N + l)-1]. 
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Abstract - In this paper two new methods for the 
detection of multiple insertion/deletions are presented. 
The first method recognises insertions/deletions in the 
previous symbol stream by extracting additional 
information from commonly used markers. A new 
coding method is also presented that relies on the 
number of transitions in a codeword to detect 
insertions/deletions in the previous codeword. This 
coding scheme also has certain spectral properties. 

I. INTRODUCTION 

The insertion/deletion of symbols in a codeword result in a 
change in the length of the word. As a result the frame 
alignment is lost. One should make a distinction between the 
above case and the case of additive errors where only certain 
symbols in codewords are changed. 

Recently [1]» a coding algorithm was developed that generates 
codes with the ability to correct several insertions/deletions, 
assuming that the codeword boundaries were known. 

Two approaches are presented in this paper. In section II a 
marker method is described that enables the receiver to detect 
insertions/deletions in the previous frame. This is the first step to 
correct insertions/deletions. In section III, a simple coding 
method is presented to detect insertions/deletions in every 
codeword, utilising the number of transitions in every codeword. 

II. MARKERS 

Markers (a known sequence of symbols) are used to delineate a 
stream of symbols into frames. In [2] a comprehensive overview 
on markers is presented. Additional information can be extracted 
from commonly used markers for the detection of 
insertions/deletions. If an insertion/deletion occurred in the 
preceding frame, the marker is shifted left or right. The decoder 
recognises a shifted version of the marker, as well as unkown 
adjacent symbols from the data stream, in the expected marker 
position. 

Markers are chosen in such a way that the resulting sequence as 
described above are uniquely recognisable. All possible resulting 
sequences are stored in a lookup table which enables the decoder 
to detect a) that insertions/deletions occurred, and b) the number 
of shifts. 

The functionality of the proposed scheme can be extended to 
include the detection of additive errors in the marker. 

Each codeword consists of three sections: a head, middle and tail 
section. The middle section consists of a constant number of 
transitions while the head and tail sections act as buffers. 

Insertions/deletions in the preceding codeword introduce shifts. 
The codewords are chosen in such a way that the transitions of 
the middle section increase or decrease with left and right shifts. 
The decoder counts the number of transitions in the middle 
section of the expected codeword. In this way the decoder 
recognises the occurrence of insertions/deletions in the previous 
symbol stream and can correct the frame alignment. 

These codes are very flexible and good rates can be obtained. 
The implementation of these codes is easy and only a few simple 
logic gates are necessary to enable the detection of 
insertions/deletions. Lookup tables are not required for the 
detection of insertions/deletions as only transitions are monitored. 
These codes can be used to maintain frame synchronisation. If 
the synchronisation is lost, only a few codewords have to be 
examined to resynchronise as opposed to a number of frames in 
the case of only a marker being used once in a frame of a few 
hundred symbols. 

As a result of the use of transitions, certain spectral density 
properties are obtained. The lower the number of transitions, the 
lower the peak energy content will be in the power spectral 
density of the code and vice versa. As a result, these codes can 
be useful for both insertion/deletion detection and spectral 
shaping. 

IV. CONCLUSION 

In this paper two methods were presented to detect the 
occurrence of insertions/deletions. Both methods are simple to 
decode and are of low complexity. 
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III. INSERTION/DELETION DETECTING CODE 
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symbols of the codeword. Insertions/deletions in the preceding 
codeword are detected. 
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Abstract — A construction is suggested of a code 
which corrects single bit-shift errors in (d, k) modula- 
tion codes. The codes are nearly optimal in redun- 
dancy. The encoding and decoding procedures are 
linear in the codeword length. 

Magnetic and magneto-optical data recording uses a tran- 
sition from one direction of magnetization to another to rep- 
resent 1, and an absence of transition to represent 0. Due to 
physical and technological reasons the number of zeroes be- 
tween two successive transitions is limited by a minimum d 
and a maximum k. Codes that satisfy these constraints are 
known as (d,k) run-length-limited modulation codes [1, 2]. 

An important type of errors in magnetic recording is a shift 
of the border between two magnetic domains, i.e. a displace- 
ment of the position of 1 (which cannot be corrected by the 
usual write precompensation technique). These are so called 
bit-shift errors [3]. Usual error-correcting codes such as for 
the binary symmetric channel are not well-suited for this type 
of errors. This paper sugests constructions of codes correcting 
single diplacement errors. 

Let n be the length of codewords in a (d, k) code. Then 
the maximum number of ones (nonzero components) in a code- 
word ism= [n/^J • 

Consider first the case when a non-zero component can 
only be shifted by one position to the left or to the right. 
Denote by xt the position of the i-th nonzero component 
(1 < Xi < n, 1 < m). Now on top of modulation (d, k)- 
constraints, we will require that a codeword should satisfy the 
following condition: 

Si = y2 ixt = 0    (mod 1m + 1) (1) 

where the sum is taken over all nonzero components of a code- 
word. Generation of codewords which satisfy condition (1) 
can be conveniently combined with satisfying modulation con- 
straints by modification of the inverse enumeration algorithm 
suggested by Fitingof [4]. 

The sum Si is the syndrom. If Si < m, then Si = i, where i 
is the number of the nonzero component shifted to the right. If 
Si > m + 1 then 2m +1 — Si = »', where i is the number of the 
nonzero component shifted to the left. Thus, error correction 
is quite simple. 

The code is nearly optimal. Indeed, since condition (1) and 
modulation (d, k) -constraints are independent, one can expect 
that the number of codewords which satisfy (1) is smaller than 
the size of the (d, k) modulation code by a factor of 2m + 1. 
But 2m + 1 is the maximum number of possible errors to be 
corrected (including the error-free case). The deviation from 
optimality is due to the fact that the actual number of possible 
errors in a given codeword can be smaller than the maximum, 
because of a smaller number of nonzero components. 

Consider now a more general case, when one of the nonzero 
components can be displaced up to r positions to the right or 

to the left. Thus, the displacement g is: 

— r < g < T (2) 

Construct a sequence of natural numbers (pi), 1 < i < m in 
the following way: 

1. pi = 1, p2 = r+ 1 

2. pi is relatively prime with pi,P2, ■ • • ,pt-i 

The codewords should satisfy the following condition: 

5i=^Jpii,=0    (mod 2rpm + 1) (3) 

The encoding procedure is similar to that for the case r = 1. 
The error-correcting properties of the code are based on the 
following theorem. 

Theorem 1 For any two distinct single errors, i.e. for any 
two displasements: g of the i-th nonzero component and h of 
the j-th nonzero component, the syndromes are different: 

Sr(g,i)i&Sr(h,j) (4) 

(—r < g < r, —r<h<r, 1 < i < m, 1 < j < ra). 

The correction is still simple: 

1.  Calculate Si ■>  _  /    ST 
T~\ Sr- 

if Sr < rp„ 
2rpm - 1    if ST > rp„ 

s' 2.  Find the largest g < r such that —' is an integer and 

s' 
Then | -£■ \= pi, where i is the number of the displaced com- 
ponent, and </• sgn S'r is the displacement. 

Since the enumeration and inverse enumeration algorithms 
for (d, k) decoding and encoding suggested in [4] have linear 
(in the length of codewords) complexity, it follows that the 
same is true for our error-correcting code. 
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Summary 

A common use of Gray codes is in reducing quantisation errors 

in various types of analogue-to-digital conversion systems [1, 

2]. As a typical example, a length n Gray code can be used to 

record the absolute angular positions of a rotating wheel by 

encoding the codewords on n concentrically arranged tracks. 
n reading heads, mounted radially across the tracks, suffice to 

recover the codewords and it is well known that quantisation 

errors are minimised by using a Gray encoding. 
When high resolution is required, the need for a large 

number of concentric tracks results in encoders with large 
physical dimensions. This poses a problem in the design 
of small-scale or high-speed devices. We propose single- 
track Gray codes as a way of overcoming this problem. 

Let  Wo,Wi,..., Wp-i  be the codewords of a Gray code C 
and write Wi = [w°, w\,..., w"   X]T.   We call the sequence 
WQ,W[,..., !«'   [ component sequence j of C. 

Definition 1 // for each 1 < j' < n, component sequence j 

of C is a cyclic shift by some kj of component sequence 0, i.e. 

-' w{,...,«>£_! = w°k ,w°k.+1,...,Wfci+p-i (where subscripts 
reduced modulo p),  then we say that C is a single-track are 

Gray code 

In a single-track Gray code, codeword Wi is actually equal 

to [w°i, w°i+kl, w?+kl,..., w°+kn_1}T and so, in the application 
above, the bits of any codeword can be obtained solely from 
a single track corresponding to component sequence 0. The 
n reading heads are then spaced around that single track at 
fixed relative positions 0, fci, &2, • • • ,fc„_i. So, if a suitable 
single-track Gray code is available, the respective encoder can 

be made significantly smaller in size. 
Necessary conditions on the parameters n and p of a single- 

track Gray code are easily established: 

Lemma 2 Suppose there exists a length n single-track Gray 
code with p codewords. Then p is an even multiple of n and 

2n < p < 2". 

We are interested in two problems. Firstly, for a given n, 

obtaining a single-track Gray code with as many codewords 
as possible, and secondly, for a given number of codewords (i.e. 
resolution), obtaining a code with the smallest possible length 
n (i.e. number of reading heads). Codes are easily obtained for 
n = 1, 2,3. However, for larger n, the construction of codes 
poses an interesting combinatorial problem. Though not ruled 
out by the necessary conditions, there is in fact no length 4 
code containing all 16 words. Thus the conditions of Lemma 
2 are not sufficient.   We have obtained good codes by hand 

'Supported by a Royal Society ESEP Research Fellowship 
and by a Lloyd's of London Tercentenary Foundation Research 
Fellowship. 

for small n. The number of words in these codes and the 
corresponding bound from Lemma 2 are shown in the table 

below. 

n Number of 
codewords 

Upper bound 
from Lemma 2 

4 8 16 
5 30 30 
6 60 60 
7 126 126 
8 240 256 
9 360 504 

As an example, our length 5 single-track Gray code with 

30 codewords is: 

001111000110000000011111111100 
000110000000011111111100001111 
000000011111111100001111000110 
011111111100001111000110000000 
111100001111000110000000011111 

The code for n = 9 is particularly useful, as it gives a one- 

degree resolution using the least possible number of reading 

heads. 
Our other contribution is a general construction yielding 

codes for a large variety of parameters and leading to the 

following: 

Theorem 3 Suppose n > 4. Then there exists a length n 

single-track Gray code with nt codewords for every even t sat- 

isfyingl   <   t  <   2»-\V^)}-\ 

These codes are not in general optimal with respect to the 
conditions of Lemma 2. We propose as open problems finding 
better or even optimal single-track Gray codes for larger n, 
and obtaining a stronger upper bound on p than that given 

by Lemma 2. 
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Abstract — The problem of optimizing the structure 
of the encoder/decoder pair in a discrete communica- 
tion system (with an additive distortion measure) is 
expressed in terms of a Bilinear Programming Prob- 
lem (BLP Problem). An efficient method, based on 
the simplex search in conjunction with the General- 
ized Upper Bounding Technique is presented for the 
solution. The special features of the problem are ex- 
ploited to reduce the computational complexity of the 
proposed algorithm. 

I. INTRODUCTION 

Consider a discrete communication system composed of a 
source S, a channel C, an encoder £ and a decoder rj. The 
source S is composed of N, symbols s,-, i = 0,..., N, - 1. The 
symbol s; g S occurs with probability P,(i). A measure of 
distortion is defined between each pair of the source symbols. 
The distortion between the symbols st,Sj g S is denoted as 
Di(i,j), i,j = 0,...,N,-l. The channel C is composed of 
Nc symbols c;, i = 0,... ,NC - 1. The symbol c; g C occurs 
with probability Pc(i) and has an energy of Ec(i). This re- 
sults in an average energy of X)^""1 pc(i)Ec(i) at the channel 
input. The transition probabilities of the channel are denoted 
as Tc(j\i). 

The encoder provides a mapping, denoted as £, from the set 
of source symbols to the set of channel symbols such that the 
ith source symbol, i = 0,..., N„ - 1, is mapped to the chan- 
nel symbol indexed by £(i) g [0, Nc - 1]. Each source symbol 
is encoded to a specific channel symbol, however, (i) several 
source symbols may be encoded to the same channel symbol, 
and (ii) some of the channel symbols may not be used. The 
decoder provides a mapping, denoted as rj, from the set of 
channel symbols to the set of source symbols such that the 
ith channel symbol, i = 0,..., Nc - 1, is mapped to the source 
symbol indexed by »7(1) g [0, N, - 1]. Each channel symbol is 
decoded to a specific source symbol, however, several channel 
symbols may be decoded to the same source symbol. 

Our objective is to optimize the two mappings, namely £, r], 
to minimize the average distortion between the encoder input 
and the decoder output. The introduced formulation opti- 
mizes the combined effects of source quantization and chan- 
nel coding on the end-to-end distortion. Quantization of the 
source symbols occurs when several source symbols are en- 
coded to the same channel symbol. Channel coding occurs 
when some of the channel symbols are not used at all. In 
the following, this optimization problem is formulated as a 
zero-one program. 

II. ZERO-ONE FORMULATION OP THE PROBLEM 

We assign an Nc dimensional binary vector to each symbol 
of the source at the channel input. The vector correspond- 
ing to the ith source symbol, i = 0,..., N, - 1, is denoted as 
ei = [eij,J = 0,...,Nc-l]. We impose the constraints that 
e,j g {0,1} and £)i=f ~X etj = 1, Vi. If the ith source symbol is 
encoded to the Mi channel symbol, we set, a, = 1, j — (. and 
e'j =°) H1f- Similarly, we assign an N, dimensional binary 
vector to each channel symbol at the decoder side. The vector 
corresponding to the jth channel symbol, j = 0,..., Nc - 1, is 
denoted as dj = [dij,i = 0,..., N, - 1]. We impose the con- 

straints that dij g {0,1} and E^'o"1 dH = 1, Vj. If the jth 
channel symbol is decoded to the ith. source symbol, we set 
dij — l,i = l and d;y = 0, i / i. Using these notations, the op- 
timization problem is formulated as: 

JV.-1JVC-1 JV,-1JVC-1 

Minimize   j]   £  £   £ P'(i)Tc(l\j)Ot(i,h)eijdkl 
> = 0     j=0     t=0     1=0 

N,-1NC-1 

Subject to:    ^   ^ P'{i)Ec{Ö)^i < E 
>=o    y=o 

Na-1 

eij g {0,1}     and       ^ eti = 1,   Vi 
3=0 
N.-l 

dij g {0,1}     and       J2 dH = 1.   VJ 
1=0 

(1) 

This optimization problem is transformed into a Bilinear 
Programming Problem (BLP Problem) [1]. The problem has 
some special features which substantially facilitates its solu- 
tion. These features are: (i) Existence of the Generalized 
Upper Bounding (GUB) constraints for both encoder and de- 
coder, (ii) The encoder structure has only one extra con- 
straint in addition to the GUB's, namely the energy constrain, 
(iii) The decoder constraints are all GUB's and consequently 
the linear program involved in the optimization of the decoder 
is decomposable. Using these features, an efficient method 
based on a variant of the simplex search is presented for the 
solution. 

,   REFERENCES 
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Abstract — We address the problem of design- 
ing a coded modulation scheme for the fading chan- 
nel when space diversity is used. We focus on 
the fact that a channel affected by fading can be 
asymptotically turned into an additive white Gaus- 
sian noise (AWGN) channel by increasing the number 
of diversity branches, thus turning coded-modulation 
schemes designed for the AWGN channel into efficient 
codes over the fading channel. 

I. INTRODUCTION 
The severe performance degradation effects associated 

with flat fading in radio channels are well known. Similarly 
well known is the fact that when coping with fading an al- 
ternative option to increased power is the use of multiple- 
receiver techniques categorized under the name of diversity. 
Recently, coded modulation has been regarded as a way of 
introducing time diversity. Actually, the effect of increasing 
the Hamming distance between pairs of possible symbol se- 
quences transmitted over the fiat Rayleigh-fading channel is 
the same as induced by increasing the number of branches in 
space diversity. One problem with this approach is that the 
design criteria for coded modulation schemes in fading chan- 
nels differ from the standard minimum-Euclidean-distance 
criterion valid for the AWGN case. Consequently, a code op- 
timal for the AWGN channel may perform poorly on a fading 
channel and vice versa. 

We study the synergy of space diversity and code diver- 
sity. In partucular, we focus our analysis on the fact that 
antenna diversity and maximal-ratio combining have the ef- 
fect of turning the equivalent transmission channel into an 
AWGN channel. A structure of a receiver with constant total 
gain is advocated. With it, when the space-diversity order is 
M the energy per diversity branch is decreased by a factor of 
M, so that the average signal-to-noise ratio at the decoder in- 
put remains the same irrespective of the diversity order. In 
practical terms, we might think of an antenna array whose 
number of elements is increased without increasing the to- 
tal area, so that the equivalent gain of the antenna is kept 
constant. With this receiver, at no additional cost in terms 
of antenna size, an optimal code for the AWGN channel can 
achieve (asymptotically as the number of diversity branches 
increases) the same optimal performance on a fading chan- 
nel, irrespective of the fading parameters. This asymptotic 
performance is approached with only a few, highly correlated 
diversity branches. 

The following results were obtained: 
• Bounds on the bit error probability of a coded modu- 

lated system with diversity, including branch correla- 
tion. 

1This research was sponsored in part by the Human-Capital and 
Mobility Program of the European Union. 

• The cut-off rate of the diversity channel. 

• Simulation results based on simple coded modulation 
schemes for 8-PSK with several detection strategies. 

• Rate of convergence of the fading channel to an 
AWGN channel as the number of diversity branches 
increases. 

In the following we describe the latter results. 

II. CONVERGENCE TO AWGN CHANNEL 

With antenna diversity,  coherent detection and perfect 
channel-state information the convergence to AWGN chan- 
nel is very quick. 

We observe that the divergence of the channel with di- 
versity from a channel without fading is due to the combi- 
nation of two factors, namely, divergence from Gaussianity 
and a larger value of the noise variance. While the conver- 
gence to a channel in which fading is simply wiped out is 
important, the sheer convergence of the total disturbance to 
a normal distribution (even with a slightly larger variance) 
implies that coding schemes that have been optimized for a 
Gaussian channel will perform closer and closer to optimal- 
ity. Convergence can be studied by examining the Kullback- 
Leibler distance of the probability density function fix) of 
the total disturbance (fading plus noise) from a normal dis- 
tribution with a variance equal to that of the noise, which 
we denote here by g(x), and from a normal distribution with 
larger variance, denoted g'(x). The results obtained are re- 
ported in Table 1. 

M D(f || g) D(f || g') 
2 0.474 0.167 
3 0.154 0.060 
4 0.076 0.031 
5 0.045 0.018 
6 0.030 0.012 
7 0.021 0.009 
8 0.016 0.007 
9 0.012 0.005 
10 0.010 0.004 

Table 1: Kullback-Leibler distance of distributions/(x) and 
g(x) and of distributions fix) and g'(x). 
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Abstract — This paper presents a bandwidth 
efficient multilevel concatenated coded modulation 
scheme for reliable data transmission over the shad- 
owed mobile satellite communication (MSAT) chan- 
nel. In this scheme, bandwidth efficient block mod- 
ulation codes are used as the inner codes and Reed- 
Solomon codes of various error correcting capabilities 
are used as the outer codes. The inner and outer 
codes are concatenated in multiple levels. A system- 
atic method for constructing multilevel concatenated 
modulation codes is presented and a multistage clos- 
est coset decoding for these codes is proposed. Spe- 
cific multilevel concatenated 8-PSK modulation codes 
have been constructed. These codes are designed 
to remove the error floor phenomenon or lower the 
bit-error rate of the error floor caused by the large 
Doppler frequency shift due to the motion of vehicles. 
Simulation results show that these codes perform very 
well and achieve large coding gains over the uncoded 
reference modulation systems. 

I. INTRODUCTION 

In this paper, we propose and investigate multilevel concate- 
nated coded modulation schemes for shadowed MSAT. chan- 
nel. A statistical model for the shadowed mobile satellite 
channel has been devised by Loo [1]. This model has been 
used by other researchers [2, 3] to study error performances of 
coded modulation schemes over the shadowed mobile satellite 
communication channel. In the Loo's model, there are three 
different kinds of shadowing, i.e., light, average and heavy. 
The corresponding Rician factors are 6.16, 5.46 and -19.33 dB, 
respectively. Therefore, in the heavy shadowed MSAT chan- 
nel which is statistically close to the Rayleigh fading channel, 
a coded modulation system suffers very severe distortion due 
to randomly changing phase and the multipath fading. Es- 
pecially, if the Doppler frequency shift is large due to the 
motion of vehicle, a coded modulation system faces the error 
floor phenomenon. 

II. MULTILEVEL CONCATENATED BCM SCHEMES 

Coded modulation in conjunction with concatenation is a pow- 
erful technique for achieving high reliability, large coding 
gain, and high spectral efficiency with reduced decod- 
ing complexity. This combination of coded modulation and 
concatenation is known as concatenated coded modula- 
tion [4]. Error performance of the single-level concatenated 
TCM and BCM schemes for the Rayleigh fading channel was 
investigated by Vucetic and Lin in 1991 [5]. All these studies 

showed that by properly choosing the inner codes and outer 
codes, large coding gains and high spectral efficiency could be 
achieved with reduced decoding complexity. 

However, a major shortcoming of a single-level concate- 
nated coded system with multilevel block modulation code as 
the inner code is that the outer code corrects all the output 
bits of the inner code decoder to the same degree. Since a mul- 
tilevel modulation code is constructed from component codes 
with different distance profiles, multistage decoding results in 
different bit-error probabilities for different component codes 
at the output of the inner code decoder. As a result, the 
overall error performance of a single-level concatenated coded 
modulation system is dominated by the worst bit-error prob- 
ability of the component code of the modulation inner code. 
To improve the overall error performance, it is necessary to 
provide different levels of error protection for different inner 
component codes in a concatenated coded modulation sys- 
tem. One approach to this improvement is to use multilevel 
concatenation with multiple outer codes to provide different 
levels of error protection for different inner component codes. 
Multilevel concatenation provides the flexibility of choosing 
outer codes with different error correcting capabilities and fur- 
thermore improves the spectral efficiency over the single-level 
concatenation scheme. 

Simulation results show that these codes achieve very im- 
pressive real coding gains over the uncoded reference system 
and single-level concatenated BCM codes using the same inner 
codes. 
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I. INTRODUCTION 
Signalling over Rayleigh fading channels can be classed as a general 

Gaussian problem. Optimal linear filtering can then be applied to joint- 
ly estimate the channel and detect the information sequence [1]. For 
fading channels with non-Gaussian distributions, optimal linear filter- 
ing does not necessarily yield the best channel estimates. To exploit the 
channel memory, a first order finite Markov chain model (HMM) that 
statistically characterizes the Nakagami-m fading process is used to 
aid the channel estimation. Based on this, a maximum a posteriori 
(MAP) receiver using coherent detection is presented for binary PAM 

signals. 

II.SYSTEM MODEL AND THE BRANCH METRIC 

The system model is shown in Fig. 1 where g(t) is the multiplicative 
Nakagami fading process. A first orderfinite state Markov chain model 

for g(t) can be derived using the procedure described in [2]. 

ent fading rates with m=2.0. One can observe from the figures that the 
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Fig. 1 System Model 

The shaping filter, ./(*), is selected so that when the received signal 
is sampled with interval Ts, no intersymbol interference will occur. A 
trellis can be set up for this receiver where its states are the states of the 
Markov chain model. The branch metric for the trellis search is: 

lzk-gkbkf(0)f Prfe I gk-i) 

where {b/} is the equivalent information sequence and a\ is the vari- 
ance of the noise that accounts for both the additive white Gaussian 
noise and the modelling error of the fading process. The last term ac- 
counts for the state transition probability of the Markov chain. 

III. SIMULATION RESULTS 
Simulation has been done for binary PAM with coherent detection. 

The Nakagami fading process is generated from a correlated Gaussian 
process which in turn is generated by passing a white Gaussian process 
through a second order low pass Butterworth filter whose cutoff fre- 
quency determines the rate of fading. An 8-state Markov chain model 
is used to represent the Nakagami fading process. 

Fig. 2 shows the error performance for the MAP receiver for m-0.5 
and 5.0. The bandwidth of the Butterworth filter is chosen to be 0.1 Hz, 
which corresponds to fast fading. For comparison, the error perform- 
ance for receivers where the LMS algorithm is used to estimate the 
channel is also given. Fig. 3 shows the error performance for two differ- 
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Fig. 3 Error Performance for Different Fading Rates, m=2.0 

MAP receivers using the Markov chain model give somewhat better er- 
ror performance for medium to high average SNR than receivers which 
employ optimal linear filtering to estimate the channel. Also the error 
performance of the MAP receiver is not sensitive to the fading rates for 
a fixed value of m. Simulations have also been done for m=1.0,10.0 
and 20.0, under different fading rates. The improvement of the error 
performance using the Markov model becomes more significant as m 
and/or the fading rates increase. The method is readily extended to fre- 
quency selective fading channels with non-Gaussian distributions 
whereas MLSE receiver proposed in [ 1 ] is difficult or impossible to im- 

plement. 
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Abstract - In this paper, a burst error process is 
characterized by three variables x,y,z related to 
a two-state Gilbert-Elliott-Channel with fifty per- 
cent bit error rate in the bad state. The variables 
x and y describe the Markov process of the model. 
The variable z reflects the mean bit error rate. On 
such a channel, the probability of any single er- 
ror sequence and hence any collection thereof can 
be represented by polynomials in x,y,z which ex- 
tends the one-variable description in z applicable 
for statistically independent errors. 

I. BURST ERROR STATISTICS 

On a binary channel, an n-bit error sequence w = 
eie2 • • -en,ey£ {0,1}, can be considered as elementary 
error event. There are N = 2" distinct elementary events 
Wi,i = 0,1, • • •, N — 1; each occurring with probability 
Pi = P(wi) = Prob(wi). A composite error event E is 
given by the union of constituting elementary error events 
Wi characterized by an appropriate index set IB, i.e. 

E = \J Wi PE = Prob(E) = Y, Prob(Wi).      (1) 
i€lE 

Pertaining burst error statistics PE are, among oth- 
ers, the error weight distribution P(m,n), and the error 
correlation function R(T). P(m,n) is the probability of 
m errors in a block of n bits; R(T) = Prob(leT~1l) is the 
probability of two errors occurring at a distance r. 

II. BURST ERROR MODEL 

The burst error process is modelled by a two-state 
Gilbert-Elliott-Channel (GEC), characterized by the bit 
error rates pa and ps associated to the good state G and 
the bad state B, and the state transition probabilities 
P = Prob(B\G) and Q = Prob(G\B), resp. The mean bit 
error rate \sph = PG^Q+PBP^Q- A reduced GEC with 
pB =0.5 will be applied. The three remaining parameters 
PG,P,Q are expressed by x -P/Q,y=l-(P + Q),and 

- P0 = -P(OOO) 
- Pi = P(001) 
- Pi = P(010) 
- P3 = P(011) 
- P4 = P(100) 
- P5 = P(101) 
- Pe = P(H0) 
- P7 = P(1H) 

Fig. 1: Trellis for evaluating P(iui) 

z — 1—2pb. See [2] for physical interpretation. Describing 
matrices are ,     F1 l       l + xy    x-xy 

Do + Ui D    = 

6   = 

l + x l V       x + y _ 

l + xy    x — x y 
0 0 

(2) 

(3) D0-Di = 

The stationary state distribution is <r0 = j^ [l, x]. 

III. POLYNOMIAL REPRESENTATIONS 

The product formalism of stochastic automata theory 

P(w) <70D»,Deo • • De (l,l,-",l)T (4) 

can be used to show by complete induction that P(w) is 
indeed a polynomial in x,y,z. Generalizing (4) yields 

\T-l Die7 
R(T)    =    o-0DiDT 

=    i [l + 2z + (l + xyT)z2]. 

A-, 

(5) 

Applying modal analysis [1,2], the probabdity vector 
P = [P(wi)} can be expressed via Walsh-Hadamard- 
Transformation of the spectral coefficient vector Q = 
[(2(tu»)], where Qi = Q(wi) are simple polynomials in 
x,y,z. 

'v„.i  v„_i - 
V„_i  -V„_i. 

For n = 3, evaluation trellises are shown in Fig. 1, 2. 
As the Hadamard matrix Vn consists of entries +1 and 
— 1, resp., P(wi) and hence Pg consist of appropriate 
aggregats of Q(w{), e.g% 

P(2,3) 

P = 2-"QVn)Vn ,V0 = [1]   (6) 

1 
[3 - 3z - 2(1 + xy)z2 (7) 

-(l + xy2)z2 + Z(l + xy)2z3]. 
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Abstract — We propose a new technique for coherent 
transmission over multipath Rayleigh fading channels, 
based on the use of one special case of time-frequency 
well-localized orthonormal functions, namely the Pro- 
late Spheroidal Wave Functions (PSWF). Acceptable 
SER performances are obtained until values of about 
0.1 of the channel's spread factor. 

I. INTRODUCTION 

Coherent signaling over very dispersive Rayleigh fading chan- 
nels is quite a challenging task. A classical rule of thumb to 
respect in such cases is to choose a signaling symbol time in- 
terval T verifying Tm < T <C 1/Bd, where Tm denotes the 
time spread due to multipath propagation, and Bd denotes 
the Doppler spread bandwidth due to individual path's enve- 
lope fading. This is indeed possible when the channel's spread 
factor L = TmBd is very small (L < 0.01). Excellent results 
have been achieved in such situations by the use of pilot sym- 
bols in association with coded modulation [l]-[2]. When L 
approaches unity, any attempt to make T <C 1/Bd will result 
in severe multipath spreading. 
In our work we consider coherent signaling over channels with 
spread factors TmBd < 0.1. Our technique permit coherent 
detection in situations traditionally reserved to non-coherent 
reception, with the evident benefit of higher spectral efficiency. 

II. TIME-FREQUENCY ORTHONORMAL BASES 

Time-fequency localization operators are of interest for many 
applications. A well known example of such operators is 
the one presented by Slepian and Pollak [3], In an exten- 
sive serie of articles ([3] and other) they studied the prop- 
erties of signal band- and time-limiting operators on the 
[-T/2.T/2] x [-W,W] rectangle. They demonstrated that 
the orthonormal family of Prolate Spheroidal Wave Functions 
(PSWFs) is a complete basis of singular functions for the 
above-mentioned operator. 
Another example of such operators is the case of the Her- 
mite polynomial functions which are the eigenfunctions of 
the projection operator on disks of the time-frequency plane 
(t2+w2 <iJ2)[4]. 

III. SIMULTANEOUS DATA AND PILOT SYMBOLS 

In this section we investigate the performances of a transmis- 
sion scheme well fitted to severely dispersive Rayleigh fading 
channels (L ranging from about 0.01 to 0.1). 
When the spread factor of the channel exceeds 0.01, solutions 
based on the transmission of frames of N symbols with the 
first symbol being the pilot and the N — 1 remaining symbols 
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Fig. 1: SER performance for BPSK. 

carrying the data [2] do not work. In our approach we ex- 
ploit the orthogonality of the PSWFs in order to transmit in 
the same time interval T both pilot and information symbols. 
This is accomplished by simultaneous transmission of differ- 
ent orthogonal PSWFs, one among these carrying the pilot 
symbol. Fig.l shows computer simulated performances of the 
proposed technique for several values of the spread factor L. 
It confirms that for L < 0.01, the performance of our tech- 
nique is comparable with that obtained in [2]. Moreover, we 
notice that the effect of the extending multipath spread is the 
presence of a floor of the SER. 
When the channel's spread factor exceeds 0.01, the advantage 
of our method is the graceful degradation of the performances 
in contrast with the impossibility of implementing the method 
described in [2]. 
Results for the QPSK modulation (not shown) are only a few 
percent worse than those of the BPSK. 

IV. CONCLUSION 
We showed the feasibility of coherent detection for multipath 
fading channels with a spread factor reaching 0.1. It is possi- 
ble to achieve coherent transmission with even higher spread 
factors, but on condition that additional processing is used. 
We are presently working in this direction. 

REFERENCES 
[l] K. Boulle and J. C. Belfiore, "Modulation schemes designed for 

the rayleigh channel", CISS'92, Princeton (USA), March 1992. 
[2] J. K. Cavers, "An analysis of pilot symbol assisted modulation 

for rayleigh fading channels", IEEE Trans. Commun., vol. 40, 
No. 4, pp. 686-693, November 1991. 

[3] D. Slepian and H. O. Pollak, "Prolate Spheroidal Wave Func- 
tions, Fourier analysis and uncertainty-1", Bell Syst. Tech. J., 
vol. 40, pp. 43-64, January 1961. 

[4] I. Daubechies, "Time-Frequency localization operators: A geo- 
metric phase space approach", IEEE Trans. Inf. Theory, vol. 
34, No. 4, pp. 605-612, July 1988. 

212 



Optimised multistage coded modulation design for Rayleigh fading channels 

A. G. Burr 

Dept. of Electronics, University of York, York, U.K. 
I. INTRODUCTION 

It has been known for some time [1,2] that coded modulation 
schemes such as Ungerboeck's [3] which are optimised for the 
Gaussian channel do not perform well on fading channels, and 
especially on the Rayleigh fading channel. Ungerboeck's codes 
maximise minimum Euclidean distance between coded sequences; 
Divsalar and Simon identified a number of parameters that should 
be maximised in preference, notably the minimum Hamming 
distance and the product distance. More recently it has been 
suggested [4] that the framework of multilevel coded modulation 
(MCM) forms a suitable basis for the design of such codes, since it 
enables the Hamming distance readily to be maximised. This has 
the further advantage [5] that decoders may be implemented using 
readily-available ASICs for binary convolutional codes. 

In most of this work the aim has been to optimise asymptotic 
performance at high signal to noise ratio (SNR), and the choice of 
code parameters has been made accordingly. However, it is well- 
known (e.g. [6]) that this may not optimise performance at practical 
SNR. This paper presents a design technique to minimise required 
SNR performance for a specific target bit error ratio (BER). It also 
describes a new simplified bounding technique for the BER of 
MCM on a Rayleigh fading channel, which avoids the use of 
Chernoff bounds. 

n. BOUNDS ON BER OF MCM ON A RAYLEIGH CHANNEL 

The principle of multistage decoding of MCM is to decode each 
partition of the signalling constellation separately, treating the 
remaining partitions as uncoded. This is of course sub-optimum. It 
allows us, however, to treat each stage of the decoding process as 
binary. We may then use analytical expressions for the BER of 
binary signalling on a Rayleigh fading channel [7]. We treat a 
binary code with minimum free distance d as binary signalling with 
d branch diversity, and use a union bounding technique similar to 
that described in [8]. From [7] p. 474, the BER of binary signalling 
with d-branch diversity is: 

HI. DESIGN AND PERFORMANCE OF OPTIMUM CODES 

Using this technique we calculate stage BERs for a given scheme. 
The overall BER is then the sum of these. It has been noted [4] that 
many MCM codes have overall BER dominated by one stage of 
decoding. Here we apply the principle of equalising stage BERs at 
a given SNR, hence optimising the codes for this SNR. 

This method has been applied to optimise 8-PSK codes for BER 10" 
3 and 10" °. Codes with encoder memory 6 and rates 

{Rhi = 1..3} = {%.%%} and {%%%} respectively were 

selected by means of an iterative procedure which equalised stage 
BERs at the required SNR. For code rates other than )^, punctured 

codes are used. 
Fig. 2. compares the overall BERs of these codes with a code with 
equal Hamming distances on each level [4]. It can be seen that 
there is a significant performance improvement over the equal 
Hamming distance code, of about 2.3 dB for BER 10"6. This code 
also improves on the Schlegel and Costello code with the same 
memory [2] by over 4 dB at this BER. However, asymptotically the 
codes described here have much poorer performance. 

IV. CONCLUSIONS 

We have presented codes for the Rayleigh fading channel optimised 
for given finite error rate that achieve significant improvements in 
coding gain on previously-described codes. These codes are based 
on multilevel coded modulation, and hence can be decoded using 
multistage decoding, using readily-available Viterbi decoders. The 
use of punctured codes also makes for a very flexible structure, in 
which codes of different overall rates, and optimised for different 
BERs, may readily be implemented. 

P(ä,EJN0)^{^J It \d- 
0 

\+k. m ..(i) 

where /i = j(EJNQ)/{l + EJN0) 

Following [6], we define the stage BER Pj as the error probability 

in all stages due to errors at the t'01 stage, thus including error 
propagation, allowed for in the factor £,'. Note that, unlike [4], we 
do not assume interleaving between stages. Then following [8] we 
calculate an estimate of Pi taking into account erroneous paths up 
to Hamming distance d^^x- Suitable values for d^^ are found by 
comparison with simulations. 
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where et = 1 + Ä1+i/2/?,- ,i = 1,2; e3 = 1 

In an MCM decoder the error-weighted distance spectrum A<f of the 

code must be multipled by the factor a,", where 
{fl;, i = 1.. 3} = {2,2,1} is the number of neighbouring points in the 
signalling constellation partition at each 

level..{AI,/ = 1..3} = {2sin(^/8),V2,2} is the partition 

minimum distance at each stage. 

Fig. 2. Comparison of overall BER for the two optimised codes (a,b) and the equal 
Hamming distance code (c) 
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Abstract — A multiple antenna diversity scheme is 
investigated for digital wireless communications. In 
this scheme the antenna observations are immediately 
quantized and only the quantized values are sent to a 
fusion center to decide which symbol was transmitted. 
The case where fine quantization is impractical is con- 
sidered, so that distributed detection principles apply. 
The optimum reception scheme is described for the 
case where frequency shift keying is employed. Mul- 
tiple bit quantization schemes are considered for cases 
where the observations at each antenna are influenced 
by slow Rayleigh fading and Gaussian additive noise. 
Some numerical results are provided. 

I. INTRODUCTION 

There is significant interest in using wireless communication 
systems in environments where severe multipath fading and 

co-channel interference is present, which can limit system per- 
formance [1]. To mitigate the effects of multipath fading and 
co-channel interference, diversity techniques using multiple re- 
ceive and transmit antennas have been proposed [l] and it has 
been found that the performance improvements obtained by 
using these schemes can be significant. 

There appears to be a trend towards increasing the por- 
tion of wireless receivers that are implemented using digital 

technology in many applications. Recent improvements in 
electronic technology indicate that all digital receivers are be- 
coming practical at many frequencies of interest and further 
improvements in the speed of analog-to-digital converters are 
expected to continue this trend. These facts indicate that 
multiple antenna diversity schemes that combine quantized 
samples should be considered, as illustrated in Figure 1. 

I Receiver/ 

Quantizer 

I Receiver/ 

Quantizer 

Digital 

Reciever 
using 
diversity 

combining 

Information 

Figure 1: Distributed diversity combining. 

°This material is based upon work supported by the National 
Science Foundation under Grant No. MIP-9211298 

on combining single bit decisions made at several antennas 
have been reported [2, 3]. More recently, we investigated the 
optimum design of multi-bit decision schemes. If the quanti- 

zations produce samples with enough bits of resolution then 
the entire scheme will closely resemble the diversity schemes 

considered for analog receiver implementations [1], which in- 
cludes the majority of research in this area. However, based 
on our recent results, it appears that it is not always necessary 

to use such high resolution quantizations. Using course quan- 

tizations, with only a few bits resolution, could reduce cost 

and complexity considerably. Our recent work indicates that 

course quantizations can sometimes be used without notice- 

able loss in performance provided one uses the proper quan- 
tizer designs. 

We considered cases with independent fading (and noise) 

from antenna to antenna, a case of considerable interest [1]. 
Further, we considered a communications system where non- 
coherent binary frequency shift keying (FSK) is to be em- 

ployed. Assume that TV receivers, each with an associated 
antenna, are to be employed to achieve a diversity gain. A 
nonselective fading channel is considered where the fading is 
assumed to be slow enough so that it can be assumed constant 
over several bit periods. In our explicit examples, Rayleigh 

fading is assumed. The observations at each receiver are as- 

sumed to include additive zero-mean Gaussian noise. 
Each of the receivers will generate a multiple bit decision 

and a single final decision will be made by fusing the decisions 

from the individual receivers. Assume that synchronization 
between the individual receiver decisions has been achieved, 
so that each set of receiver decisions correspond to the same 
transmitted digit. We assume that an accurate estimate of the 
signal-to-noise ratio is obtained for the observations available 
at each receiver. Here we consider the case where these esti- 

mates can be assumed to be correct, as a first approximation. 
We have outlined the optimum design of such a system 

and we compared the performance of this system to a system 

which uses infinite precision. Our results indicate that using 
only two or three bits in the individual decisions does not 
sacrifice much performance, while this can simplify receiver 

design and construction. This appears to be an important 
result which could be used to reduce the implementation cost 
of wireless receivers. Due to the expansion in this industry, 
we believe these results could have significant impact. 

[1] 

In Figure 1, each individual receiver makes a multi-bit de- 
cision about which symbol was sent based only on the ob- 
servations available at the co-located antenna. These deci- [2] 
sions are then transmitted to a single location where a final 
decision is made. This is equivalent to a distributed signal 
detection problem.   Two studies of diversity schemes based     [3] 
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Abstract — In this paper we consider a different cod- 
ing scheme for direct-sequence spread-spectrum(DS- 
SS). The Nordstrom-Robinson(NR) code, a nonlinear 
code that has large distance for a given rate, used in 
conjunction with a trellis-code [2] version is examined. 
A bound is developed on the error probability for this 
trellis coded Nordstrom-Robinson (TCNR) code with 
noncoherent reception over a frequency-nonselective 
Rayleigh or Rician fading channel with additive white 
Gaussian noise. This bound is tighter than a stan- 
dard union bound. Our results indicate that the stan- 
dard union bound can be significantly different from 
the more accurate results obtained from the improved 
union bound. 

I. Introduction and System Model 

error probability does not depend on which particular code- 
word is transmitted. When combined with a 4-state trellis, 
this trellis coded NR(TCNR) code, an example of finite-state 
codes, can transmit 6 information bits in every 16 channel 
chips. Thus we have decreased the minimum distance by 25% 
while having increased the rate by 50% to 6/16. 

In this paper we examine the performance of this 4-state 
TCNR code over a frequency-nonselective Rayleigh or Rician 
fading channel with additive white Gaussian noise. Nonco- 
herent reception is assumed, and the codewords are assumed 
to be interleaved at every 16 chips. An upper and a lower 
bound on the error probability have been derived. Also, the 
error performance of the TCNR code and a conventional DS- 
SS code with the same data rate, 6/16, is compared. 

II. Numerical Results and Conclusions 

In a conventional DS-SS communication system a single data 
bit is transmitted using a pseudo-random sequence or its nega- 
tive and binary phase shift keying. The number of information 
bits per channel chip is a measure of the rate of the system 
when it is used in an environment with multiple-access inter- 
ference or multipath fading, which limits the maximum data 
rate capability. An error-correcting code such as convolutional 
code or block code can be used to provide additional protec- 
tion, usually at the expense of data rate. It is also important 
to consider the number of nearest neighbors codewords, which 
affect error probability. A method to reduce the number of 
nearest neighbors without sacrificing data rate is to use a com- 
bination of an orthogonal code with a trellis at the expense of 
complexity. In this paper we wish to explore a coding scheme 
to achieve higher data rate and lower error probability. This 
coding scheme was first introduced in [1] and analyzed for 
coherent reception with multiple-access interference. A non- 
linear Nordstrom-Robinson (NR) code can also be modified 
and used with noncoherent detection. This code has good 
distance and rate performance, and can be efficiently decoded 
with a soft decision algorithm. 

If an orthogonal code has 16 codewords of length 16 with 
minimum distance 8, the data rate is 4/16 (4 information bits 
over 16 channel chips). Starting with this code, we can, by 
adding selected orthogonal cosets to the original code, increase 
the number of codewords up to 128 with the minimum dis- 
tance slightly decreasing to 6. By doing so we get the nonlin- 
ear Nordstrom-Robinson code, which is composed of 8 cosets, 
each of 16 orthogonal codewords. The NR code has the geo- 
metric uniformity property; i.e., its distance distribution and 
its weight distribution are identical. This property greatly 
simplifies the analysis and simulation because the conditional 

The upper bound we derive for the TCNR code is tighter than 
the standard union bound. This is because in the TCNR code 
the minimum distance error events are from codewords within 
the orthogonal coset, whose error probability can be calculated 
exactly when the channel is assumed nonselective Rayleigh or 
Rician fading and thus the orthogonality within each coset is 
preserved. By taking this minimum distance error and then 
upper bounding all the remaining error events, we get an im- 
proved union bound. Numerical results imply that, at high 
signal-to-noise ratio (SNR), this upper bound tends to merge 
with the error probability from minimum distance codewords 
only, which is our lower bound. It is also shown that at high 
SNR, the TCNR code has better error performance than the 
conventional DS-SS code with the same data rate. For exam- 
ple, our results indicate that, compared with the conventional 
DS-SS code with the same data rate, there is approximately 
a 4-dB gain in Eb/N0 at high SNR for TCNR code over a 
Rayleigh fading channel. 
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Abstract — I-Q TCM is a form of coded modula- 
tion in which two independent encoders select the in- 
phase and quadrature components of the transmitted 
signal. This design approach results in a significant 
increase in minimum time diversity when compared 
with comparable "traditional" TCM schemes. I-Q 
TCM schemes of varying complexity are presented; 
it is shown that the coding gains of moderately com- 
plex systems are very close to what is expected from 
the cutoff rate limit. 

I. INTRODUCTION 

The design of trellis-coded modulation (TCM) schemes for 
mitigating the effects of Rayleigh-distributed flat fading has 
received considerable attention. It has been pointed out that 
the effective time diversity of the code (i.e., its symbol-wise 
minimum Hamming distance) is the main design criterion to 
optimize trellis codes for such channels [1]. TCM schemes op- 
timized for the Rayleigh fading channel were presented in [2] 
and [3]. Most of these coding schemes use the "traditional" 
Ungerboeck approach - i.e., they involve doubling the con- 
stellation size over what is required for uncoded transmission 
and the use of a rate fc/(fc +1) encoder to describe valid sym- 
bol sequences. However, if a rate k/(k + 1) code is used, the 
achievable minimum time diversity, L, is upper bounded by 
L < [f/fcj + 1, where v is the number of memory elements in 
the encoder. Therefore, most of the results obtained are far 
short of the cutoff rate (Ro) limit. To achieve a higher degree 
of minimum time diversity, we propose the use of I-Q TCM. 

The basic idea of I-Q TCM is to use two independent en- 
coders in parallel to select the in-phase and quadrature com- 
ponents of the transmitted sequence; this approach was used 
by Ho et al to demonstrate the feasibility of dense constel- 
lations for fading channels. Using this approach, L is upper 
bounded by L < [2v/k\ + 1. Furthermore, no additional de- 
coding complexity is required; complexity here is measured by 
the number of paths, excluding parallel ones, emanating from 
a given state times the number of states, per information bit. 
Although the proposed codes have two parallel encoders, they 
have the same complexity as a code with a single encoder 
with the same number of states because the number of bits 
entering each encoder is reduced and independent decoding is 
performed on the two decoders. 

II. DESIGNED CODES 

Codes with bandwidth efficiencies of 1,2, and 3 bits/s/Hz and 
different constraint lengths were designed. If the bandwidth 
efficiency is not an even number, then the encoder operates 
every two signaling intervals, producing 4-dimensional coded 
signals. 

I-Q TCM schemes with a bandwidth efficiency of 1 b/s/Hz 
were designed using QPSK modulation; coding gains of 2- 
3 dB are achieved with respect to the traditionally designed 
schemes of equal complexity. Moreover, for the I-Q QPSK 
64-state code, a BER of 10-5 can be achieved at Eb/N0 « 7.5 
dB. This is only 2 dB from the cutoff rate limit. 

Codes with a bandwidth efficiency of 2 b/s/Hz based on 16- 
QAM were also designed. They provided coding gains of ~ 4.5 
dB over 8-PSK schemes [2]. Fig. 1 shows the simulated BER 
of the proposed codes and the codes from [2] for v = 3,4,6. 
Note that a BER of 10-5 can be achieved at Eb/N0 « 10.5 dB 
using the 64-state code. This is only 2.5 dB from the cutoff 
rate limit for 16-QAM signaling. 

In this talk, both simulation and analytical results regard- 
ing the BER performance of the proposed codes will be pre- 
sented. In addition, the effect of a non-uniform signal constel- 
lation and space diversity reception will be considered. 

18 20 

Figure 1: Comparison of proposed codes and codes from 
[2] for a bandwidth efficiency of 2 bits/s/Hz. The solid 
lines represent the proposed codes; the dashed lines rep- 
resent codes from [2]. 

[l] 

[2] 

[3] 
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Abstract - In personal communications systems, 
users contend for the resources of frequency and time, 
with re-use determined by spatial separation, power allo- 
cation, antenna beam patterns, data rate, and the 
required signal to interference ratio for reliable opera- 
tion. We describe a highly adaptive system with distrib- 
uted control, i.e., each link is optimized independently, 
with coupling only via the mutual interference. 

I. SUMMARY 

A high-performance experimental radio transceiver is under 
development at UCLA. It will include frequency hopping, 
variable bit and power allocation, channel coding, adaptive 
equalization, coherent M-QAM signaling, rapid channel 
probing, and adaptive transmitter and receiver antenna 
arrays. Most control functions will be distributed, requiring 
at most feedback between a transmitter and its intended 
receiver. Each link independently attempts to achieve the 
highest possible signal to interference ratio (SIR). The chal- 
lenge is to design a set of adaptive algorithms that will inter- 
act in a stable fashion, while increasing the robustness and 
throughput of the network. We outline the major adaptive 
subsystems below. 

In a radio network, frequency and time slots (channels) may 
be re-used at some distance due to propagation losses. In 
dynamic power and channel allocation (DPCA) algorithms, 
channels and transmitter powers are assigned to users so that 
all members of the network meet their own SIR requirement 
for reliable communication. A distributed DCPA algorithm 
has been developed, with the property that active users are 
protected from being dropped, at the cost of slightly reduced 
throughput relative to centralized control. In essence, new 
users may increase their power less aggressively than active 
users, and drop out when making little progress in their SIR. 
Convergence can be improved by probing the channel. The 
combination of the present SIR at a given power level, and 
the "resistance" of the system in the form of increased inter- 
ference to each power increment are used in making a pre- 
diction of the final SIR. 

In a frequency hopped system, we access many channels, 
and probe to predict the final SIR in each. We may then 
assign bits and power to maximize the throughput for this 
expected SIR distribution. Channel coding with interleaving 

across the frequency slots serves to realize the frequency 
diversity, provides coding gain, and some smoothing of 
small SIR estimation errors. We may arrange the frequency 
hops to be synchronous among cells, so that the same set of 
interferers is encountered on each hop. DPCA then reduces 
to the single channel form. A second option is to randomize 
the hopping patterns among the different cells. A combina- 
tion of bit allocation and coding then produces a hybrid mix 
of interference averaging and interference avoidance, since 
we may choose not to allocate any power to those hops with 
large resistance. Simulations for the simpler case of choosing 
M out of N hops with equal bit allocation reveals that net- 
work throughput is very similar to the first option. However, 
this procedure is more robust with respect to channel varia- 
tions since the set of channels occupied can be slowly 
changed, with the effect on any other being small since there 
is mutual interference in only one hop. We are also investi- 
gating hybrid fixed assignment/DCPA schemes, which alle- 
viate certain difficulties that arise in admission and handoff. 

Antenna arrays may also be used to suppress multipath and 
reduce interference. We propose to adapt both transmitter 
and receiver arrays using least squares techniques. Switching 
between sets of fixed beam patterns is not feasible for indoor 
systems, since we must gain some compromise benefit 
between diversity combining and interference cancellation, 
and the multipath has a very wide angular spread. Addition- 
ally, the human body interacts with the terminal to change 
the beam pattern. Another interaction is that between differ- 
ent pairs of communicating users. As the transmitter pattern 
of one array changes, so do the receiver patterns for all users 
in the vicinity. This in turn affects their transmitter patterns, 
as the latter may only be adapted based on the received sig- 
nals. The antenna patterns must also react to changes in the 
power levels and/or channel assignments of the other users 
in the network. Thus, for indoor applications the interaction 
of these adaptive loops may be the dominant factor in the 
channel dynamics, rather than motion of the radios. We have 
investigated the dynamics of an adaptive antenna array with 
a variety of equalizer and transmitter adaptation options, 
with the conclusion that the ordinary LMS algorithm should 
be adequate. The imposition of orthogonality among chan- 
nels within a cell together with the minimum SIR require- 
ment for links to be declared feasible serve to decouple the 
users. The antenna arrays should be adapted on a time scale 
faster than power control, since the antenna gain affects the 
perceived path gains between users. 
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Abstract - The advisability of using adaptive strategies in 
channels with side information at the transmitter is considered. 
Different adaptive strategies are defined for block codes (BC) 
and punctured convolutional codes (PCC) and compared on 
throughput and bit error probability after decoding. 

I. INTRODUCTION. 
Shannon [1] studied some communication systems with side 
information available to the transmitter, proving the positive effect 
of the side information on the achievable capacity. Nevertheless, it 
is not obvious how to take advantage of the side information in 
practice. The authors have been studying a system in which this side 
information is a true indication of the channel state and 
consequently, the transmitter adapts the parameters of an error 
control scheme in order to obtain the desired error rate, whilst 
keeping throughput, complexity and delay at acceptable levels. 
Many different schemes can be proposed. A gross distinction 
between competing schemes is based on whether or not the side 
information is embedded in the transmission. In a previous paper 
[2] both possibilities were analysed and the scheme that did not 
transmit the side information was identified as superior. 
It is the aim of this abstract to present some improvements on the 
previously presented adaptive schemes (all of them based on BC), 
and also to introduce some new approaches using PCC. 

II. MODEL DESCRIPTION. 

The transmitter strategy is simply to use different codes for different 
channel states. Because the block lengths are not the same for all 
codes a special metric is adopted at the receiver [3]. This metric 
depends on the joint probability of the message m and the received 
sequence y P(m,y); we can write: 

P(m,y) = P(m)P(xJm)P(y|x,„) 

The main problem observed in the previous work was the 
possibility of losing synchronisation. Lack of synchronisation is 
detected when / blocks are found in error in m consecutive blocks. 
However, in the previous approach the data was sent directly to the 
data sink, whereas now it is kept until m blocks are decoded. At this 
point, provided that / blocks are not in error, the first data block is 
sent to the data sink. Otherwise re-synchronisation is achieved by 
moving a decision window bit by bit. This technique reduces the 
decoded error rate although it increases the delay and the 
complexity. Another possible scheme is developed using a tree 
structure. Here, a stack-like algorithm is implemented using the 
previously defined metric. The advantage of this scheme is that it 
achieves synchronisation automatically, provided the buffer does 
not overflow. The disadvantage is that a poor metric can easily lead 
to buffer overflow. 
Finally a completely different scheme is proposed, this time using 
PCC. The main advantage of this scheme is that rate changes can be 
more gradual since they only involve a change in the puncturing 
matrix. Two techniques of this type are examined depending on 
whether the convolutional encoder is flushed after each block. 
Clearly, when the encoder is flushed the error performance is better 
and the complexity is lower but the throughput is less good. 
Without flushing the throughput increases but the decision 
technique is more troublesome and incorrect decoding can result 
more easily. 

Further analysis allows the complexity of each scheme to be 
calculated and compared. However, since the main source of 
complexity resides in the decoder and this depends on the algorithm 
used, a completely fair comparison is very difficult. Nonetheless, 
the scheme with constant block length promises the least 
complexity, followed, quite closely, by the flushed PCC scheme. On 
the other hand, the schemes using either a constant number of 
information bits or a non-flushed PCC are quite complex due to the 
occasional necessity for data re-decoding or backtracking 
respectively. 

III. RESULTS AND CONCLUSION. 

The schemes presented are designed to achieve an error rate under 
10"5 while working between 1 and 12 dB (Es/N0). The codes used 
are tabulated here: 
BC: 

Constant block length: 
Schemel.- («,/t,0=(63,l 1,12), (63,24,7), (63,30,6) and (63,51,2). 

Constant number of information bits: 
(«,/t,0=(63,ll,12), (31,11,5), (23,11,3) and (15,11,1) 
Scheme2.- Buffer technique.        Scheme3.- Tree technique. 
PCC:   (Buffer length 96) 
Original code («,fc,AT)=(4,l,5) and punctured to rate 1/3, 1/2 and 7/8. 
Scheme4.- Flushing.       Scheme5.- Without flushing. 
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Abstract - A novel maximum-likelihood hard- and 8- 
level soft-decision scarce-state-transition (SST) type 
syndrome-former error-trellis decoding system of 
(n, re-1) convolutional codes with coherent BPSK 
signals for additive white Gaussian noise channels is 
proposed. The proposed system retains the same 
number of binary comparisons as the syndrome-former 
trellis decoding method of Yamada et al. [2]. Like the 
original SST-type register-exchange Viterbi decoding 
system [4], the proposed system also has the same 
advantage of drawing less power when implemented on 
CMOS LSI chips. A combination of the two 
techniques results a less complex and low power 
consumption decoding system. 

SUMMARY 

In Viterbi algorithm decoding of (n, k) convolutional 
codes, the decoder carries out (2M)-ary comparisons at 
each node of the encoder trellis [1]. The implementation 
of the Viterbi decoder becomes impractical for high-rate, 
powerful codes as the number of operations and memory 
path histories increase. In a 1983 paper, Yamada et al. [2] 
proposed a maximum-likelihood decoding system for rate- 
\n-\)ln convolutional codes, and the system performance 
was studied by Lee and Farrell [3]. The decoding system 
applies the Viterbi algorithm to the syndrome-former 
trellis of the code. Apparently, the number of trellis states 
is doubled, but the number of comparisons at each node is 
reduced to a binary comparison. Recently, Kubota et al. 
[4] proposed scarce-state-transition (SST) register- 
exchange (information bits are associated with surviving 
paths) Viterbi decoding system of reduced states, 
implemented on CMOS VLSI chips and consumed less 
power in the low bit-error-rate (BER) operating region 
when compared with a hypothetical register-exchange type 
of Viterbi decoder. A power consumption reduction of 
40% at a bit error rate of 0.0001 can be achieved when 
operating at an information rate of 25 Mbit/s [4], and the 
measured power consumption with increasing channel 
noise was also reported in [4]. In this paper, we proposed 
a new maximum-likelihood SST-type trellis decoding 
system for rate-(n-l)/« convolutional codes, called the 
SST-type syndrome-former error-trellis decoding system. 
Our decoding system differs from the error-trellis syndrome 
decoding technique proposed by Reed et al. [5]. In their 
paper, the trellis is constrained and drawn from a fc-input, 
(«-£)-output regulator circuit of a rate-/:/« convolutional 
code and is only applicable to the class of systematic codes 
whereas our syndrome-former error-trellis is drawn from the 
«-input, single-output syndrome-former circuit of a rate- 
(n-l)/n systematic or non-systematic convolutional code. 
The new system is similar to the SST-type Viterbi 
decoding system [4] in that it has the advantage of 
drawing less power when implemented on CMOS chips 
and operated in a low BER condition.  Like the Yamada 

decoding system [2], the new system has also retained a 
binary comparison at each trellis node and significantly 
reduces the decoding complexity. A combination of the 
two techniques results a less complex and low power 
consumption decoding system. 

The simulated bit error probability performance of the 
proposed hard- and 8-level soft-decision decoding system, 
shown in Figure 1, for additive white Gaussian channels is 
presented. Furthermore, the implementation complexity of 
the new decoding system is compared with the SST-type 
register-exchange Viterbi decoding system. 
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Fig. 1     Model of an eight-level soft-decision SST-type 
syndrome-former error-trellis decoding system 
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Abstract - Sequential decoding of trellis codes at high spectral 
efficiencies is investigated and large constraint length trellis 
codes for two dimensional and four dimensional constellations 
are constructed for use with sequential decoding. It is shown 
that the channel cut-off rate bound can be achieved using 
constraint lengths between 16 and 19 with sequential decoding 
at a bit error rate of 10"5 -10"6. 

I. INTRODUCTION 

Recently, it has been shown that sequential decoding is a good 
alternative to Viterbi decoding for trellis codes and significant 
coding gains can be achieved using sequential decoding with 
large constraint length trellis codes compared to Viterbi 
decoding with small constraint lengths[l]-[3]. The channel cut- 
off rate R0 is the maximum rate at which the average number 
of computations for sequential decoding is bounded. Thus, Ro 
is regarded as the maximum rate for which reliable 
communication can be achieved with reasonable complexity. 
Trellis codes for 8-PSK and 16-QAM constellations with large 
constraint lengths were constructed for use with sequential 
decoding in [3,4]. For these constellations, it was shown that 
the channel cut-off rate bound can be achieved using large 
constraint length codes with sequential decoding at a bit error 
rate (BER) of 10'5 - 10"6 on Additive White Gaussian Noise 
(AWGN) channels[3]. In this paper, we discuss the 
construction of trellis codes at higher spectral efficiencies for 
use with sequential decoding. 

II. SEQUENTIAL DECODING AND THE FANO METRIC 

The calculation of the Fano metric at high spectral efficiencies 
and for multidimensional signal constellations is discussed. 
We show that the computation of the Fano metric for 
multidimensional signals can be decomposed into a simpler 
calculation for the constituent two dimensional signals, and 
thus that the computational complexity of decoding a 
multidimensional trellis code using sequential decoding is 
comparable to decoding a two dimensional trellis code. 
Simulation results show that the computational distribution for 
sequential decoding of multidimensional trellis codes at high 
spectral efficiencies can be very well approximated by a 
Pareto distribution. This implies that the code construction 
criteria for trellis codes with sequential decoding derived for 
small spectral efficiencies can also be applied to the 
construction of trellis codes at high spectral efficiencies. 

III. CODE CONSTRUCTION 

The Random Search (RS) algorithm proposed in [3] is 
investigated and modified to construct trellis codes at high 
spectral efficiencies. This work was motivated by the random 
coding principle that an arbitrary selection of code symbols will 
produce a good code with high probability, hi the code 
construction algorithm, the sequential decoding performance 

Daniel J. Costello, Jr. 
Department of Electrical Engineering 

University of Notre Dame 
Notre Dame, Indiana 46556 

was used as the criterion for selecting good codes. Thus the 
algorithm works well as long as the performance of the code 
can be evaluated using sequential decoding. 

In practice, rotational invariance is a desirable property. It 
allows the decoder to synchronize quickly at startup or after a 
phase slip, hi [5], a simple method was proposed to check the 
rotational invariance of a given code. It was shown that 
rotationally invariant trellis codes with large constraint lengths 
can be found in a systematic way. hi the modified RS (MRS) 
algorithm, this method is used to insure that rotationally 
invariant trellis codes are found. 

IV. RESULTS AND DISCUSSIONS 

The MRS algorithm was used to construct two dimensional and 
four dimensional trellis codes. 18()u rotationally invariant linear 
trellis codes for two dimensional constellations with constraint 
lengths 16-19 were obtained. Simulation results show that the 
cut-off rate bound can be achieved using sequential decoding 
with a constraint length 16 code at a BER of 10"5 and with a 
constraint length 19 code at a BER of 10"6. Similarly, 180° 
rotationally invariant linear trellis codes and 90° rotationally 
invariant nonlinear trellis codes for four dimensional 
constellations were found using the MRS algorithm. The 
partitioning and labeling of the four dimensional constellations 
are the same as Wei's [6]. It was also shown that the channel 
cut-off rate bound can be achieved using sequential decoding 
with four dimensional codes using constraint lengths between 
16 and 19 at BER'sof l()"5- UY*. 
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Real Number Convolutional Code Correction and Reliability Calculations 
in Fault-Tolerant Systems 
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An efficient fault-detecting methodology, 
algorithm-based fault tolerance, may be extended to 
include error correction of the output data in a 
protected linear processing system by coupling a 
high-rate real convolutional code with a smoothed 
Kaiman recursive estimation technique [1]. A 
completely protected fault-tolerant linear processing 
system involving error correction is shown in 
Figure 1 where it is guaranteed that no miscorrected 
data leave the configuration if at most one box- 
surrounded subsystem fails at a time.. The real 
convolutional code dictates the comparable parity 
streams computed in two ways, forming the 
syndrome stream that is passed to the Fixed-Lag 
Corrector when values exceed threshold settings. 
The block processing and down sampling features 
of the convolutional code permit the overhead area 
to be from 20-50% of the main processing area. 

The reliability function of the protected system is 
calculated when failures are assumed to arrive 
according to a Poisson process with uniform rate 
per unit area. Arrivals in the main processing part 
are assumed independent of those in the protection 
overhead parts leading to respective arrival rates a 
and b as shown in Figure 1. The reliability levels 
are computed using iterated integrals over 
appropriate regions and conditional probability 
expansions. The guard space of the convolutional 
code is described by parameter c. Reasonable lower 
bounds on the reliability levels which depend only 
on the arrival rates a and b and guard parameter c 
are established by bounding individual conditional 
events. 

n/N .    -(a + b)t r , 
R(t) > e -{_ 1 + bt + 

L/rJ        t_nc      t-(n-l)c      t-(n-i+l)c t-c 
I   a"     J J      -       J       -.        j 

n=l 5j=0    ^x+c     Si=5i-i+c     5n=5n-l+c 

[l + bijj. jnD + btej-^-c)]! 

[l + b(t-§n-c)] d^d^-d^   } 
These reliability bounds are easily calculated 

employing a standard computer algebra package on 
a workstation. Typical results are shown in 
Figure 2 for a real code based on a binary rate 5/6 
Berlekamp-Preparata-Massey burst correcting code. 
The failure intensities (FITS) of rates a and b are 
indicated and the guard space parameter c is related 
to a 30ns clocking period. The results for a coded 
versus uncoded system are displayed separately 
because of the large differences in scales of the 

reliability   logarithms.   There   is   a   dramatic 
improvement in levels due to correction even when 
the additional area of the protection overhead is 
included. 

' This research was supported by grant NSF MIP-92 15957. 
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Abstract — A bidirectional Viterbi decoding algorithm for 

framed information with repeat request which is an extended 

version of the Yamamoto-Itoh  scheme is  presented   A 

method to estimate the unreliable region in a received frame 

using the proposed algorithm is also presented. 

I. BIDIRECTIONAL VITERBI   DECODING 

ALGORITHM  WITH   REPEAT REQUEST 

Yamamoto and Itoh proposed a convolutionally coded 

ARQ scheme with Viterbi decoding in order to improve the 

reliability of convolutional coding/Viterbi decoding [1]. In 

this scheme, all survivors are labeled either GOOD or BAD 

and retransmission is requested if all survivors are labeled 

BAD. On the other hand it is known that a string of received 

symbols  corresponding  to  a frame of information bits 

augmented by tail bits can be decoded from both directions 

simultaneously    [2],    [3].    Taking    these    facts    into 

consideration, we propose a bidirectional Viterbi decoding 

algorithm for framed information with repeat request. 

In this scheme, a received frame is accepted if the forward 

and reverse decoders can meet without declaring 

retransmission in the course of decodng. The ML path is 

decoded by a trace-back method or some equivalent one, after 

determining the node x0 on the ML path at the point of 

junction. The proposed scheme is most efficiently applied for 

the case where one of the two decoders ( let this decoder be 

the forward one ) stops at some node level t0 declaring 

retransmission, while the other decoder ( i.e., the reverse 

decoder ) can proceed up to level t0. In this case, only a part 

of the frame (i.e., [0, t0] ) is needed to retransmit. For the 

retransmitted data, the two decoders resume decodng from 

both directions ( Note : the reverse decoder can continue 

decodng operations using the survivors and their metrics 

computed till then ). If the same situation happens after the 

first retransmission, partial retransmission is requested again 

and the procedure is repeated until the two decoders can join. 

It is derived analytically that the averaged quantity of 

retransmission per frame in the proposed scheme is 

approximated by (L74)px ( L' : length of a coded frame, px : 

probability of retransmission per frame ). 

II. ESTIMATION OF UNRELIABLE REGION 

When retransmission is requested at node level t0 in the 

Yamamoto-Itoh scheme, we know that some noisy region 

has started before t0 in the corresponding trellis. That is, the 

noisy region in the received data has been roughly estimated 

in "one" drection. Making use of this fact, we show that the 

unreliable region is estimated as an "interval" by using a 

bidrectional Viterbi decodng algorithm with repeat request, 

especially in the case where the two decoders, one with a flag 

of retransmission and the other without it, can join in the 

course of decodng. In such a case, by tracing the ML path 

forward and backward we can find the node x* (level t, ) at 

which the label of the ML path turns BAD for the first time 

and the node x,** 0evel t,**) at which the second best path for 

node x/ has dvergedfrom the ML path in forward (i=l) and 

reverse (i=2) decodng. Then the interval [t", t2*#] is regarded 

as an unreliable region. The relation between t; and t, is 

given by the following lemma : 

<Lemma >    t,**^t2* and t^t,   . 

In order to realize the above idea, we incorporate a new 

bidrectional Viterbi decodng scheme into the proposed 

algorithm. In this scheme, only the metrics of the survivors 

are remembered until the two decoders join and alter that they 

serve as preliminary computations for determining the nodes 

on the ML path. It is shown that the scheme is very 

convenient for tracing the ML path forward or backward. 
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Abstract — A reduced complexity algebraic type 
algorithm is described for decoding of convolutional 
codes over GF(g), g > 2. It is founded on the same 
principles as algebraic-sequential decoding [1, 2]. It 
is proved that for large q, the algorithm has better 
complexity-reliability tradeoff than the conventional 
Viterbi algorithm. 

SUMMARY 

Let us consider a discrete symmetric memoryless channel 
(DSMC) with input and output alphabets A = {0,1,..., q — 
1}, where q > 2 is a prime or a power of a prime. By defini- 
tion of a DSMC, each output symbol of the channel depends 
only on the corresponding input. The conditional probability 
Pij of receiving symbol j, j € A, provided that the symbol i, 
i € A, has been transmitted, is given 

by the unequality 

1-e, if i = j 
1),    otherwise 

Let   V   =   (v0,Vl,...)   =   (l>01,«02,...»0c, t>ll,l>i2,...,«lc, ...) 
be the output (code) sequences at the output of the 
convolutional rate R = b/c memory m encoder, u = 
(uo,Ui,...) = («oi,«02, •••, «06, «li, «i2, ■•.,«!(,,...) be the 
input (data) sequence. Then v = uG, where G is a semi- 
infinite generator matrix having b x c submatrices as ele- 
ments. All elements of v, u and G are elements in GF{q) 
and all operations are performed over GF(q). Let r = 
(r0,ri,...) = (roi,r02,.. • ,r0c, rn, m,... ,ric,...) be the re- 
ceived sequence, nj € GF(q). 

We introduce the binary error locator sequence 1 = 
(lo,li,...) = (ioueo2,...,e0c,£iu£i2,...£ic,...), iij € {c,e}, 
where tij = c ("correct") if nj is received correctly and iij = e 
("erroneous") otherwise. A sequence 1 is considered as sur- 
vived, if there exists a code sequence v, which symbols coin- 
cide with the symbols of r in the positions where 1 have symbol 
c and not in the other positions. If the decoder knows the er- 
ror locator sequence, it can correctly decode the information 
sequence, if it can do maximum-likelihood (Viterbi) decoding. 

The set of survived error locator sequences can be repre- 
sented as a set of paths in a binary error locator tree. The 
decoding algorithm can then be treated as a search algorithm 
in the error locator tree. We consider a list-decoding type 
algorithm: In every decoding step the decoder selects the L 
most likely sequences in the error locator tree and calculate 
its survived successors. 

To characterize the algorithm we introduce the character- 
istic parameter z = (1 - R)/\ogq(q - 1) and the effective 
decoding distance de/, which plays the same role as the 
free distance does for the Viterbi algorithm: The decoder cor- 

rects all combinations of or less errors. 

Theorem 1: There exists a rate R g-ary time-invariant 
convolutional code, whose effective distance resulting from al- 
gebraic type Viterbi decoding of list size L is lowerbounded 

le/ 
zlog2£ 

> ——A-. h const, 
h2(z) 

where h2{z) = -zlog2 z - (1 - z) log2(l - z) and the constant 
does not depend of L. 

Comparison with the Costello bound for the free distance of 
convolutional codes, shows that for large q the algebraic type 
Viterbi decoding gives essentially better complexity-reliability 
tradeoff than conventional Viterbi decoding. 

Using modified random coding technique we obtain a ran- 
dom coding bound and an expurgation bound for the proba- 
bility of decoding error for the algorithm. 

To formulate the expurgation bound, we introduce the al- 
gebraic computational cutoff rate: 

R(
0
a) = max{l - 20 -logq(g - 1),  R0}, 

where zo is the largest root of the equation 

1 
Hog  -^ + (l-,)log-L* :0 

and Ro is the "conventional" computational cutoff rate of the 
DSMC: 

R0 = l-2logq{(l-e)1" + [e(q-l)Y'2}. 

Theorem 2 (expurgation bound): For a g-ary DSMC, 
there exist a rate R g-ary time-invariant convolutional code 
and a Z-list algebraic type decoder, whose burst error proba- 
bility is upperbounded by 

Pe<i_^(H)+0(1),   R<R{C 

where 

7ex(Ä) z log i/s + (1 — z) log i/T—~ 

Theorem 3 (random coding bound): For a g-ary DSMC, 
there exists a rate R g-ary time-invariant convolutional code 
and a I-list algebraic type decoder, whose burst error proba- 
bility upperbounded by 

Pe < £7r(K)+«<l)i   R>R(Q«)> 

where 

7r(Ä) 
2log2    f + (l-2)log2    1=£ 

A2(*) 
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Abstract   A   new   concept  of   X-order    orthogona- 
lization,    and    a    general    threshold    decoding    method    is 
introduced. Many    codes    decodable    using    general 
threshold  decoding  can  be  constructed  and  are  superior  in 
performance   to   other   majority-logic   decodable   codes. 

I. INTRODUCTION 
Many efforts have been made [1] [2] in trying to decode more 

codes using majority-logic decoding with nonorthogonal parity- 
check sums. This approach, however, requires more parity-check 
sums for each error digit than orthogonal majority-logic 
decoding, and is only applicable to a small class of codes. 
Rudolph and Robinson [3] claimed that any decoding function for 
a linear binary code can be realized as a weighted majority-logic 
decoding. However, each weight element in this scheme is a 
function of all the 2"'k parity-check sums, so it will involve a 
large number of computations in addition to the majority-logic 
operation. The method presented in this paper can be viewed as 
an alternative to applying the threshold decoding method to 
more types of codes, but involving fewer computations. 

n. THE GENERAL THRESHOLD DECODING RULE 

orth-M-L non-orth-M-L 

J **c >2tcX 

tc± n-1 
2(3-\)_ 

< n-1 
[2(d-l)\ 

< 

X -orth-threshold 

>(2fc-l)A + l 

X(n + d-\)-d 

2l(d-Y) 

Let syndrome digits s0,s„ .... sn_k_{ be Boolean variables eterSv      - 
A    • v.. i !• r      .   .j«      ..      r. .    il  " ~ 

ffl. THRESHOLD DECODABLE CODES 
It can be shown [4] that there are many codes which can be 

decoded in one step using the rule given by (1). 
* Any (2'" -1, 2"' - m -1) Hamming code is an (m -1) - 

order orthogonal code which can be decoded by one-step 
threshold decoding with the threshold value T = m. Hence, 
only one threshold gate is required for hardware implementations 

m-2 

in this case, instead of a total of V J' majority-logic gates [5] 
1-0 

when Hamming codes were originally treated as (m-l)-step 
majority-logic decodable codes [6], 

* The     (vd,bd,rd,k'd, ^-configurations    [7]    with 

and el(s0,s1,...,sn_k_1) the decoding function for the error 

digit in the /th position of the received vector. The general 
one-step threshold decoding (simply GTD) rule is defined to be 

J) 

K J,X = J-1,    where 

t, > 3,  3 < J < I 4 / 2j.     constructs   a  class   of  (n, k, d) = 

( 

ei(S0> Sl> "•' Sn-k-W 

+ & 

i     ifXA,>r 
;=o (i) 

o     if5>y<r 
j=0 

y-fj 
. 4) SEC-DED codes which can be decoded by 

where Aj = a0s0 + axsx + ... + a^^s^^ (a,, e GF(2)), A,, 

is a parity-check sum, J is the number of parity-check sums on 
e(, and T is the threshold value. 

definition: A code is said to be X -order orthogonal if for 

any set of parity-check sums, e.g., a set on el, el appears in each 

parity-check sum, but no other error digits appear more than X 
(X >1) times in the set. 

This definition covers both orthogonal (X =1) and 
nonorthogonal (X >1) cases. In the table below, the parameters 

J and tc for three decoding methods, majority-logic decoding for 

orthogonalizable codes (simply orth-M-L), majority-logic 
decoding for nonorthogonalizable codes (non-orth-M-L) [1] and 

GTD for A-order orthogonalizable codes (A-orth-threshold), are 
listed for the purpose of comparisons. 

It is easy to show that GTD is always applicable where 
majority-logic decoding can be used, and requires fewer parity- 
check sums than the second case. 

one-step threshold decoding with the threshold value T - J, 

where <fj =n-k. 

A comparison of some threshold decodable codes with 
existing majority-logic decodable codes, and a list of multiple- 
error-correcting threshold decodable codes, is given in [4]. 
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Abstract — New trellis encoders over various lattice 
partitions having optimum distance profile (ODP) 
and large constraint lengths are constructed. They 
are attractive to use in combination with sequential 
decoding algorithms since their ODP property en- 
sures good computational performance. 

I. INTRODUCTION 

Trellis coded modulation (TCM) can achieve significant cod- 
ing gains over uncoded transmission without any bandwidth 
expansion. For error rates of the order of 10-6, the gap 
between the Shannon limit and uncoded high-rate QAM- 
signaling is approximately 9 dB, being the maximum achiev- 
able coding gain for any coded modulation scheme operating 
in this region. A perhaps more realistic performance limit is 
the computational cut-off rate, Ro, beyond which the average 
number of computations for sequential decoding becomes un- 
bounded. The possible coding gain under the iJo-criterion is 
7.5 dB. It can be separated in two parts, viz., fundamental 
coding gain and shaping gain [1]. The maximum values of 
these gains are approximately 6 dB and 1.5 dB, respectively. 

The signal constellation can be viewed as a set of 2"+1 

points from an infinite A-dimensional lattice A. A sublattice 
A' of A induces a partition A/A' of A into |A/A'| cosets of A'. 
The output of a rate Rc = -^^ convolutional encoder is used 

to select one of the 2*+1 cosets. Then the n — k uncoded bits 
select one of the points in the specified coset. The fundamental 
coding gain is determined by the convolutional encoder and 
the lattice partition, whereas the shaping gain depends on the 
bounding region of the constellation. 

The aim of this work is to increase the fundamental coding 
gain compared to current systems by increasing the number 
of states in the encoder. The decoding is performed with a 
sequential decoder since its decoding effort is essentially in- 
dependent of the number of states. It is well-known that the 
code should have an optimum distance profile (ODP) in or- 
der to minimize the average number of computations for the 
sequential decoder. 

II. SEARCH FOR ODP-ENCODERS 

It is convenient to search for Rc = TTT encoders on a syste- 
matic feedback form. The corresponding generator matrix is 

G(D) = (7, | H\D)/H\D)) , i = l, ••-,*, 

where 
Hi(D) = hi + hiD + --- + hlDu 

are the parity check polynomials in the delay operator D. The 
search is performed as follows: 

Assume that the set of ODP-encoders of constraint length v 
is known. Form the 2k+1 possible extensions of every encoder 
within this set and calculate their distance profiles.   Retain 

the encoders with the best distance profile, these form the set 
of ODP-encoders of constraint length v + 1. 

Later on, we will require the encoder to be on a feedforward 
form. The transformation from a systematic rational to a 
non-systematic polynomial encoding matrix is performed as 
follows: 

The encoding matrices G(D) and G\ (D) are equivalent if 
Gi(I>) = T{D)G{D) and T{D) nonsingular. If T(D) is chosen 
to be Ik ■ H°(D), G\(D) has a feedforward realization. 

Let Gi(D) = A(D)T(D)B(D) be the Smith factorization 
of Gi(Z>). Choosing G2(D) as the k upper rows of B(D) 
ensures that G2(D) is basic and equivalent to G(D). Using 
the algorithm in [2], we are now able to construct a minimal- 
basic matrix Gz(D) that is equivalent to G(D). 

III. PERFORMANCE EVALUATION 
The distance spectrum of the encoders are computed with 
the FAST algorithm [3], which is considered to be very effi- 
cient. However, it requires knowledge of the smallest number 
of steps needed to drive the encoder from a certain state to 
the zero state. This is very difficult to compute for an encoder 
with feedback, but trivial for a feedforward encoder, which is 
the reason for the encoding matrix transformation. The com- 
plexity of the matrix transformation is small compared to the 
increase in number of node visits that would occur if another 
search algorithm would be employed. 

In the table we give ODP-encoders over Z2/2iZZ2 maxi- 
mizing the effective coding gain, -yeff, at an error rate of 
10-6. Following [1], we compute the three first components 
of the distance spectrum, Ni. The dominant error coefficient 
is starred, and the parity check polynomials are given in octal 
notation. 

We will continue to search for large constraint length ODP- 
encoders over 4- and 8-dimensional lattice partitions and per- 
form simulations of their performance. 

V H2 H1 H° J2 
a free N0 JVi N2 feff 

5 20 12 41 5 *4 16 72 3.98 
6 100 2 45 5 *4 20 116 3.98 
7 100 32 261 7 *20 104 520 4.98 
8 100 272 601 7 4 *32 232 5.43 
9 100 622 1215 8 12 *96 480 5.66 

10 100 1062 2275 8 4 *48 256 5.84 
11 1500 3052 6601 8 *4 8 88 6.02 

This research was supported in part by the Swedish Research 
Council for Engineering Sciences under the Grants 92-661 and 94- 
83. 
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SUMMARY 

Binary block codes have been extensively used for error detec- 
tion, and amongst the most popular we have the CRC (cyclic 

redundancy check) codes [1, 5]. In contrast, convolutional 

codes have been used almost exclusively for error correction 

(the exception being some hybrid applications). A reason for 

this is that the most popular convolutional codes have a rate 

that is far too low (e.g., 1/2, 2/3) for the cases where only 
error detection is desired. Furthermore, while there has been 

a variety of algebraic methods to design good high-rate block 
codes, the design of good high-rate convolutional codes seems 
to be more difficult. Nevertheless, progress has been made in 
that field [2], which opens the practical possibility of using 

convolutional codes for error detection. 

Clearly, one crucial requirement for the use in (only) error 

detection is low decoding complexity. We show that for this 
specific application the decoding complexity of convolutional 

codes is practically equal to the coding complexity, which is 
very small. Thus, the encoder/decoder can be implemented 
directly in hardware (as exemplified in Fig. 1), or use efficient 
software decoding techniques like those used for CRC error de- 

tection codes [5]. Different encoder/decoder implementations 

are considered. 

By studing the properties of high-rate convolutional codes 

for the purpose of error detection, we show their potential 
advantages over block codes. For instance, one fundamental 

limitation of block codes for burst error detection comes from 
the fact that the decoder can only flag an error at the end of 
each data block. Consequently, there is conflict between the 
minimization of the probability of undetected errors, and the 
minimization of the average error detection delay—which is 
the amount of time taken by the decoder to flag an error after 
it occurred. To minimize the delay it is necessary to use short 
blocks, but, for a given code rate, short block codes may not 
be powerful enough to detect long bursts. The convolutional 

codes can be powerful enough to detect those error bursts, 

and still flag the errors with small delays. 

In addition, this study gives a deeper view of CRC codes— 
which happen to be a special case in a class of codes that we 

call unit-rate convolutional codes. Thus, for the extension of 
CRCs we can employ techniques used for convolutional codes, 

like the use of unit-memory [3, 2] or cyclic time-varying codes. 

Certain general error detection capabilities of the convolu- 
tional codes are derived, as shown in the example below. 

Proposition 1   The fraction FU{L, n, k, m) of error patterns 
with duration L not detected by a (n, k, m) convolutional code 

1This work was supported by CNPq, Conselho Nacional de De- 
senvolvimertto Cientifico e Tecnolögico, Brazil. 

Fu(L,n,k,m) — < 

0, 

2* -1 
(2" - l)2 2n(m_1)' 
(ok _ Y\2 2*(L-m_2) 

(2n - l)2 2n(L-2)   ' 

L < TO, 

L = m + 1, 

L > m + 1. 

As explained above, CRC codes can be considered special 

convolutional codes, and, as expected, FU(L, n, k, m) gives the 

performance a (nc, kc) <?-ary CRC code when n = k = 1, 2 = 
q, and TO = nc — kc. A more detailed analysis of particular 

codes, based on worst-case scenarios [4], can also be used to 
analyze the performance, or define code design objectives. 
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D 
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Fig. 1 - Encoder/decoder implementation for systematic 

codes: x is a vector with k data bits, and y contains n — k 
parity-check bits; the matrices Pi and Hi have dimensions 

k x k and k x (n — k), respectively. 
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Abstract — The table-based soft-decision convolu- 
tional decoding method presented here performs a 
reduced tree search as compared to the M-algorithm. 
The degree of tree-searching is adapted to the state 
of the channel by using a syndrome sequence and pre- 
computed information stored in a memory table. This 
results in a significant reduction in computational 
complexity while maintaining bit error rate perfor- 
mance comparable to the M-algorithm on a Rayleigh 
flat-fading channel. 

I. TABLE-BASED ALGORITHM 

We restrict the presentation to rate one-half convolutional 
coding, although the algorithm presented may be ex- 
tended to other coding rates.     Let  the encoded  sequence 

Viterbi algorithm and the Table-based algorithm (syndrome 
length ß = 15, M = 8, 7 = 8). Figure 1 shows the decoded 
information bit error rates for the three algorithms and Figure 

2 shows the average number of paths per time-step for which 

both branch extensions were considered which is representa- 
tive of the reduction in computation. 
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C1)  JV be v = (*>J Vo X'Vi'V-O = (v0,vi,v2,...), where 

Vj = (v\ ',v\ ). Let the corresponding received se- 
quence of real-valued (soft) symbols at the receiver be r = 

Information Bit Error Rates 

,(!) J2\r[l) ~(2) 
.) — (ro,Pi,...).    The sequence r may 

1x10 

1 

be hard-quantized (sign detector) to generate a binary re- 

ceived sequence b = (b0 \b0
2 ,6^ , b[ \ ...) = (b0,bi,...). 

The data-independent syndrome sequence s = (so, «i,«2,...) 
is denned as s = bHT, where H is the parity check matrix. 

A section of the syndrome sequence S[t) t+r] is generated from 
b[t-j/, t+T] where v is the constraint length of the encoder. 

In the M-algorithm, at each time-step t, each of the M 

paths pjp t_1i) 1 < i < M, from time t — 1 is extended with 
both branch extensions in the code tree to form a total of 

2M paths from which the best M paths are chosen [1]. The 
table-based algorithm stores Mc paths at any given time with 
Mc < M and differs from the M-algorithm as follows [2]: 

1x10 

1x10 

"^ 

—- M-alg BER, M=8 

 Tb-algBER 

 Viterbi Alg 

6 7 
Eb/No 

8        9 

For each path p^ a syndrome sequence s[;>
)
t+7_1] is calcu- FiSure 1: Information Bit Error Rate performance 

lated.   Ifsfj) ,. [t, t+7-1 
,C0 = 0, pp0

J (11 is extended only with one 

branch extension P( = b(, i.e., no additional paths are gen- 

erated. If s|* t+ t, / 0, a finite section of s^ is used to 
retrieve a memory table entry that indicates if a single branch 
extension must be considered with pj = b( as above or if 

both branch extensions of pfp tl, must be considered. If 

S[t! t+j-i] — 0 f°r the path p with the best metric, the other 
Mc — 1 paths are discarded, and the best path is simply ex- 
tended with the received symbols (b(, ht+i,...) until the next 
non-zero syndrome bit occurs. In this stage, Me = 1 and 
the algorithm is in a depth-first search mode until the next 
nonzero syndrome bit occurs. 

II. PERFORMANCE 

A framed system with interleaving similar to the IS-54 North 
American digital cellular standard is used, with F — 84 infor- 
mation bits and v = 5 tail bits in each frame. A Rayleigh time 
correlated flat-fading model is used for the channel. At the 
receiver, ideal estimation of the fading coefficients is assumed. 
Simulations were performed for the M-algorithm (M = 8), the 

Avarag* mimbar of path axtanniona par branch 

- Tb-alff,   S-X3 
- H-alg,   M-B 

0        3        6        9      13     15     18     21     24     27     30 

Eb/No 

Figure 2: Average number of path extensions performed 

per branch 

1 Havish Koorapaty is with the Dept. of Electrical and Computer 
Engineering. His work was supported in part by Ericsson Inc. 
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We analyze the relationship between the MDL (Mini- 
mum Description Length) estimator (posterior mode) and the 
P.B.E. (projected Bayes estimator) for exponential families, 
where the P.B.E. is obtained by projecting the B.E. (Bayes 
estimator, i.e. posterior mixture) onto the original exponen- 

tial family and is equal to the B.E. under a certain condition. 

An exponential family is defined as 5(0) = {p(x\9) = 
ewp(6'xi — tp(9))\9 £ 0} (the range of random variable x is 

X C 5ftn), where 0 is a connected subset of 5ftn and 9lXi de- 

notes ^".ö'zi. 9 is called the canonical parameter or the 
0-coordinates. We also define the expectation parameter v [r\- 

coordinates) as Vi = E$(xi). 9 and r\ form a dual pair from the 
point of view of information geometry [1]. Let g13 denote the 

Fisher information matrix with respect to 77. We define gij = 

Ee((xi-r}i)(xj-r)j)) a,ndTijk = Ee((xi-Vi)(xj-Vj)(xk-Vk)). 
Note that gij equals the inverse of g13. We refer to a function 
/ which maps |J._. 1 X1 to T-t (any set of probability distri- 

butions) as an estimator. We let f[x ] denote the image of 
xN by / and f[xN](x) denote its density at x. Hereafter, we 
let fj denote the maximum likelihood estimate (MLE) for rj, 
and T and g denote their values at v = i) respectively. Finally, 
we let 'In' denote the natural logarithm. 

We define the B.E. with the prior w(9)d9 as /, 
= pw(x\xN) = Jp(x\9)w(9\xN)d9, where w(9\x 
notes the posterior density of 6. We let wj denote 

the Jeffreys prior (oc (det \gij\)1^2). Among the B.E.'s 
fWJ    is   particularly   important,    since   it   is   known   ([2]) 

that supes0 -MX^o D(p(-\0)\\fAxi])) (D denotes Kullback- 
Leibler divergence) is asymptotically minimized when w = 
wj, i.e. fWJ has minimax property. We define the pro- 
jection of fw to 5(0) (let fw denote it) as fw[xN] = 

argminpes(©) ■C(/u>[2;JV]||p)- We refer to fw as the P.B.E. with 
the prior w. Define fj = J  r](9)w(9\xN)d9, then we can show 

Vi(f™[x ]) = Vi under a certain weak condition. Using this 
fact, we can show the following for fw. 

Theorem 1 Under a certain weak condition, r)i(fw\x ]) — 

fa +N-1dlnw{9)/d9i +0(N~3/2\/h^N) holds. When w(9) 
is uniform over 0, r)i(fw[xN]) = fji + 0(e~      ) holds. 

Corollary 1 Under a certain weak condition, r]i(fL[x ]) = 

Vi +Tijkg
3k/2N +0(N-3/2Vhn;J) holds. 

The MDL estimator with respect to prior w(9)d9 is defined 
as9mdi = argminee0 (- lnp(xN\9)-ln w(9)+\adet \gab(9)\/2) 

and fZdi[xN] =p{-\9mdi) ([3, 5]). When w(9)d9 oc d-q, we let 
fmdl denote fZdi- We show the following for fZdl. 

Lemma 1 rH(fZu[«'N]) = Vi +N-1d\nw(9)/89i 

[x 
)   de- 

-Tijkg
3k/2N +0(N- ) holds.  In particular, rji(fmdl\x   ]) 

Vi +Tijkg
3k/2N +0(N~2) holds. 

We let /£. denote the bias corrected MLE with respect to 9 
(see for example [1]). Concerning the expectation parameter 
of fbc, we can show the following. 

x'c/o C&C Res. Labs., NEC Corp. e-mail tak@SBL.CL.nec.co.jp 
2>RWCP: Real World Computing Partnership 

Lemma 2 ,;(/[[/]) = i)i + Tijkg
3"/2N +0(N~2) holds. 

We can show the following theorems using Theorem 1, 
Corollary 1 and Lemmas 1, 2. 

Theorem 2 Under a certain weak condition, the differences 

between v(f^di[xN]), v(Uj[xN]), and v(fL[xN]) are of order 
0((\nN)1/2N-s/2). 

Theorem 3 Under a certain weak condition, the differences 

between v(fmdi[xN])> v{fde[x   ]), and rj are of order 0(1/N2). 

We summarize the above two theorems in Table 1, where we 
ignore o(\/N) terms. These results suggest a striking symme- 

prior wd9 d9 •^/det \gtj\d9 dv 
Jw 7j-unbiased ö-unbiased 

Jmdl »/-unbiased 0-unbiased 

Table 1: dependency of estimators on prior 
try between the two estimators. 

We exhibit an example (Bernoulli sources) below. Define 

S = {p(x\v) = v*(l - V)1'*^ < V < 1} (x = 0,1), and 
9 = In (ry/(l - r?)). In this case, r,(fWJ [xN]) = {k+0.5)/(N+l) 
holds, which is well known as the Laplace estimator. Next, we 
derive the MDL estimator. The total description length for 

MDL with respect to v is —k In v — (N — k) ln(l — 77) — (In TJ + 
ln(l -V))/2 = -(k + 0.5) Inv-(N-k + 0.5) ln(l - r?). This is 
minimized when 77 = (k + 0.5)/(N + 1), which strictly equals 

v(fwj[xN]). Finally, we derive the bias-corrected MLE. Since 

Tui = Ee{(x-vf) = r7(l-T7)(l-27?), we have finff11 = 1 - 
2fj = l-2k/N. Hence, we have ^ = k/N+(l-(2k/N))/2N+ 
0(l/N2)=v(UAxN}) + 0(l/N2). 

Theorem 2 implies that we can approximate the P.B.E. 
with Jeffreys prior (which is hard to derive in general) simply 
by deriving an appropriate MDL estimator or a bias-corrected 
MLE. Some important topics of future research are as follows: 
To analyze the difference between the B.E. and the P.B.E. 
and to evaluate directly the performance of fWJ, fmdl, and 
/£.. The argument in this abstract is restricted to the case in 
which the class of sources is an i.i.d. exponential family. The 
same problem for Markov sources is discussed in [4]. We would 
also like to analyze the case for curved exponential families. 
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Abstract — We apply the method of complexity 
regularization to learn concepts from large concept 
classes. The method is shown to automatically find 
the best balance between the approximation error and 
the estimation error. In particular, the error probab- 
ility ofthe_ obtained classifier is shown to decrease as 
0(\l/\ognjn) to the achievable optimum, for large non- 
parametric classes of distributions, as the sample size 
n grows. 

In pattern recognition—or concept learning—the value of a 
{0,1}-valued random variable Y is to be predicted based upon 
observing an H. -valued random variable X. A prediction rule 
(or decision) is a function <f>: Hd —> {0,1}, whose performance 
is measured by its error probability P{</>(X) / Y}. The error 
probability L* = P{g*(X) ^ Y} of the optimal decision g* is 
called the Bayes risk. Assume that a training sequence 

£>„ = ((Xi,Yi),...,(X„,y„)) 

of independent, identically distributed random variables is 
available, where the (Xi,Yi) have the same distribution as 
(X, Y), and Dn is independent of (X, Y). A classifieris a func- 
tion <j>n : nd X (Kd x {0,1})" -» {0,1}, whose error probability 
is the random variable L((f>n) = P{<pn(X,Dn) ^ Y\Dn}. 

The method of empirical risk minimization picks a clas- 
sifier from a class C of functions 72. —> {0,1} that min- 
imizes the empirical error probability over C. More pre- 
cisely, define the empirical error probability of a decision 4> 
by Ln(<p) = (l/»)5Z"=i h<f>[Xi)^Yi}, where / denotes the in- 
dicator function. Let <j>n denote a classifier chosen from C by 
minimizing Ln{<f>), i.e., Ln{<f>n) < Ln(<f>), <f> € C. Vapnik and 
Chervonenkis [4], [5] proved distribution-free exponential in- 
equalities for empirical error minimization. One_ofthe implic- 
ations is that EL(</>„) — inf^,6c L(4>) < c\/(V\ogn)/n, where 
V is the VC dimension of the class C and c is a universal 
constant (independent of the distribution). Thus, the error 
probability of the empirically chosen decision is always within 
0(-\/logn/n) of that of the best in C. Unfortunately, if V < oo, 
then for some distributions, inf ^gc L(<f>) may be arbitrarily far 
from L* On the other hand, if V = oo, then L(4>n)— inf <^gc L(<f>) 
will be large for some distributions [3], [5]. 

A possible solution to this problem may be derived from the 
idea of structural risk minimization (Vapnik and Chervonenkis 
[5]), also known as complexity regularization (see Barron [1], 
Barron and Cover [2]). The basic idea is to minimize the 
sum of the empirical error and a term corresponding to the 
"complexity" of the candidate classifier. In our application, 
this complexity is a simple function of the VC dimension of 
the class from which the candidate classifier is taken. 

Theorem 1 Let &1', C'2',... be a sequence of classes of clas- 
sifiers whose VC dimensions V\, Vz,... are finite. Let <t>n be 
the classification rule based on structural risk minimization. 
Then for all n, 

E{L(<j>*n)} - L* 

< /   /l6yfclogn + 8(fcTn)       /  inf   L{(f>)_A) 
-    k>i \ V » V*ec(*) / / 

This result is close on spirit of those obtained by Barron 
[1], and Barron and Cover [2], who select a classifier from 
a countable list of candidates by minimizing the sum of the 
empirical error and a properly chosen penalty. A significant 
difference is that the method we study here does not restrict 
the search to a countable set of candidates, allowing thus better 
approximation ability. 

Corollary 1 Let C*1', C'2',... be a sequence of classes of clas- 
sifiers such that the VC dimensions VI, V2,... are all finite. 
Assume further that the Bayes rule is contained in the union 

of these classes, i.e., g* £ C* = U^ljC"'. Let K be the smal- 
lest integer such that g* € C^K'. Then for every n, the error 
probability of the classification rule based on structural risk 
minimization, (j>^, satisfies 

EL(4>'n) - L* < 4 
VK log n + K/2 + 6 

'The research was supported in part by the National Science 
Foundation under Grants No. NCR-92-96231 and INT-93-15271. 

Corollary 1 shows that the rate of convergence is always of 
the order of \/log n/n, and the constant factor VK depends 
on the distribution. The number VK may be viewed as the 
inherent complexity of the Bayes rule for the distribution. One 
great advantage of structural risk minimization is that it finds 
automatically where to look for the optimal classifier. 
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Abstract — In this paper, minimax expected redun- 
dancies over memory less source classes of smooth den- 
sities are studied, through their connections with ac- 
cumulated prediction errors and using available tech- 
niques from nonparametric statistics. To derive lower 
bounds on the minimax expected redundancy rates, 
two methods are used and compared. One is the As- 
souad's technique from statistical density estimation 
and the other is the information-theoretic (general- 
ized) Fano's inequality. Both methods are applied 
to hypercube sub-classes and a connection between 
Assouad's and Fano's is established using a packing 
number result from error-correcting coding theory. 
Finally, optimal (rate) codes, which achieve the min- 
imax rate lower bounds on expected redundancy, are 
formed based on optimal density estimators. 

SUMMARY 

Minimax expected redundancy was studied as early as 1973 
by Davisson [3] for Markov sources. For other regular para- 
metric source classes, minimax lower bounds on expected re- 
dundancy follow from [2] (see also [7]). Lower bounds on 
expected redundancy, minimax or Rissanen's pointwise one 
([8]), play an important role in Rissanen's Stochastic Com- 
plexity Theory since they justify, together with codes achiev- 
ing these lower bounds, the complexity measures of the source 
classes. While Rissanen's pointwise lower bound has difficulty 
extending to nonparametric (or smooth) classes of densities, 
the minimax approach has its natural counterpart for those 
classes. The minimax expected redundancy rates measures 
the complexities of the nonparametric source classes, just as 
in the regular parametric case. 

For a given memoryless data string xn = (ii, a;2, ■■■,xn) and 
without knowing the density / on [0,1] which generated the 
data, we would like to compress the data in an efficient way; 
that is, we would like to find a joint density q„ on the n-tuples, 
which may be regarded as corresponding to a prefix code with 
code length — logqn(x

n) for an n-tuple i", such that its ex- 
pected redundancy is small over, say, source classes of smooth 
densities. On the other hand, the expected redundancy of qn 

can be decomposed into accumulated prediction or estimation 
error ^2tEji-iD(f,qt-i) because our source is memoryless 
with density / on [0,1]. The estimation error Ejt-iD(f,qt-i) 
in terms of information divergence D is very much related to 
other errors which correspond to real distances such as the 
Hellinger distance 

H2(u,v) M y/wf 

Density estimation errors in terms of Hellinger distance have 
been well studied in the statistical density estimation litera- 
ture (cf. Birge [1]) for classes of smooth densities. Therefore, 

1 This work was partially supported by ARO Grant DAAH04- 
94-G-0232 and NSF Grant DMS-9322817. 

to obtain minimax lower bounds on redundancy over the same 
type of smooth density classes, we may borrow techniques 
from density estimation. 

One well-known technique is Assouad's method. It bounds 
the minimax estimation error from below by the average es- 
timation error over a sub-class, i.e., by the Bayes estimation 
error corresponding to the uniform prior on the sub-class. This 
sub-class is indexed by a hypercube whose dimension can be 
optimalized in the end. More importantly, the sub-class is 
chosen in such a way that the Hellinger distances of densities 
on the neighboring vertexes of the hypercube can be calcu- 
lated easily. This Assouad's method can also be understood 
through another useful and well-known technique called Le 
Cam's method which deals with two sets of hypotheses, (cf. 
[9] and [10]). 

The other (more powerful) technique is the generalized 
Fano's inequality (cf. [4] and [6]), which deals with finite num- 
ber of hypotheses. Using a packing number result from the 
error-correcting coding theory ([5]), a sub-set of the vertexes 
of the hypercube class can be selected to apply the Fano's in- 
equality to, giving the same rate lower bounds on redundancy 
as Assouad's (cf. [9]). 

However, since minmax and summation do not exchange, 
lower bounds on redundancy do not follow directly from the 
lower bounds in density estimation, but require a separate 
Assouad's type of arguments. 

As to upper bounds, when the density / is bounded away 
from zero, the minimax rate lower bounds on expected redun- 
dancy can be achieved if we take qt as any optimal rate density 
estimator based on the first t observations. Hence the min- 
imax rates in the lower bounds are the optimal redundancy 
rates over classes of smooth densities. 
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Abstract — The algorithm for designing a pattern 
classifier, which uses MDL criterion and a binary data 
structure, is proposed. The algorithm gives a parti- 
tioning of the space of the if-dimensional attribute 
and gives an estimated probability model for this par- 
titioning. The volume of bins in this partitioning is 
asymptotically upper bounded by ö((log JV/iV)A'/(A'+2)) 
for large N in probability, where N is the length of 
training sequence. The redundancy of the code length 
and the divergence of the estimated model are asymp- 
totically upper bounded by 0(K{\ogN/N)2nK+2)). The 
classification error is asymptotically upper bounded 
by 0{Kx'2{\ogN/Nf^K+2^). 

I. INTRODUCTION 

Pattern classification is a problem of assigning each data at- 
tribute X, which is typically obtained from measuring in- 
struments, a label Y which indicates the class that data 
belongs to[l]. Suppose that the label Y assumes a value 
y in a binary set y = {0,1} according to a probability 
distribution PY(V) and the observed attribute, denoted by 
X = {Xi,- ■ ■ ,XK), assumes a value x = (xi,x2,-• • ,XK) 

in a subset X = [0,1)A. The optimal decision rule is ex- 
pressed as y = f(x) = argmaXyey PY\X(V\

X
)- Thus, the 

problem of designing a pattern classifier turns out to be the 
problem of estimating PY\X(V\

X
) from a given training se- 

quence {(Xi, Yi), i = 1, ■ • •, N} of length N. We assume that 
(Xi,Yi) are independent and identically distributed. 

In the case of discrete-valued attributes, Quinlan and 
Rivest[2] first showed the possibility of applying Rissanen's 
Minimum Description Length principle[3] to the construction 
of decision trees for the pattern classification problem. 

We propose an algorithm based on MDL two stage coding 
to design a pattern classifier using a sequence of independent 
training examples. A binary tree structure is used to represent 
the partition and MDL criterion is used to optimize the tree. 
The asymptotic performance is derived. 

II. ALGORITHM 
Our strategy is as follows: For one-dimensional continuous 
valued X, its range X — [0,1) is partitioned into finite s sub- 
sets called bins 6j, i = 1, • • •, s, and then the probability model 
PY\X{V\

X
) is obtained by the histogram-like estimator. This 

approach is used by Rissanen[4]. However, the complexity 
of the estimated model soon becomes excessively large unless 
the model complexity is appropriately controlled. Here, we 
restrict the partitioning such that \bi\ = 2" ',i = 1,•■•,«, 
where di 6 N. With this restriction, bins are represented as 
leaf nodes of a complete binary tree. Let t = tit2 ■ • • t& be a 
path, string of edges of length d in the tree leading from root 
node to a leaf. With each leaf node represented by a path t, 
we associate a bin b(t) = [O.tOO ■ • ■, O.tll • • •). Let Lt be the 
cost of the leaf node t, that is, the code length associated with 

bin hi. The minimization of the sum of the costs can be done 
easily with the dynamic programing which uses the recursive 
structure of the binary tree[5]. 

The binary tree structure is extended to Ä"-dimensional 
attribute case if we let each node t = £n£2i ■ • •^'1*12*22 • • ■ 
*A'2*i3--- represent a bin b(t) = {(xi,x2,- ■ -XK)\ XI € 
^(t1),^ £b{t2),---,xK € b(tK)}, where V =tut2i---. 

The computational time complexity of the algorithm is dra- 
matically improved over that of [4]. 

III. MAIN RESULT 
Theorem: Assume that px (x) and PY\X(V\

X
) are upper and 

lower bounded and their first differentials are upper bounded, 
then we have 

\b(t^)\<c(^-)^a.,, 

±-JH(PYlx(0\x))PX(x)dx<o(K (^jP)1^ 

and 

/. 

E_       , .   ..     PY\X(V\X)      ,   . , JVlXU/Fjlog-^ r-r:px{x)dx 
!/=0,l ' PY\X(.V\<B) 

so (*(&)*■)- 

for all sufficiently large N, where |6(t'N')| is the volume of 
the bin associated with the node t and L is the code length. 
The resubstituted classification error R(N) of our classifier 
satisfies 

for all sufficiently large JV, where i?min is the Bayes risk. 
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Abstract — Bayesian belief network (BBN) is 
a framework for representation/inference of some 
knowledge with uncertainty [1], Since the process 
of constructing a BBN manually by experts is time- 
consuming in general, some method supporting the 
task is needed. We proposed an algorithm for ac- 
quiring some BBN automatically from finite examples 
based on minimum description length (MDL) princi- 
ple [2]. This paper addresses an improvement which 
relaxes a constraint that the original scheme held on 
the representation. 

In BBNs, attributes and stochastic dependences between 
them are expressed as nodes and directed links connecting 
them, respectively, where each attribute may be a predicate, 
a numerical data, etc., and each dependence is numerically 
expressed as the conditional probability of one attribute given 
other attributes if their dependence exists. Therefore, in gen- 
eral, BBNs are represented in terms of the network structure 
and the conditional probabilities. 

Suppose that we have N possible attributes j = 1,2, ■ • •, JV 
(N > 1)> wnere eacri attribute value ranges over A\j] = 
{0,1, ■■■,a\j] - 1} (2 < a[j] < oo), and also that we in- 
duce the network structure g € G of a BBN from n ex- 
amples x" = xiX2---xn, where Xi = (i;,i, Xi,2, • • •, xi,N), 
Xiti € A[j], j = 1, 2, • • •, N, i = 1,2,•••, n, and a set of the 
possible network structures, G, is prepared. The problem is 
to determine the set x[j, g] C {1, 2, • • •, j - 1} (tf[l,s] = <j>, 
g € G) of attributes which each attribute j = 1,2, ■■■,N 
depends on, provide that the JV attributes have been ar- 
ranged in such an order that the directed dependence is valid 
[1].   Then, the number of the possible network structures is 

|G| = njl12
i-1=2w<w-1>/a. 

If we applied MDL principle to this problem, a possible 
description length LA(g, x") based on network structure g G G 
would be [2] 

*A(9) [r(i/2)]atjl 

except some constant terms, where S\j, g] = Y\ke^[j,g]^^' 
7iA(x"\g) and kA(g) are respectively the empirical entropy 
and the number of the conditional probabilities to be fixed, 
and /G(SO is the description length of model g £ G. In the 
original scheme [2], the network structure g € G that mini- 
mizes LA(g, x") is selected from n examples so that the best 
compromise between the complexity of the network and the 
fitness of the n examples to the network is achieved in terms 
of the description length. 

The description length LA(g, x") is optimal in the sense 
that the redundancy Ee[L

A(g, x") + logp(x"|0)] is asymptot- 
ically upperbounded by the optimal minimax redundancy ex- 
cept the length of la(g) for g € G when the source 6 generat- 

ing the data x" € (Ü^Li -^W)" 's exPressed as one of those 

BBNs, where p(x?\9) is the probability of x? £ ([\f=i A\J]T 
given source 8. However, we should note that in some cases 
where some a[j] is large or A[j] takes continuous values for 
an attribute, j = 1,2, • • •, iV, the j'-th node is not con- 
nected to any other nodes even when the dependence is ac- 
tually significant. So, we propose such an extended scheme 
that the alphabet A\j] is clustered into another alphabet 
B[j,g] = {0,l,---,ß\j,g] - 1} (1 < ß[J,g] < «[/]), where 
y n y' = 4> for any y ^ y' € B\j, g] and UyeBV,g]V = Mj]> and 

we implement a similar procedure for such a new alphabet 
B\j,g], for j = 1, 2, • • •, iV and g € G. In most cases, such 
a clustering procedure is manually done as a pre-process for 
both learning and inferece processes. 

Therefore, the structure g € G refers to the clustering 
structure B[j, g] as well as the network structure n[j,g], for 
j = 1,2, ••-,#, in the proposed scheme. The counterpart 
LB(g,x?)atLA(g,x?)iB 

i=i 
(1) 

where 

j=l teT[j,g] y€B[j,g] 
*'^l0g{W   mfr,«,d + l/2   } 

and kB(g) = EjLi^'.rf " *) IL^,,] ^]' T{j'd] = 
Ylke^j.g] Blk'Sl and m[*>•?] and "»[jM.il denote the occur- 

rence, in »!• € (n7=,5[i, </])", of* € X\keA]ig]B[k,g] and 

that of y € B[j,g] given t € U.ken[jig]B[k,g], respectively, 
for j = 1, 2,- • •, JV" and g € G. Note that the same length 
-log{\y\(m[t,j] + ß[j,g]/2)/(m[y,t,j] + 1/2)} is assigned to 
the \y\ symbols in a group y G B[j,g], assuming that they 
occur equiprobably. 

Theorem 1: The redundancy Ee[LB(g, x?) + logp(z"|0)] 
is asymptotically upperbounded by the optimal minimax re- 
dundancy except the length of la(g) for g £ G when the source 
6 ranges over the BBNs in which the elements in A\j] can be 
clustered into any exclusive groups for j = 1,2, ■■■,N, and 
the elements in the same group occurs equiprobably. 

Theorem 2: The number of the possible structures in 
the proposed scheme is \G\ = 2N(-N~1')/2 ft"    f(a[j]), where 

/(«) 
i=l  J = l 
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I    Introduction 
We consider the following setting of the (supervised) learning 
problem. A sequence of input data xj,..., xt,..., is given, one 
by one, and the goal is to predict the corresponding outputs 
j/i,..., j/t,.... It is assumed that at time t the predictor has an 
access to the previous input-output pairs (x;,yi)\zl, and then 
it has to predict j/t given the new input xt. The input and 
output are connected by some unknown functional relation, 
given by a conditional probability distribution pe(y\x), where 
it is only known that 8 belong to some general index set 0. 

The prediction outcome is an estimated probability distri- 
bution <?((•) = q(-\xt; xj-1, j/i_1) for the unobserved value yt. 
(The notation x\ means n,... ,XJ). When yt is revealed, a 
prediction "log-loss" — \ogqt(yt) is incurred. The goal is to 
minimize the expected accumulated log-loss, for the entire se- 
quence of decisions, Ee { Yl"=i ~ "°8 Qt(yt)}, where the expec- 
tation is with respect to the "true" distribution Pe(y\\x\)- 

Since 8 is unknown, we wish to find a universal predictor, 
independent of 8. We note that the simpler problem of pre- 
dicting yt with log-loss, in the absence of the input x", is com- 
pletely equivalent to universal coding. As is became evident, 
from recent results in universal coding, the optimal prediction 
is based on a Bayesian approach in which a "mixture" prob- 
ability measure Q(y") = fgp@ w(d6)Pe(yi) is assigned to the 
observation sequence. The "prior" w(dO) is chosen to attain 

SUp   / W(d8) J2 MVl) l°g   r SS   ,   „. ■ (1) 

i.e., to achieve the capacity of the "channel" between 0 and 
and Y". The prediction at each time point is given by 
gt(j/t|j/f-1) = Q{y\)IQ{y\~1). A classical result in univer- 
sal coding [1] states that this encoder attains the min-max 
redundancy, implying that the associated predictor minimizes 
the maximal extra accumulated log-loss. Recently, [2] it was 
shown that the performance of this predictor, given by the 
capacity (1), is a lower bound on the performance of any uni- 
versal coder, in the sense that any other encoder cannot have 
a smaller redundancy (or a smaller excess log-loss) for "most" 
eee. 

Our proposed solution for the supervised learning problem 
is likewise Bayesian, and the contribution of this work lies in 
determining the optimal way to choose the Bayesian "prior" 
for the superviesd learning problem, and observing the strong 
sequential, non-anticipating, structure of the resulting univer- 
sal predictor. 

II    Optimal Universal Learning 
In our problem, where a side information x" is given, one may 
try to generalize the universal coding results in the following 
way. Since x" is known (or will be known as we predict the 
output), an optimal predictor may be chosen for each x". This 

predictor will be based on a Bayesian universal probability, in 
which the weights depend on x", and each such probability 
will attain a capacity C(x") of the channel between 0 and 
Y™, given that x". However, this solution turns out to be un- 
acceptable because it leads to too pessimistic, or "too careful" 
prediction procedures. This is because we try to minimize the 
extra loss, for the worst 8, and that for each x". In addi- 
tion the resulting w(d8) depends on the entire x™, and so the 
Bayesian mixture probability does not factor into a sequential 
assignment. 

We overcome these drawbacks by postulating a prob- 
ability distribution, /i(x"), over the input. This is a 
common assumption in many learning problems, where 
at least in the training stage, the input is indeed 
randomly chosen according to some pre-defined distri- 
bution. The extra average accumulated log-loss, is 

now   R(8,Q)     =     -£»rM*?)£yrJM»ri*ni°gi$$- 
Here, also, the solution to minQ max» R(8,Q), is the 
max-min solution which (almost by definition) is giv- 
en by the Bayesian mixture Q(yi,...,yn\x\,.. . ,xn) = 
fe€@ w(d8)Pe(y1,... ,yn\xi,... ,x„) where w(d8) is a weight 
over 0, independent of x", which maximizes the conditional 
mutual information, 

i{Q,Yr\xn = J^(d8)j2^i)J2p^^lo^^^j- 
(2) 

The quantity supw 7(0, Y"\X") = Cn can be interpreted as 
the capacity of an "auxiliary channel" between 0 and Y", 
with side information X". Similarly to [2] we prove that C„, 
which is the loss incurred by our Bayesian predictor, cannot 
be improved by any other predictor, for "most" 8 <E ©. 

For prediction we need a sequential probablity assign- 
ment. First, we observe that the universal probablity 
above can always be factored as Q(yi,... ,yn\xi,.. . ,x„) = 
FJ"=1 g(j/t|yj-:, x"). Furthermore, under the common as- 
sumption in learning theory -Pe(j/"|x") = n"=i Pe(t/t\xt)- In 
this case the universal probability can actually expressed as 

Q(.yi,-.-,Vn\xi,...,xn) = Tl"=i iMvl'1 > XD and so i1; Pro" 
vides a fully sequential, non-anticipating prediction procedure. 

Finally, since Cn is an attainable lower bound on the 
performance of any learning and prediction algorithm, we 
make the following claim: A class of conditional distributions 
{pe(y\x),8 € 0} is learnable if and only ifCn/n —► 0, as the 
data length n —► oo. Thus, C„ can replace other measures, 
such as these of Vapnik and Chervonenkis, to determine the 
complexity of a class of models. 
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Abstract — We survey important developments in 
the theory of covering radius during the period 1985- 
1994. We present lower bounds, constructions and up- 
per bounds, the linear and nonlinear cases, density 
and asymptotic results, normality, specific classes of 
codes, covering radius and dual distance, tables, and 
open problems. 

I. Background 
Interest in covering radius has grown markedly since about 

1980. The topic has applications to problems of data compres- 
sion, testing, and write-once memories. It is also interesting 
for its own sake. It is a fundamental geometric parameter of 
a code, characterizing its maximal error correcting capability 
in the case of minimum distance decoding. Although some of 
these applications are recent, others are old. Yet after the 1960 
paper of Gorenstein, Peterson, and Zierler [4] showing that the 
double-error-correcting binary BCH code has covering radius 
3, (though there were some papers on the football-pool pro- 
blem), there was nothing on covering radius until the seminal 
paper [3] of Delsarte in 1973. 

An earlier survey, [1], published in 1985, has seemingly 
contributed to the increase in the number of papers on this 
topic in the last decade. Covering radius has evolved into a 
subject in its own right, and we feel the need to give a sum- 
mary of many works on covering codes that have appeared 
since [1]. 

Section 7 deals with specific classes of error correcting 
codes, among which are Reed-Muller, BCH and their duals, 
cyclic, self-dual, and algebraic-geometric codes. 

Section 8 is a brief account of relations between covering 
radius and dual distance. 

Section 9, on generalizations of coverings, treats mixed, 
weighted, and multiple coverings. 

In Section 10 we discuss the open problems of [1], add two 
new ones, and disprove a conjecture. 

We provide extensive tables of bounds for coverings. 
In our bibhography of some 270 items we have tried to in- 

clude all papers bearing on the covering radius of block codes. 
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II. Plan of the paper 
We discuss lower bounds in Section 2, mentioning several 

methods but especially linear programming and the method of 
excess. These methods usually improve on the sphere-covering 
bound. 

In Section 3 we discuss asymptotic density of coverings 
when the length goes to infinity while the radius remains fixed. 

In Section 4 we treat upper bounds for linear codes, fo- 
cusing on the deficiency of a code, "worst" codes (useful in 
designing write-once memories), and Griesmer, optimum, and 
maximum codes. 

Section 5 discusses upper bounds obtained from construc- 
tions. There are blockwise direct sums, amalgamated direct 
sums, variants on the u|u-|-t' construction, and simulated an- 
nealing. This section closes with codes over mixed alphabets. 

In Section 6 we discuss normality and some of its many 
offshoots, closing with the conjecture K(n + 2, t + 1) < K(n,t). 
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We get a B-ordering of all binary n-tuples \n 

by choosing an ordered basis {yi,...,yn} of Vn and 
ordering the n-tuples as follows: 0, y\, y2, J2+J1» J3. 
y3+yi, y3+y2, y3+y2+yi, y4,-- Given a minimum 
distance d, choose a set of vectors S with the zero 
vector first, then go through the vectors in their B- 
ordering and choose the next vector which has distance 
d or more from all vectors already chosen. The 
surprising result that S is linear has been shown in 
several different ways [1, 2, 3, 4, 6]. Linear codes found 
in this fashion are called greedy codes. 

An ordered basis {y,} of Yn is called 
triangular [1] if y; = (0,..., 0, 1, *,..., *), with the 1 in the 
z'th position. When the y[ are unit vectors, the order is 
the lexicographic order. The columns hn, hn_i,...hi of 
the g-parity check matrix Hn are constructed one by 
one. We associate numbers with their binary 
representations. We let hi be the number 1. Let y;+i = 
(0,..., 0, 1, £;,..., £i), where the £; are 0 or 1. If H; = 

[h/,...hi] is known, we letP be the smallest number so 
that hr+i =ß + (£jh; + ...-(£ihi) is not a sum of d-\ 
or fewer columns of H; . Then Hj +1 = [hj,+ i ,...hi]. 
Each Hi is a parity check matrix of the greedy code 
chosen using the ordered basis {yi,...,y;} [1]. Further, 
the syndrome of any vector with regard to H; is the g- 
value which is assigned to it by generalizing the greedy 
algorithm for choosing vectors in the code, hence the 
name g-paritv check matrix. 

The non-binary case has also aroused quite a 
bit of interest. One may generalize the concept of B- 
ordering to the case of an arbitrary base field. For 
example, in the case GF(4) = {0, 1, 0), (0_\, the B- 
ordering is generated by choosing an ordered basis 
{yh-,yn\ of Vn and ordering the n-tuples as follows: 0, 
y\, G>yi,JOyi,y2,y2+yi,y2J®yi,y2+®yi, (Oy2, 
<Oy2+y\,(Qy2+(Oy\, (Oy2+(Qy\,(Qy2<l!b2+y\, 

{Oj2+G>y\  ft>vv9ft>vi.- The greedy code is then 
generated from the B-ordering as in the binary case. It 
has been shown by Conway and Sloane in the case of 
lexicodes [2], and independently by Fon-Der-Flaass [3], 
and Van Zanten [6] in the case of general greedy codes 
that those codes for which the base field is of order 

22' is linear. When the base field is not of order 22', 
the situation is a little less clear. In general, the greedy 
codes generated in this case have been linear only for 
small n. In every case examined, linearity breaks down 
at some point early in the generation of the code. It is 
possible, however, to extend the parity check matrix 

This work was supported in part by NSA grant MDA 
904-91-H-0003. 

generating algorithm to this case. Although this 
algorithm does not produce the greedy code itself, it 
still produces a very good code which is generated in a 
greedy-like fashion. 

The parity check matrix is generated in the 
same way as in the binary case. This algorithm also 
assumes that the ordered basis {y/} of \n being used is 
triangular, and that the first non-zero entry in each basis 

vector is 1. Then if H; = [h;,...hi ] is known, we \etß 

be the smallest number so that hJ+i = ß + (£/h; + 
...+ £1 hi) is not a linear combination of d-\ or fewer 
columns of H;. Then Hj+1 = [h;,+i ,...hi]. 

Many interesting codes are generated via the 
parity check algorithm. We have generated many such 
parity check matrices via the computer for base fields of 
orders 3, 4, and 5. In all examined cases, the codes 
generated have had dimension within 1 of the best 
known codes, for a given n and d, and most of the codes 
generated had dimension equal to that of the best 
known codes. Better yet, we have generated more than 
100 record breaking codes over the base field of order 4 
[5]. Most of these are shortened codes of larger greedy 
codes. The following table lists the parameters of the 
codes from which the shortened codes are derived. 

Table. Parameters of record breaking codes over GF(4) 
obtained via the parity check matrix algorithm. 

n k d 
52 
128 
35 
71 

44 
118 
26 
60 
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Abstract — This papers presents 4 methods of gen- 
erating a Lee distance Gray code. The first two meth- 
ods presented are for radix k numbers, and the other 
two methods are for mixed radix numbers. 

I. INTRODUCTION 

Some recently developed parallel machines have a multi- 
dimensional torus topology for their processor interconnection 
structure. Many algorithms can be solved efficiently by em- 
bedding a Hamiltonian cycle or a Hamiltonian path within 
this topology. This correspondence addresses the embedding 
problem by presenting four methods of constructing a Lee dis- 
tance Gray code. For each method, Let R = (r„-\rn-2 • • • ro) 
be a number in radix notation, and let G = (gn-i9n-2 • • • ffo) 
be the Gray code representation given by /*, i.e., G = /t(R)- 

II. SINGLE RADIX CODES 

First, assume there are n dimensions, each having the same 
number of processors, k, where k > 3. Each proces- 
sor node is labeled with a distinct n-digit, radix k vector 
(rn-iTn-2 • • -To), where r; < k for 0 < i < n — 1. Two 
nodes, A = (an-ia„-2 • • • ao) and B = (6„_itn_2 • • • bo), are 
adjacent if the Lee distance between them, £>L(A, B), is one. 
Lee distance is defined as 

n-l 
DL(A,B) = J2 min(a; - bi,bi - <n). 

Two methods are given below for constructing a Gray code 
base on the assumption of the previous paragraph. 

Method 1: 

/l (r„_i r„_2 • • • r0) = r„_i (r„_2 - r„_i) • • • (ro - n) 

Method 2:   This method produces a Hamiltonian cycle if k 
is even, and a Hamiltonian path if k is odd. Let rj = k — 1 — r;, 
and let gn-i = rn-\. Then, for i = n — 2,..., 0, 
if k is even then 

is even 
otherwise 

_      f   Ti,      if n+i i 
1   Ti,      otherwi: 

or, if k is odd, let r' = Ej"=i+i r-" anc* 

_     \   Ti,     if r' i 
9'    ~    1   Ti,     other 

is even 
otherwise 

1 This work is supported in part by the National Science Foun- 
dation under Grant MIP-9404924. 

III. MIXED RADIX CODES 

In many cases, however, the number of processors per dimen- 
sion varies. Let K = kn-ikn-2 • • • ko be an ra-dimensional 
vector where ki is the radix of dimension i and ki > 3 for 
0 < t < n — 1. In this case, Method 3 gives a Gray code de- 
sign resulting in a Hamiltonian cycle if ki is even for at least 
one value of i. If each ki is odd, the resulting Gray code pro- 
duces a Hamiltonian path. Method 4 produces a Hamiltonian 
cycle if all ki are odd. 

Let each processor node be labeled with a distinct re-digit 
vector R = (rn_irn_2 • • • ro), where 0 < Ti < ki — 1 for i = 
0,1,..., n — 1. Vector R is said to be in mixed-radix notation, 
and the integer value of R is given by 

/(R)    =    r0 +Tik0 +r2k0ki -\ h r„_ifc0fci ■ • • kn-2 
n-l   /      i-1       \ 

=     E [n El k,■)+ ro 
i=l    \      j=0       / 

In mixed-radix notation, the Lee distance, DL(A., B), be- 
tween A = (a„_ion-2 • • • ao) and B = (bn-ibn-2 ■ ■ ■ bo) is 
defined as 

n-l 
DL(A, B) = ^2 min((a; — 6,-) mod ki, (bi — ai) mod ki). 

t=0 

Method 3: Assume that at least one of the fc;'s is even. 
Without loss of generality, assume that the dimensions are 
ordered so that if ki is even and kj is odd, then i > j. Let 
£ be the index of the lowest even dimension. That is, the 
dimensions are ordered as follows. 

even odd 

kn—i ■ • • k(     ki-i ■ ■ ■ ko 

Now, letting Ti = ki — l — ri and r\ = ^ =t+1 
rj> /3 is defined 

as follows. 
ffn-i   =   r„-i, and 

. , . ,   n, if r;+i is even 
for i — n — 2 downto l :   gi        =    <        ,,        . 1    ri, otherwise 

for : = £ — 1 downto 0:     (/,       = 
Ti, if r'i is even 
Ti, otherwise 

Method 4: Assume that ki is odd for 0 < i < n—1, and that 
the dimensions are ordered such that fen-i > kn-2 > • • • > ko- 
Also, define 

Ti 
f  ri , if n+i i 

1    ki — 1 — n     , otherwi 
is odd 

otherwise 

Now, /4, which produces a Gray code yielding a Hamiltonian 
cycle, is defined as follows. 

gn-i     =    Tn-i, and for 0 < i < n — 2 

mod ki    , if rj+i < ki 
, otherwise 9i 

f (Tf-n+i) 
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Abstract — The properties of introduced diffuse dif- 
ference triangle sets (DTS) are considered. 

I. DEFINITIONS 
An (7, J)-set is a set E = {Ei, E2,..., E/} where E,- = {<r,_, | 
0 < j < J) for 1 < i < I and the elements are integers 
such that <7io = 0 for 1 < i < I, <j{j < <r;,.,+i for 1 < i < 
1 and 0 < j < J. Let m(E) = ma.x{<nj | 1 < i < 7} and 

A*(^) = Xw=i <TiJ- An (^) J)-DTS (in normalized form) is an 
(7, J)-set E such that all the differences <nj — <7;J< with 1 < 
i < I and 0 < j' < j < J are distinct. 

A diffuse DTS satisfies some additional conditions: 

°">,>+i > <rij + 6 ioi 1 < i < I and 0 < j < J, (1) 

k'j - Vi'j' | > Äc for 1 < » / i' < I and 0 < j, j1 < J (2) 

except when j = j' = 0. 
An (7, J)-DTS satisfying (1) and (2) is called an (7, J, 6, 8C)- 

DTS. The set of (7, J, 8, 8C)-DTS is denoted by S(I,J,8,8C). 
We note that for 7 = 1 the condition (2) is empty, we 
will put 8C = 0 in this case. For applications, which are 
mainly found in the constructions of diffuse codes [1], we 
want (7, J, 8, 6C)-DTS E with m(E) as small as possible. Let 
m{I,J,S,6c) = min{m(E) | E € S(I, J,6,8C)}. If m(E) = 
m(I,J,8,6c), then E is called optimal. Similarly, define 
ß(I, J, 6, 6c) = min{^(E) | E € 5(7, J, 6, «„)}. 

We will study here the structure of the set 5(7, J, 6, 6C) 
when one or both of 6, 6C are increasing and the other para- 
meters are kept fixed. 

II. INCREASING S 
Let 9(1, J, 6C) denote the set of (7, J)-sets T = {Tt, r2)..., T/} 
where the I\ = {7^ | 0 < j < J} are such that for each fixed 
/, where 0 < / < J, all the differences 7;,i+> — fij with 1 < i < 
I and 0 < j < J — I are distinct, and \jij — -y^j] > 6C for 1 < 
i y£i' <I and 1 < j < J. 

Let g(I,J,6c) = min{m(r) | T e Q{I,J,SC)}. For T £ 
Q{I,J,6c) and 8 > 0, define E = fs(T) by aij = yi: + 
j8 for 1 < i < I and 0 < j < J. We note that m(fs(T)) = 
m(T) + J8. 
Lemma 1 7/ E € 5(7, J, 6, 6C), then E = fs(T) for some T € 
0{I,J,6c). 

Lemma 2 For each T G Q{I, J, 8C) there exists a bound 60(T) 
such that fs(T) € 5(7, J, 6, 8C) for 8 > 80(T). 

Based on Lemmata 1 and 2, we give the following 

Theorem 1 For given I, J, 8C, and ( > 0, there exists a 
bound 8o(I, J, 8C, () such that 
a) m(7, J, 8, 8C) = g(I, J, 8C) + J8 for 6 > 60(I, J, 6C, 0), 
b) for 8 > 8o(I, J, 8C, C) we have 

{E e 5(7, J, 6, 6c) I m(E) = m(7, J, 6, 6C) + (} 

=    {fs(T) I T € 9(1, J, 6c) and m{T) = g(I, J, 6C) + C}. 

Corollary 1 For 8 > 80(I, J, 8C, C), the size of {E € 5(7, J, 
8, 8C) I m(E) = m(I, J, 8, 8C) + C} is independent of 8. 

III. INCREASING SC 

We can assume without loss of generality that for E € 
S(I,J,6,8C) we have <r,-j < o-.+i,./ for 1 < i < I. With this 
assumption, we partition the set 5(7, J, 8, 8C) into two sets: 
51(7,7,6,^) = {E € S(I,J,8,6C) | <nj < <ri+1A for 1 < i < 
7}, 52 (7, J, 8,6C) = 5(7, J, 6,6C) \ 5j (7, J, 6,8C). 

For 0 € 5(7, J—1, 8, 0) and non-negative integers 81,82,..., 
81, define E = h(Q,81,82,... ,81) by aio = 0 for 1 < i < 
7> «ii = E!=i s' +J2\Zl öi.j-i +öi,y-i for 1 < i < I and 1 < 
j < J. We note that m(E) = ^;

J
=1 81 + /i(0). 

Lemma 3 If E € Si(I,J,6,8c), then there exist a 0 e 
5(7, J —1, 8, 0) and non-negative integers 8i > 8C for 1 < i; < 7 
such that E = A(0, 8lt 82,..., 61). In particular, m(E) > 
ti(I,J-l,6,0)+I6c. 

Lemma 4 For each 0 € 5(7, J - 1, <5, 0) fAere exists a bound 
8co{®) such that if 6, > 6C > 6c0(Q) for 1 < i < I, then 
h{e,61,62,...,6I)eSl{I,J,6,6c). 

Lemma 5 7/E € 52(7, J,8,6C), then m(E) > (I + 1)8C. 

Based on Lemmata 3, 4, and 5, we obtain 

Theorem 2 For given I, J, and 6 there exists a bound 
8co{I,J,8) such that if 6C > 6co{I,J,8), then m(I,J,6,6c) = 
H(I,J-1,6,0)+ I6c 

Corollary 2 For 6C > 8c0(I, J,6,(), the size of {E £ 
5(7, J, 8, 6C) I m(E) = m(7, J, 8, 8C) + (} is independent of 8C- 

IV. BOTH 6 AND 6C INCREASING 
Combining Lemmas 2 and 4, we get the following Lemma. 

Lemma 6 If T   €   9(1, J - 1,0),   <5   >   80(T),   and 8C   > 
Sco(fs(T)),  then E = h(fs(T),8c,8c,... ,8C) € S(I,J,8,8C), 
and m(E) = ^(r) + (J - 1)7<5 + I6C. 

Lemma 7 a) If 8 < 8C, then m(I, J, 8, 8C) > I(J - 1)8 + I8C 

b)If8> 8C, then m(I, J, 8, 8C) > (I J - 1)6C + 6. 

We note that for 8C > 8, the lower bound in Lemma 7 a) 
and the upper bound implied by Lemma 6 differs by a con- 
stant independent of 8 and 8C. Based on this observation and 
support from numerical data, we put forward the following 
conjectures: 

Conjecture 1 For given I and J there exists a bounds 8(1, J) 
and A(7, J) and a constant v(I, J) such that m(I, J, 8, 8C) = 
u(I,J) + (J-l)I8 + I6cfor8>8(I, J) and8c> 8 + A(I,J). 

Conjecture 2 For given I, J, and I, there exists a bound 
8(1, J, 1) and a constant v(I, J, I) such that m(I, J,8,8 + I) = 
v(I,J,l) + IJ6 for8> 8(1, J, I). 

If both conjectures are true, then v(I, J, 1) = v(I, J) + II 
for I > A(7, J). Hence, three of four conjectures formulated 
in [1] are proved. 
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[1] presented a new construction method for binary 
constant-weight cyclic codes. By slightly modifying 
this method, we could construct new const ant-weight 
codes (not necessaryly cyclic ). Furthermore, two 
classes of binary optimum constant-weight codes could 
be constructed by using this modified method. In gen- 
eral, we show that binary optimum const ant-weight 
codes, which achieve Johnson bound, could be con- 
structed from codes over GF(q) which achieve Plotkin 
bound. 
The cyclic order of o = (o0,... ,OJV_I) G [GF(2)]N 

is denoted as t(a), i.e. the smallest positive integer 
t such that a = S (a) = (at,..., ajv-i, ao, • • • i °t-ij- 
It is clear that A{a) = {a,S{a),... ,St^~1 } form 
a binary constant-weight code with length N, weight 
w(a), and its minimum distance is denoted as d(a). 
Given a {n,M,d) code C in GF(q), v G [GF{2)]N 

with cyclic order q, and an one to one mapping / : 
GF(q) -f A{v) , denote 

C{v, f) = {(/(co), • • ■, /(c„_i)|c = (co,.... cB_!) e C} 

Proposition 1 C{v, f) is a binary constant-weight 
code with length nN, weight nw(v), minimum distance 
d(v)d, and codeword number M. 

Proposition 2 

A2(nN, d(v)d, nw(v)) > Aq{n, d) 

Construction 1 ( ref.    [l] ) a =  (1,0, ...,0)  G 
\GF{2)\", t(a) = q, «,(«) = 1, d(a) = 2 
Construction 2 ( ref.    [l] ) q — P, prime,  and 
E^- is odd, ß — Legendre sequence of length p, 
Hß)=p,w(ß) = *±±,d{ß) = *±± 

Proposition 3  (1)    A2(nq,2d,n) > Aq(n, d) 
(2)    if p is prime, and £=i is odd, then 

A2{np,d——,n—-) > Ap(n,d) 

Proposition 4 If C is a optimum {n, M, d) code in 
GF(q), which achieves Plotkin bound, i.e. M = 
d-ln^-^/g] , d > n(q- l)/q. then C{a,f) and 
C(ß, f) are binary optimum constant-weight codes, 
which achieve Johnson bound. 

Generalized Hadamard matrix in GF(q) could be used 
to construct codes in GF{q), which achieve Plotkin 
bound, e.g. ref.[2]. If we take C be the simplex code, 
i.e. dual code of Hamming code in GF(q), we obtain 
two classes of binary optimum const ant-weight codes. 

Propositions (l) A2[qs
q^

L,2q" 

(2)     if p is prime, and ^— is odd, 

-1    <7m-l 
^) 

then 

A2{p- 
.lP+l   pm-lp + l 

If C is a binary optimum code which achieves Plotkin 
bound, then C[a, f) is an optimum blanced error- 
correcting code, therefore we could use Hadamard 
matrix to construct optimum blanced error-correcting 
codes. 
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Abstract — Linear spaces of»x»xn tensors over 
finite fields are investigated where the rank of any 
nonzero tensor in the space is at least a prescribed 
number ß. Such spaces can recover any n x n x n ten- 
sor of rank < (/*-l)/2, and, as such, they can be used 
to correct three-way crisscross errors. Bounds on the 
dimensions of such spaces are given for ß < 2n+l, and 
constructions are provided for ß < 2n-l with redun- 
dancy which is linear in n. These constructions can 
be generalized to spaces of n x n x • • • x n hyper-arrays. 

I. INTRODUCTION 

An n x n x n tensor over a field F is an n x n x n array 
F = [Ti,j,t]?,j,1=1 whose entries Tijj are in F. A tensor T = 
[Ti,j,t]?,j,i=i over F is called a rank-one tensor if there exist 
three nonzero vectors [a;]"=1, [6j]"=1, and [c<]"=1 over F 
such that Ti,j,e = aibjce for i,j,£= l,2,...,n. The rank of 
an n x n x n tensor F is the smallest number p of rank-one 
tensors Tm such that T = Yfm=i Tm- The definition of tensor 
rank is a generalization of that of matrix rank and can be 
extended ton"    hyper-arrays over F. 

A ß-[nxA,k] hyper-array code C over a field F is a k- 
dimensional linear subspace of the vector space of all nxA 

hyper-arrays over F where ß is the smallest rank of any 
nonzero hyper-array in C. We call nA-k the redundancy of 
C and ß the minimum rank of C. We will use the terms ar- 
ray codes and tensor codes for the cases A = 2 and A = 3, 
respectively. 

The minimum-rank Singleton bound for ß-[nxA,k] hyper- 
array codes over a field F takes the form 

n    — k  >  (p — 1) n . 

This bound was stated by Delsarte in fl] for the case A = 2. 
Furthermore, Delsarte obtained a construction of ii-[n x n, k] 
array codes over GF(q) that attains this bound for every ß < n 
(see also [2] and [4]). 

In [3] and [4], it was shown how a certain model of errors 
— so-called crisscross errors — can be handled optimally by 
using such array codes. A discussion was given in [4] also for 
larger A. There are various applications of the crisscross error 
model. In particular, the three-way crisscross model of errors 
in tensors (i.e., the case A = 3) can be found in practice in 
certain memory chips. Tensor rank is closely related also to 
the multiplicative complexity of sets of bilinear forms, such as 
polynomial multiplication or matrix multiplication. 

The purpose of this work is to continue the work of [1], 
[2], and [4] and present constructions of linear spaces of nxA 

hyper-arrays for A > 3 while obtaining bounds on the dimen- 
sions of such spaces. We mainly concentrate on bounds and 
constructions of ß-[nxA, k] hyper-array codes over finite fields 
with n = 0(n). 

II. BOUNDS 

Theorem 1. For any 3-[nxA,k] hyper-array code, 

nA~k   >  An  -  (A-l)log,(g-l)  -  0(A/(qn log g)) . 

Theorem 2. Let p < 2n+l. Then, for every p-[nxA,k] 
hyper-array code, 

nA  - k > AL0»-l)/2jn(l-eA(n)), 

wiiere lim„_oo tA(n) = 0. 

III. CONSTRUCTION OF TENSOR CODES 

Let {«■}"=!, {/?>}"=!, and {w*}"=1 be three bases of 
GF(qn) over GF(q). Define the tensor code C(n, ß, 3; q) as 
the set of all tensors T - [cij,e]^ji{=1 over GF(q) such that 

Z)"j,/=iCi,i,/a* ßfui = 0, 

where r and s range over all nonnegative integers such that 
(a) 0 < r, s < n, and (b) there exists a (conventional) linear 
[ß—1, r+1] code over GF(q) with minimum Hamming distance 
s+1. In particular, by the Singleton bound on the minimum 
Hamming distance we have r + s < p - 2. Hence, we obtain 
the following upper bound on the redundancy of C(n, ß, 3; q): 

k  < {»• 
(£)n for ß = l,2,...,n 
(2n-f+1W    for p = „+!,... )2n-l 

Theorem 3. The minimum rank of C(n, ß,3;q) is at 
least ß. 

Generalizing the construction for any A, we can obtain 
p-[nxA,k] hyper-array codes C(n, ß, A; q) whose redundancy 
is bounded from above by (M^73) n. For A = 2, the codes 
C(n, ß, 2; q) coincide with those of Delsarte [1]. 

The construction C(n, ß, A; q) attains the Singleton bound 
when p = 2. For ß = 3 we get redundancy nA-k = An, 
which, in view of Theorem 1, is optimal over GF(2) for any 
fixed A and sufficiently large n. In general, for any fixed p, the 
redundancy of C(n, p, A; q) is linear in n, which is smaller than 
a redundancy proportional to n logg n that would be needed 
in the simpler skewing crisscross coding method. 
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Abstract— Based on the average weight distribution of linearly 
expanded codes, we study their asymptotic characteristics. 

I. INTRODUCTION 
In this paper, we study the asymptotic properties of linearly expanded 
(LE) maximum distance separable (MDS) codes. We show that there 
is a class of LE MDS codes in which most members are asymptotically 
good. A time-varying code is also discussed, based on the asymptotic 
goodness of LE MDS codes. 

II. AVERAGE WEIGHT DISTRIBUTION 
The average weight distribution (AWD) of LE codes is defined as 
follows. Pick any (N,K,D) block code C over GF(gm), and list 
all nonzero TV-tuples over the multiplicative group of GF(qm). With 
each ./V-tuple, multiply the columns of the code, which yields a total 
of (qm - l)N block codes over GF(qrn). Finally, expand each code 
with a fixed basis, to obtain a class Cx of (n, k) q-ary LE codes, 
where n = mN and k = rriK. Consider now the q-ary weight 
i,0 < i < mN. Let d denote the average number of weight-i 
codewords in a code in Cx. We refer to the set {G;}£L^ as the q-ary 

AWD of Cx. The sum Gh->j = J2l=h ^' is called tne cumulative 
AWD (CAWD) of Cx between the weights h and j, h < j. G, has 
been derived for a class of generalised Reed-Solomon (GRS) codes 
[2], where N = 2m — 1 and q = 2. More general expressions for G; 
and the CAWD, applicable to any gm-ary MDS code, q > 2, have also 
been derived [1]. 

Most well-known MDS codes, e.g., GRS codes, satisfy 2 < K < 
N - 2. For such codes, the CAWD is upper-bounded by [1], 

mNS , \ 

G^mNi     <     q»+^(«-^J2(q-iy^) 

< N+i+m(K-N)+mNHq(S) „~. 

where 0 < 8 < (q — l)/q, and Hu(x) is the w-ary entropy function, 
u> 2. 

III. ASYMPTOTIC PROPERTIES 
Let Cx be the class of q-ary LE codes obtained from a gm-ary 
(N, K, D) MDS code, where 2 < K < N - 2. Let d denote the 
minimum distance of any member of Cx. 
Theorem 1 For any e > 0, there is an integer N0 > 0 such that a 
majority of codes in Cx satisfy Jff9(^v) > \ - § - e,VN > NQ. 

In other words, most codes in Cx are asymptotically good. The CAWD 
can be used to study the minimum distances of the LE codes, as stated 
below. 

Proposition 1 The smallest q-ary weight duos, such that Go—dMPS > 
I, is a lower-bound on the minimum distance of the best codes in the 
class. The iargest q-ary weight dmost, such that Go—dmos, < 0.5, is a 
lower-bound on the minimum distance of most codes in the class. 

Fig. 1 shows the asymptotic behaviour of dmosi. Here, C is a primitive 
Reed-Solomon (RS) code over GF(2m). We have computed dmost for 
5 < m < 9. We also show the BCH bound for comparable primitive 
binary BCH codes. Evidently, dmosi is asymptotically good. 

OJJh 

0.4 \\ 

0.3J L \ 

n = 378   
11 = 889   

n = 2040   
n = 4599  

o.,l 

0.25 ,- ^ts Binary-mapped GRS 

Figure 1: Asymptotic Behaviour 

IV. TIME-VARYING CODE 

Time-varying code is a pseudo-random code based on all the members 
of the class Cx. To explain how the code works, let us index the 

member codes with consecutive integers: Cx = {Cx,;};"^ ' 
To encode the rth block of information, we shall use the code C^e, 
where l — r [mod (qm - 1)^]. Since mostmembers of Cx are good, 
we are likely to pick a good code most of the time. With C being 
the same Reed-Solomon code as before, it has been found that the 
best codes in Cx dominate the overall performance of the time-varying 
code, provided every member is decoded to its true minimum distance 

[1]. 
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I. INTRODUCTION 

Let n = 2p be a positive even integer. Let GF{2) de- 

note the Galois field of order 2 and V„ the G_F(2)-vectorspace 
(GF(2)T. 

<§o denotes Dirac symbol (So(x) = 1 if x = 0 and.O otherwise). 

For any subset E of V„ or of Vp, the symbol 4>B denotes the 
characteristic function of E in Vn or Vp. 

We distinguish between the addition in Z, denoted by +, and 
the addition in GF(2), denoted by ffi. 

For any Boolean function /, the complement of / is the func- 
tion /ffil. 

We denote by \{x) the character (-1)* on GF(2). The Walsh 
transform of any real-valued function <p on Vn is defined on V„ 

by : <p(s) = ^ v ip(x)x(x ■ s), where "•" denotes the usual 
dot product on V„. 

Let / be a Boolean function on Vn. We denote by fx{x) the 

function x{f{x)). The Walsh transform of fx(x) is the func- 
tion :   

fx(s) = Yl X^f^ ® ^ • s)' 
x£Vn 

The Boolean function / is called bent if for any element s of 
V„, fx(s) has absolute value 2P . That is equivalent to the 
fact that / is at maximum Hamming distance from the set 
of all affine functions g(x) = a ■ x © e (a g Vn, e G GF{2)). 
A class of bent functions is called complete if it is globally 
invariant under any affine nonsingular transformation of the 
variable and under the addition of any affine function. 
If a Boolean function^/ on Vn is bent, then the Boolean func- 
tion / defined by : fx(s) = 2Px(f(s)) is bent. / is called the 
"Fourier" transform of / (cf. [2]). 

The known bent functions belong to the completed versions 
of four classes: 

1) Maiorana-Mc Farland's class [2], denoted by M. It is 
the set of all the Boolean functions on Vn of the form : 
f(x, y) = x ■ x(y) © g(y) where x and y belong to Vp, x is 
a permutation on Vp and g is a Boolean function on Vp. 
2) Partial Spreads class [2], denoted by VS, whose elements 
are the sums (modulo 2) of the characteristic functions of 2P_1 

or 2P-1+1 "disjoint" p-dimensional subspaces of Vn ("disjoint" 
meaning that any two of these spaces intersect in 0 only, and 
therefore that their sum is direct and equal to Vn). 

3) Class V [1] which is the set of all the functions of the form : 

f(x, y) = x ■ ir(y) © <j>Ei {x)4>E2(y) where x is any permutation 
on Vp and E\, E2 are any linear subspaces of Vp such that 
x{E2) = Ef. 
4) Class C [1] which is the set of all the functions of the form : 
f{x, y) = x ■ x(y) © <f>L{x) where w is any permutation on Vp, 
L is any linear subspace of Vp such that, for any element A of 
Vp, the set TT

-1
(A + ix) is a flat. 

II. GENERALIZED PARTIAL SPREADS, GEOMETRIC 

FORMS OF BENT FUNCTIONS 

Our main result is the following: 

Theorem 1 Let {Ei, ■ ■ •, Ek} be a family of p-dimensional 
subspaces ofVn and mi, • • •, rrik (positive or negative) integers. 

Let f(x) be a Boolean function on Vn. Assume that : 

k 

J2m,</,Et(x) = 2p-1So(x) + f(x)   (i) 

t=i 

then f is bent and 

k 

Y^rnt4>Ei.{x) = 2p-180{x) + f{x).   (Ü) 

»=i 

We denote by QVS the class of all functions which satisfy (i). 
We call (i) a geometric form of /. 

Any element of class VS belongs to class QVS . Any element 

of class M or of class V is equivalent, up to a translation 
on the variable, to one of the elements of class QVS, or to 
its complement. Thus, it belongs to the completed version of 
class QVS. 

For any element / of class QVS and any linear isomorphism ij) 
of Vn, the functions f otj> and /© 1 belong to QVS. However, 
class QVS is not complete. 

III. NEW BENT FUNCTIONS DEDUCED FROM THE 
THEOREM 

Proposition 1 Let n = 2p be any even integer. Let ir, ir' and 
■K" be three permutations on Vp such that x + x' and w + x" 

are permutations. Assume that their inverses are 7r_1 + x '-1 

and x"1 +7r"-1 (respectively). Let e and n be two elements of 
GF{2), and f(x,y) the Boolean function defined on Vn by : 

f(x, y) = (x- x(y) © l)(x ■ x'(y) © e) © (x ■ x{y)){x ■ x"(y) © r/)). 

Then f is bent. 

We have checked that these functions do not belong in gen- 
eral to the completed class of M. 

IV. A NEW CHARACTERIZATION OF BENT FUNCTIONS 
The theorem extends straightfully to a more general frame- 

work: let / be a Boolean functions on V„ ; let E\, ■ ■ ■, Ek be 
p-dimensional subspaces of Vn and mi, • • •, mu integers; as- 
sume that 

* 

J2ml<j>E,(x) = 2p-16o(x) + f{x)  [mod2p] (1) 

>=i 

then f is bent. 

We have proved, with Philippe Guillot, that the class of those 
Boolean functions that satisfy (i') is that of all bent functions. 

REFERENCES 

[1] C. Carlet, Two New Classes of Bent Functions , Proceedings 
of EUROCRYPT'93, Advances in Cryptology, Lecture Notes in 
Computer Science 765, p. 77-101 (1994) 

[2] J. F. Dillon, Elementary Hadamard Difference Sets, Ph. D. The- 
sis, Univ. of Maryland (1974). 

241 



Constructing Covering Codes via Noising 
I. Charon, 0. Hudry, A. Lobstein 

Centre National de la Recherche Scientifique 
Telecom Paris, Departement INF 

46 rue Barrault 75634 Paris Cedex 13, France 

Abstract — We show how a combinatorial optimi- 
zation method, the noising method, can be used for 
constructing covering codes. 

I. Introduction 
The noising method and its applications to some graph pro- 

blems were described in [1] and [2] (see also [5] and [4]). It is a 
heuristic for combinatorial optimization problems of the form 
min{f(s) : s 6 S}. The elements in 5 are called solutions 
and / is the evaluation function. A transformation is any ope- 
ration transforming a solution s £ S into a solution s £ 5. 
An elementary transformation is a transformation changing 
one feature of s without changing its global structure; it de- 
fines the neighbourhood N(s) of a solution s as the set of all 
solutions s' obtained from s by an elementary transformation. 

This makes possible the definition of an iterative- 
improvement method, the descent method : from a current 
solution s, take a solution s' £ N(s). If f(s') < f(s), take s' 
as the current solution, otherwise keep s. Iterate this process. 
When no s' £ N(s) is better than the current solution s, a lo- 
cal minimum is reached (with respect to this neighbourhood, 
i.e., to this elementary transformation). 

The noising method is based on descent. Starting with an 
initial solution, repeat the following steps : 

- add noise to the data (in order to change the values of /). 
- apply the descent method to the current solution for the 

noised data. 
For each iteration, the amount of noise is decreased until 

it reaches 0 in last iteration. The final solution is the best 
solution computed during the process. 

To add noise, we give to each vector z€f2"a value v(z) £ 
[1 — r, 1 + r], where v is uniformely distributed and r is the rate 
of the additional noise. The noised function, /N(C), is given 

by: /w(C) = J2zeFn,d(z,c)>tv(z)- Wnen rate r » zero. tnen 

v{z) = 1 for all z £ F?, and / = fN. 
If we find a code C such that /(C) = 0, we start again the 

whole process with a size decreased by one. 
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II. Noising for Covering Codes 
Let C C Fg be & g-ary code of length n. Its covering radius 

t{C) is t(C) = max{d{z,C) : z £ F?}. Let Kq(n,t) be the 
smallest size of a g-ary code with length n and covering radius 
t. Function K has been extensively studied, in particular for 
q=2 or 3 (see [3] for a recent survey on covering radius). Upper 
bounds on K are obtained by constructions; some of them use 
heuristics based on descent, for exemple simulated annealing. 

In the following we restrict ourselves to g=2, but there is 
no difficulty in extending it to any q. 

The set of solutions S is the set of all binary codes of gi- 
ven length n and given size. The evaluation function / is the 
number of vectors in F? at distance greater than t from the 
current solution CcF2°: f(C) = \{z £ F? = d(z,C) > t}\. 
The goal is to have /(C) = 0, proving that K2{n,t) < \C\. 
From a random initial solution C, a new solution C is obtai- 
ned by complementing one bit of one codeword (this defines 
our neighbourhood). 242 
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Abstract — We introduce a new error correcting 
code, which we call Diamond code. Diamond codes 
combine the error correcting capabilities of product 
codes and the reduced memory requirements from 
CIRC, the code applied in the CD system. 

I. DIAMOND CODE CONSTRUCTION 

The Diamond Code C calls for two codes, Ci and C2, of equal 
length n and defined over the same alphabet. C consists of 

the bi-infinite strips of height n, with each column in Ci and 

each diagonal in C2. 
A convenient way of constructing Diamond codes is by us- 

ing linear weakly cyclic codes for Ci and C2. 
Definition: A linear code B is called weakly cyclic if 

(60,61,..., 6„_2,0)GB <£> (0, 60,61,..., 6„_2)eB. 

Suppose both Ci and C2 are weakly cyclic codes, with p and q 
parity symbols, respectively. The minimal span codewords in 
C look like (p + 1) x (<? + l) diamonds as indicated in Figure 1. 
By the weakly cyclic property of Ci and C2, these elementary 

data 

Figure 1: Elementary Diamond codewords 

diamonds can be positioned anywhere within the code array. 
By taking suitable linear combinations of shifted elementary 
diamonds, we can produce codewords that are systematic in 
the s = n — (p + q) top rows. Moreover, this construction 
shows that each information symbol in the upper s rows can 
affect the parities in at most n — p columns. 

II. ENCODING 

A Diamond code word whose columns contain only zeros for 
negative time, can efficiently be encoded by alternating Ci 
and C2 encodings, starting with the leftmost nonzero Ci word 
and ending with the rightmost nonzero C2 word. Such an 
encoding can be realized by the structure from Figure 2. The 
memory contents should be set to zero before the first data 
is fed into the encoder. The symbols immediately after the 
Ci encoder correspond to columns of the Diamond code C, 
that are written to the channel. The feedback link in Figure 2 
makes it an infinite impulse response structure. The remark 
at the end of Section I, however, implies that the structure 
from Figure 2 has a finite impulse response if Ci and C2 both 
are weakly cyclic and the encoder is initialized at the all zero 

state. 

III. DECODING 
A decoder for C is obtained by combining decoders for Ci and 
C2. In Figure 3, we show how a Diamond decoder is related to 
the decoder configuration of CIRC (Compact Disc) [1],   The 
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Figure 2: Systematic Diamond encoder 

Diamond decoder applies iterative decoding which is known to 
be very powerful, especially for correcting random errors and 
short bursts. For an optimal performance, all symbols should 
be checked by both Ci and C2. A Diamond code does so (like 
a product code), but CIRC does not. Like CIRC, a Diamond 
code allows for a Forney interleaver between consecutive de- 
coding stages (the "delay" triangles in Fig. 3), thus reducing 
the memory requirements, while retaining the distance and 

decoding potential of the product code of Ci and C2. 

^ DIAMOND ^ 

CIRC 

V^"j£r preliminary data 

Figure 3: Decoding formats 

IV. BLOCK VARIATIONS 
For data recording applications, there is a need for independ- 
ent, randomly rewritable data blocks. Three types of block 
codes will be discussed that share many features with C, which 
allows us to share much of their encoding and decoding hard- 
ware with the hardware for C. Each of them offers a different 
trade-off between rate, performance and similarity with the 
parent code C as a function of the blocksize. 
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Abstract — Performance loss caused by the inter- 
track interference (ITI) in recording channels may be 
alleviated through the use of multiple-head systems 
simultaneously writing and reading a number of ad- 
jacent tracks. We consider a five-head, three-track 
system, and show that there is no loss in performance 
of the system due to ITI, under some broad assump- 
tions. We also show that, under these assumptions, 
the codes designed to provide certain coding gain in 
single-track, single-head systems, provide the same 
coding gain in five-head, three-track systems. 

I. SUMMARY 

We consider disk recording systems where inter-track interfer- 
ence can be described as follows: only adjacent tracks inter- 
fere, and when a reading head is positioned over one of the 
tracks, it responds to the magnetization of an adjacent track 
as if it were positioned over that track but with an amplitude 
modified by a weighting parameter a. Information is writ- 
ten in Nt adjacent tracks and simultaneously detected by Nh 
reading heads. We analyse a discrete-time model for the mag- 
netic recording channel with input {an}, 1 < k < Nt, impulse 
response {h„}, and output {y£} 1 < k < Nh, given by 

k 
Vn VEJ2(C -1    i      k     . k+l\i + am + ff8m

T )h„- i      k 

where hn are integer, 77* are independent Gaussian random 
variables with zero mean and variance a , and E is a con- 
stant related to the output voltage amplitude. We refer to 
E/cr2 as the signal-to-noise ratio (SNR) per track, and to 
H(D) = ^2 h„Dn as the channel transfer function. Special 
cases of these systems with Nt = Nh = 2 have been studied 
by Barbosa [1], Siala and Kaleh [2], and Soljanin and Georghi- 
ades [3]. 

We compare the performance of various detection systems 
on the basis of minimum Euclidean distance, dmin. This dis- 
tance determines the performance for high values of SNR, 
when the probability of an error event in the system is closely 
approximated by <5(dminvSNR). 
Proposition 1 Let do be the minimum distance of the com- 
posing single-track channels. (For example, for the H(D) — 
(1 - D) channel, d2

0 = 2.) Then 

((1 

I   2( 
+ 2a2)d2

0 

(l + 2a2 -2a)dl 
if   0 < a < 1 - v/2/2, 
if   1 - V2/2 < a < 1/2, 

as long as dQ < 6. 

Note that there is no performance loss due to ITI as long as 
^min > do, ?-e-> 0 < a < 1/2, which is the entire interval 
under consideration. Note also that the above condition holds 
for H{D) = (1 - D)(l + D)N, N £ {0,1,2, 3}, i.e., for the 
most common magnetic recording channel transfer functions. 

Corollary 1 Under the assumptions of the preceding propo- 
sition, a single-track code that provides an increase in the 
single-track minimum distance to dl = ^/gdo when applied to 
each track, results in an increase in the two-track minimum 
distance to d^in = ^/jdmin, as long as ^in < V6- 

Note that the above holds for a dc-free coded 1 — D channel 
as well as for a Nyquist-free coded (1 — D)(l + D)2 channel. 

Performance of five different detection systems are com- 
pared Fig. 1, which plots d^in for each of the five cases as a 
function of the interference parameter a. 

   N,=3, Nh=5 

 N,=3, Nh=3 

 Nt=2, N„=2 

    N,=3, Nh=1, known a 

    N.=3, Nh=1, unknown a 

0.2 0.3 

ITI level a 

0.5 

Figure 1: Performance of five different detection systems 
for channel of three interfering tracks. 
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Abstract — In this paper we consider designing 
multi-track codes for parallel networks of partial- 
response channels. The codes we design have the ca- 
pability of combating inter-track interference and also 
providing additional gains. 

matrix corresponding to (1 — D) channel and define an inner 

product in Rn+1 as < u, v >A= UAV' with u, v G Rn+1 For 
the network of two parallel (1 — D) channels with symmetric 

ITI coefficient a the distance between two allowable recorded 
sequences is given by [3], 

In single-track magnetic recording systems data is coded, 
modulated and written on tracks independently from neigh- 

boring or any other tracks, with the same modulation code 

used on each track. The main idea of a multi-track system 
is to encode, write and read in parallel. Decreasing the k 

constraint is always desirable in recording systems, because 
this brings better synchronization, consequently higher access 
speeds. However, the price of a low k constraint is the lower 
code-rate, in other words the capacity loss. The advantage 
of using multi-track systems is the altered form of the k con- 
straint. In a multi-track recording system, the k constraint 
on each channel is removed and a joint (vector) k constraint is 
imposed on the channel output sequences. As pointed out in 
[1], this provides higher rates and the information for timing 
and gain control can be obtained from any of the tracks which 
are coded jointly. 
The multi-track system under investigation is modeled as a 
set of parallel partial-response channels. Each channel is of 
the form (1 - D)(l + D)n. In addition to this, the effect of 
the interference from each track to others is formulated by an 
inter-track interference (ITI) matrix, T. Matched Spectral- 
Null (MSN) modulation codes which are intended for use on 
noisy partial-response channels with a finite input alphabet 

size were described in [2]. These codes provide significant in- 
crease in the minimum Euclidean distance, limit the maximum 
run length of identical samples and are designed to eliminate 
quasi-catastrophic sequences. The simplest approach to de- 
signing MSN codes for multi-track systems is to code each 
track independently. However, independent coding of each 

track for a multi-track system is undesirable for two reasons. 
First, it does not have the effect of decreasing the k constraint. 
Second, such a scheme ignores the existence of ITI which is 
inherent in all multi-track systems under investigation and is 

not expected to provide adequate coding gains except in very 
special forms of inter-track interference. 

In this paper we consider designing multi-track codes for 
parallel networks of (1 — D) channels. The codes we de- 
sign have the capability of combating ITI. Formally, let F 

be the graph representing the cross product of two canoni- 
cal diagrams of single-track MSN codes with edge labels from 

{0, l}2. Let a = So, ■. ■, an and b = fco, • • •, fcn be sequences 
generated by paths in F, Ta = {(To, C\, O%, ..., <r£, <r£+1} and 

TO = {<T0,<TI,<X2,. ..,<r*,<r£+1}. The sequence e = e0,...,€n 

with e, = (aii — fc;i,ai2 — ta) is referred as the difference se- 

quence corresponding to a and b . If (r^+i = «^n+i then e 
is called a difference event, and if a„+j = <r£+1 = <r0, then 
e is called a difference cycle. The difference sequences corre- 
sponding to a and b on track 1 and track 2 are denoted as ei 
and e2, respectively. Let A(n+1)x(n+i) be the autocorrelation 

d2(e) = (l + a2)(|j ei ||A + || e2 ||A) + 2.2a < eue2 >A. 

To design two-track codes which are able to combat the 
performance loss caused by ITI, we consider subgraphs of F 
with the property that for any difference cycle contained in 

this subgraph the difference cycles corresponding to track 1 
and track 2 satisfies, ei ^ —e?. We denote such a subgraph 
of F with H. Then we have the following proposition which 

provides improvements over the results of [3], 

Proposition : Let a = ao,..., o*„ and b = bo,...,b„ 
be two distinct sequences generated by paths in H, ra = 

{<r0> a?, of,... ,<T£,<70} and Fb = {«TO, <r\, a\, ■ ■ ■, <rb„, Co}, with 

ö*o ^ fco- 

min d (e) 
e*0 

f   2(1 +a2) 
1     Ad        „,\2 

if 0 < a < 3-VS 

4(1 - a)2 + 2a    if ^^S < a < 

The capacity of H we considered was 0.7997. We designed 
codes with rates up to capacity and confirmed the gains pre- 
dicted by the proposition with simulations. 

[1] 

[2] 

[3] 
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Abstract — A new family of MDS array codes is 
presented. The code arrays contain p information 
columns and r independent parity columns, where p is 
a prime. We give necessary and sufficient conditions 
for our codes to be MDS, and then prove that if p be- 
longs to a certain class of primes these conditions are 
satisfied up to r < 8. We also develop efficient decod- 
ing procedures for the case of two and three column 
errors, and any number of column erasures. Finally, 
we present upper and lower bounds on the average 
number of parity bits which have to be updated in an 
MDS code over GF(2m), following an update in a sin- 
gle information bit. We show that the upper bound 
obtained from our codes is close to the lower bound 
and does not depend on the size of the code symbols. 

I. INTRODUCTION 

This work is concerned with maximum distance separable 
(MDS) codes. The Reed-Solomon (RS) codes are a well-known 
example of MDS codes. However, with Reed-Solomon codes, 
(a) the encoding and decoding procedures are performed as 
operations over a finite field, and (b) an update in a single in- 
formation bit requires an update in all the parity symbols and 
affects a number of bits in each symbol. These two properties 
of RS codes are quite undesirable for certain channels. Firstly, 
the fact that encoding/decoding is performed in a finite field 
makes it unfeasible to use large symbols, since the size of the 
field grows exponentially with the symbol size. Secondly, the 
fact that an update in a single information bit requires to 
re-compute most of the parity bits is particularly undesirable 
in storage applications where the stored data has to be fre- 
quently updated in real-time. In this work, we present a new 
family of MDS codes having the following two properties: en- 
coding and decoding may be accomplished with simple cyclic 
shifts and XOR operations on the code symbols, without finite 
field operations; and an update in an information bit affects 
a minimal number of parity bits. 

II. THE NEW MDS ARRAY CODES 

Our new codes are based on recent work in array codes [1, 
3]. We assume that the information is presented as a two- 
dimensional array of bits. Henceforth we will identify the 
symbols of an MDS code with the columns of such an array. 
Thus the errors that can occur are column errors. 

A trivial example of an MDS array code of this type is a 
simple parity code. This code is defined by requiring that 
the last column in the array is a parity column, given by the 
exclusive-OR of the other columns. The first nontrivial gener- 
alization of the parity code is the EVENODD code introduced 

"Supported by the NSF Young Investigator Award CCR- 
9457811, by the Sloan Research Fellowship, and by grants from 
the IBM Almaden Research Center and the AT&T Foundation. 

"Research supported in part by a grant from the Joint Services 
Electronics Program. 

in [1], The EVENODD code has columns of size p—1 for some 
prime p, and requires two parity symbols. It can correct one 
error or two erasures. 

In this paper, we generalize the construction of the EVEN- 
ODD code to a family of codes with p information columns and 
r parity columns, for r > 1. We assume that p is prime num- 
ber, and let Mp(x) = 1 + x + \- xp~l with Mp(x) € ^[x]. 
Consider the code C whose entries are in the ring of polyno- 
mials modulo Mp(x), defined by the parity-check matrix: 

H   = 

/ 1 
1 

V i 

1 
a 

1 
vP-1 

(r-l)(p-l) 

1    0 
0    1 

0    0 

0 

1 / 

It is not difficult to show that this code is MDS for all p when 
r = 2 or r = 3. However, this is no longer true when r > 4. We 
give necessary and sufficient conditions for the code to be MDS 
when r > 4. Although we determined completely the primes 
p < 100 for which this code is MDS when r < 8, checking the 
necessary and sufficient conditions in the general case may 
be very complex. Our solution to this problem is related to 
certain generalizations of Vandermonde determinants called 
alternants. Using alternants, we have been able to show that 
if 2 is primitive in Fp, then our codes are MDS up to r = 5 for 
all p ^ 3, and up to r = 8 for all p 0 {3, 5,11,13,19, 29}. 

III. DECODING AND INFORMATION UPDATES 

We present a decoding algorithm for the case of two symbol 
errors, that is for r = 4. Notably, this algorithm does not 
require finite field operations. This extends the algorithms 
of [3], applicable only for the case of a single symbol error. 

Finally, we present lower and upper bounds on the average 
number n(C) of parity bits affected by an update in a single 
information bit. In particular, we investigate the behavior of 
r)(C) for MDS codes over GF(2m). It is shown that for our 
codes 17(C) does not depend on the size of the code symbols. 
In contrast, we also show that for Reed-Solomon codes, as well 
as for the MDS codes of Blaum and Roth [3], »7(C) increases 
linearly with the symbol size. 

All these properties of the new MDS array codes make them 
very well suited for applications where the size of the code 
symbols is required to be large. We refer the reader to [2] for 
further details. 
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Abstract - We give a rigorous proof of Etzion and 
Wei's conjecture about the capacity rate of two- 
dimensional Runlength Limited Codes.We also provide 
an alternative approach to compute the capacity rate. 

SUMMARY 
Runlength-limited(RLL) codes are   binary codes   with 

the   maximum and minimum    runlength    constraints of 
its codewords. Etzion and Wei[l] have     studied       the 
extension    of    runlength- limited     codes       to     two- 
dimensions. One of the most fundamental   problem     is 
to   determine   the capacity   rate   of   2-D RLL   codes, 
i.e., the   highest   code   rate   possible   under   a given 
set of runlength constraints. 

A     2-D   naXn2 (d1.,k:L,d2,k2;d3,k3,d.1,k.,)     array   is 
an n,Xn2 binary array   with the following parameters: 

(ONEs) 

(ONEs) 

(ONEs) 

(ONEs) 

(1) di(d2) is    the    shortest    run    of    ZEROs 
horizontally, 

(2) ki(k2) is   the longest   run     of   ZEROs 
horizontally, 

(3) d3(d4) is   the   shortest   run   of   ZEROs 
vertically, 

(4) k3(k„) is   the longest   run     of   ZEROs 
vertically, 

If the horizontal constraints are the same as the 
vertial    constraint, then it   is    a (dx.ka.da.kz) array. 

The capacity rate of 2-D (dx.ka.d^.ka) arrays is 
defined as: 

log F(n1(n2) 
C = hm  

n-*oo   naXn2 

where    F(na,n2) is    the number    of       valid    n XX  n 2 

-configurations with runlength constraints. 
To   determine   the capacity rate of 2- D   RLL   code, 

we   assign   a   Gibbs   measure   associated   with       the 
given    2-D runlength    constraints as follows. Let 

energy 
by 

A ^>={n=(n!,n2);0< j n± j ,  | n2 j <n} = A 

be   the finite box of Za . We   define   an 
function for configurations on the finite set A 

U(x- ) = 2   Vc(x^) 
C A 

where 

V   (x^)=J ^    if C is a minimal violating subconfiguration i . 0   otherwise 
Then define an Gibbs field by: 

PA (xA )=ZA-
1exp{-UA (xA 

)}•      (1) 
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where   ZA is 
partition function. 
Theorem 1.      C = lim hj ,where 

the     normalization    factor    called 

hj = lim - 
n—>oo 

J—>oo 
1 

Ha.A (X- <»>) 
i A Sn> I 

is   the   entropy       rate       of   the     Gibbs     field     (1) 
associated   with   the   2-D RLL constraints   for fixed J, 
and 

Ha,A (X- *->) = -2  PA (x- )logPA (x- ) 
xA 

This result   was   first   conjectured   by   Etzion   and 
Wei [1]; We give a rigorous proof. 

The determination of the entropy rate of a Gibbs 
measure is a notoriously difficult problem. We find 
an alternative formula for the capacity rate of 2-D 
RLL codes which can be used to approximate the 
capacity rate. Let us describe the idea by an simple 
example. For 2-D (l,co,l,l) RLL code we define a 
sequence   of matrices A„ as follows: 

First   find   all   nXl column   vectors     which   satisfy 
the column constraints and label them by X;L,X2,..., XF<„), 

where F(n) is   the number of   n-vectors   which   satisfy 
the   constraints. We assign   an   F(n) X F(n)     merging 
indicator matrix AD=(AiFJ), where 

 { 
Then 

1    if merging xt and Xj results 
a valid nX2 array 

0   otherwise 

A* 

quence 

(;) 
cursive 

= /A^ B^  \ 
V  B„_£     0   / 

We define another sequence of matrices B„'s by 

B* 

Then we have the recursive form: 

AD =  | "»-1 "=-a     1   and B„ = (£) 
the 

have 
where B^ is the transpose of B„. Denote by u „ 
largest eigenvalue of the matrix A„, then we 
the following theorem. 
Theorem 2.    For 2-D (l,oo,l,l) code, the capacity rate 

1 
C = lim — log  u „. 

n-*co n 
This method can be extented to other 2-D   RLL   codes. 
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Abstract — A model representing the physical laws 
which govern magnetic recording media is presented. 
Previous results in the analysis of Hopfield neural net- 
works may be extended and applied to this model to 
determine its storage capacity limits. 

I. INTRODUCTION 
The central component of any magnetic recording system is 

the medium on which information is stored in magnetic pat- 
terns. The storage capacity of a recording medium cannot 
exceed the logarithm of the number of distinct magnetic pat- 
terns which can be sustained over time. These limits are fun- 
damental to the physical nature of a given recording medium, 
irrespective of the devices or methods used for recording. 

II. MEDIUM MODEL 
Let a medium be represented by a planar array of N square 

tiles, indexed by i € I. Let 0; be the orientation of the ith 
tile's easy axis of anisotropy. The 0,- are random variables 
whose values are fixed in the manufacture of the medium, in- 
dependently drawn from a uniform distribution on the interval 
[-T, 7r]. The magnetization of tile i is mi = s;[cos0,:, sin 6i\ , 
where s; € {±1}- 

The normalized, effective magnetic field at tile i is 

Ke 

+ £ 

2 m> 
Km 

O X ij Zij 

ö X ij Zij 

,.(4 + 4)6/2 2z?- - r?- (1) 
1X7.- "t- Z7.■)"'" OXtl6tl 4*ij   —  AH 

The constants Ke and Km scale the relative strength of the ex- 
change interaction, arising from neighbor tiles [N(i)], and the 
magnetostatic interaction, arising from all tiles, h; is resolved 
into components parallel and perpendicular to the easy axis of 
tile i, h\\ti and kx,i, and the magnetic state evolves according 
to a modified Stoner-Wohlfarth model[l] update rule, 

hV! + h^<h 
(2/3 

+ hTi z1 (2) 

The update is repeated at randomly selected tiles until a state 
is reached which undergoes no further changes. 

III. CAPACITY ANALYSIS 
Only fixed points of the update rule are suitable for infor- 

mation storage. When there are FN fixed points, the storage 
density is limited by C = jf log2 FN, expressed in units of 
bits per tile. C is a function of Ke, Km, and the 0i. Fig- 
ure 1 displays the capacity limit C computed via simulation 
for a medium of 16 tiles arranged in a 4 x 4 array, using one 
realization of orientation angles, 0i [2]. 

For small values of Ke and Km, all magnetic states are 
stable, and C = 1. As Ä'e and Km increase, the second line 
of the update rule has an effect. Let 

At = {h; : h2/J + h2H < 1 or hhi > 0,1 < i < N}.       (3) 

^his work was supported in part by NSF Grant NCR-94-06197. 

Figure 1: Capacity limit as a function of Ke and K„ 

Application of DeMorgan's Law, the Union Bound, and sym- 
metry properties of the model yields 

C>1 + — log2(l-iV  max Pr{hi0A}). 
N Ki<N (4) 

For large N, edge effects may be ignored and the functional 
dependence of Pr{hi £ .4,} on Ke and Km has been estimated 
numerically. The results determine that the analytical bound- 
ary of the region of the Ke-Km plane for which all states are 
stable is consistent with simulation results. 

For large values of Ke and Km, the role of h±li becomes 
insignificant, and the model may be simplified to 

^WijSj, 
new tr       \ s,      = sgn(ft||ii), (5) 

with appropriate definitions of the Wij. This case corresponds 
to the Hopfield model with random weights. 

When the Wi3 are independent standard normal random 
variables, for large N, the number of fixed points is [3] 

FN « 1.0505 • 2U 
(6) 

Thus, a storage capacity limit of about 0.29 bits per tile would 
prevail if independent, identically distributed, zero-mean 
Gaussian random weights accurately reflected the medium 
model. For a typical tile size, the corresponding area! stor- 
age density limit is about 116 Gbits per square inch. Such 
analysis must be extended to determine the capacity limits 
when Wij are given by the medium model. 

[1] 

[2] 

[3] 
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I. Introduction 

We consider the problem of determining the maximum en- 

tropy of a discrete random field on a lattice subject to certain 
local constraints on symbol configurations. The results are ex- 
pected to be of interest in the analysis of digitized images and 

two dimensional codes. We shall present some examples of bi- 

nary and ternary fields with simple constraints. Exact results 

on the entropies are known only in a few cases, but we shall 

present close bounds and estimates that are computationally 
efficient. 

II. Fields with Simple Constraints 

We consider random variables on a rectangular grid, x(i,j). 
The lattice is defined by the set of neighbors associated with a 
given point. We shall not assume that the probability distri- 
bution is given, but the structure of the field will be specified 

in terms of a set of constraints on the values assumed by a 
particular variable and its neighbors. Constraints could be of 

one of the following (not necessarily distinct) types: 

- the runs of pixels of a given color should satisfy a set of 
inequalities [1] 

- the field is a random tiling of the plane with certain pieces 

[2] 
- certain configurations of values are excluded 

Since we are interested in estimates of the entropy which 
may be related to coding and data compression, we consider 
fields which are obviously stationary. The existence of solu- 

tions to the constraints should not be a problem, and bound- 
ary conditions should not be important. 

Example 1: As a simple example we shall consider the fol- 
lowing problem which is quite well-known: Consider a binary 
field on a rectangular lattice with the restriction that two 
neighbors, i.e. x(i,j) and x(i,j + 1) or x(i, j) and x(i + l,j), 
cannot both have the value 1. What is the largest possible 
entropy, or what is the number of solutions for an N by JV 
segment of the lattice as a function of JV? We estimate the 
entropy to be H ss 0.587891161775339. 

III. Markov Chains 

As suggested in [1], the maximal entropy may be bounded 
by the entropy of a band of finite width, i.e. the variable j is 

restricted to 0 < j < m. This entropy can be calculated as 
the maximal entropy of a finite state Markov chain, and from 
this approach we obtain an upper bound (with a suitable re- 
laxation on the restrictions at the boundaries). This estimate 
converges slowly. For the problem of Example 1 we get H < 
0.5928 for m=20 imposing no restrictions at the boundaries. 
Constraining the probability of a 1 at the boundaries a tighter 

bound may be obtained. In some cases it is possible to derive a 
very accurate estimate from this sequence of values, Hm. The 

estimate given in Example 1 was obtained as -ffm+i —Hm with 
m=16. 

Another type of estimate may be obtained from finite state 
causal models of the field.   If the outcome of the process is 

generated one pixel at a time, and the probability distribution 
of x(i',j') is assumed to depend on a finite past context i < i' 
or i = i and j < j , then the entropy can be approximated 

by that of a finite Markov source. This approach gives some 

information about the properties of the field, but the model 
is only exact in a very simple case, which is discussed in the 
following section. 

IV. Construction of Stationary Fields 
An actual construction of a random field with known en- 

tropy is interesting both for simulation purposes and as a 
method for establishing lower bounds. It would be very de- 
sirable to have random fields where rcws and columns were 

described by simple Markov chains. Unfortunately this ap- 
pears to be possible only in the case of the Pickard lattices 
[3]. This is also the only case where the causal model of the 
field becomes a simple finite state source. 

Example 2: A Pickard field consistent with the constraint 

considered in Example 1 may be constructed such that each 
row or column is a Markov chain with P(l)=l/5. In this case 
the entropy may be found explicitly as H — 1/10 + 3/10 log3 
= 0.575... Actually a slightly larger value may be obtained by 
varying the transition probabilities. 

Clearly the solution to the maximum entropy problem is 
always a Markov random field. However, in general such fields 
are hard to analyze. We shall consider a construction which 
has much greater flexibility than the Pickard field, but still 
allows detailed analysis: 

Let rows i and i + 1 be generated by a Markov chain (or 
another unifilar finite state source), such that there is com- 

plete symmetry between the two rows. Their joint entropy 
can be easily calculated. The probability distribution may be 
extended to a stationary distribution on the entire plane by 
assuming that all pairs of rows have the same distribution, 
and that the probability of each row given the past depends 
on only the previous row. The entropy of a row given the 

previous row may, in some cases, be calculated from a hidden 
Markov source. 

Example 3: For the constraint in Example 1, two succes- 
sive rows may be generated by a symmetric 3-state Markov 
chain with entropy _ff2. From this source it is possible to cal- 
culate the entropy of a single row (i), Hi, exactly. Whenever 
x{hj) = 1> the state of the source is known, and the distribu- 
tion of zero runs can be calculated. We find the entropy of the 
process as H = H2 — Hi. The largest lower bound obtained 
in this way is 0.58783. 
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Abstract — The shift- and scale-orthogonality prop- 
erties of wavelets and scaling functions provide a 
means of producing signal spaces of arbitrary dimen- 
sionality. The signal spaces are presented with an 
example trellis code on the Es lattice. 

I. INTRODUCTION 

Let ^jt(t) = 2j/2il)(2jt - k) and </>jk(t) = 2j/2^(2J'< - k) rep- 
resent scaled and shifted wavelet and scaling functions, re- 
spectively, where we take j,k £ Z. Normalized orthogonal 
wavelets and scaling functions have the following orthogonal- 
ity properties: 

< tpjkjtßlm >      =       6j,lSk,m 

<ipjk,(j>im>    —    0    Wj,k,l,m 

< <f>jk,<t>jm >       =      &k,m- 

In addition, these functions have attractive frequency local- 
ization: <j>(t) is a low-pass function and ip(t) is a band-pass 
function. A family of wavelets of interest is the compactly 
supported orthogonal wavelets introduced by I. Daubechies. 
Members of these families are denoted by DN, N even, where 
N is the number of coefficients in the two-scale implicit de- 
scription of the scaling function <t>(t) = J^n=o c"^(2^ — n)> 
which has support over [0, N — 1). The regularity (and hence 
the frequency localization) of member of DM increases with 
N. 

Considerable attention has been focused on wavelet and 
scaling functions over the last few years, due to their 
time/frequency localization ability and the existence of fast 
transform algorithms. In this paper, we introduce the applica- 
tion of wavelets and scaling functions as baseband waveforms 
for the transmission of digital signals. 

Using a basic bit time normalized to unity, a baseband 
signal may be written as 

Table   1:    Dimensionalities obtainable  using  multiple 
scales. 

s(t)=Y^ 7"^(f -n) 

Num. of Function Num. 
Levels Listing Dim. 

2 ipip 3 
2 <f>-rl> 3 
2 (f>ipip 5 
2 ib<b— 3 
2 ipcf>t)) 4 
3 ipipip 7 
3 <j)ipipip 11 
3 <j> — ipip 7 
3 tp<j)iprp 9 
3 tp<f> — ip 7 
3 iptl>(f>ip 8 
3 ipipcf)— 7 

where {In} represents an alphabet of symbols drawn from a 
(possibly complex) signal constellation C. For <j>{t) 6 DN for 
N > 4, this signalling scheme has better spectral localization 
than MSK. 

Signalling with several scales of wavelet functions may be 
written as 

s(t) = ^2Y2 Is^sAi) + Y2 Jn(t>*,n(t) 
n    s€S n 

where S is a set of scale indices,  a is a single fixed scale, 
and J„ is drawn from a constellation which may be empty 
(if the scaling function is not used for transmission).   Table 
I indicates the dimensions for transmission with various sets 
of scales, where the scale notation is as follows:  If a scaling 
function is used on a given scale, it is listed before the wavelet 
function for that scale.  Absence of a wavelet on a particular 
scale is indicated by —. 
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II. TRELLIS CODING IN WAVELET SIGNAL SPACES 

Multiple-scale signalling provides a spectrally efficient way of 
producing arbitrary dimensionalities. The dimensions for cod- 
ing available using multiple-scale signal provide rationale for 
exploring trellis codes in dimensions other than those usually 
explored. Due to limited space, we present only one example. 

The code is based upon the construction of Calderbank and 
Sloane over the Ee lattice. This is a lattice A with generator 
M over the Eisenstein integers and endomorphism 0 

M = 

where (a,b), a,b € Z represents the Eisenstein integer a + bu, 
w = (1 + t\/2)/2. The sublattice A' generated by M' - M0 
produces a quotient group A/A' with 64 cosets. 

A generator for a four-state convolutional coder is 

0    0    0    0    0    0     1 

0    0    0] r (i,2) 0 0 
0    6    0 0 = 0 (1,2) 0 
111. 0 0 (1,2) 

0 0 0 0 1 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 1 0 
0 1 0 1 0 0 0 
1 0 0 0 0 0 0 

This gives coding gains (for example) of 2.43 dB when k? = 0, 
2.4 dB when fo = 1, and 3.4 dB when ki — 2. A computer 
search for better codes, both in E§ and its dual E%, is under- 
way. 

III. EXTENSION 

There is fertile ground for trellis code developments in other 
dimensions and for application of multi-scale signalling to fad- 
ing channels. 
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Abstract — We study nonparametric estimates of 
E[Yn\Xn] of the form J^"1 Wni(X-,,..., Xn)Yi based on 
Xn and data {(Xi, Yi)}?~i . Our work analyzes the case 
where {Xi} is a completely arbitrary random process. 
Conditions on the weights are established so that the 
time-average of the estimation errors converges to 
zero. One consequence of our work is a recovery and 
extension of some classical results to stationary pro- 
cesses in separable metric spaces. 

-•" I. PRELIMINARIES 
Let Xi,X2,... ,Xn be an arbitrary random process taking 
values in a compact subset of a separable metric space (X, p). 
Special cases include nonstationary or nonergodic processes 
and deterministic sequences. Each Xi = Xi has an as- 
sociated label Yi which is a random variable, taking val- 
ues in R, drawn from an unknown conditional distribution 
F(y\Xi = xi). A classical problem is to nonparametri- 
cally estimate the regression function m(Xn) = E\Yn\Xn] 
given Xn and additional data pairs {(Xi, Yi)}"^1. Follow- 
ing the seminal work in [6], we consider estimators of the 
form  mn(Xn)   =   J27=i Wni(Xi,... ,Xn)Yi  where  Wn   = 
{Wni^i ^ii)}"^1  is a sequence of probability weights 
that satisfy certain conditions. 

Most previous work considered the case in which {(Xi, Yi)} 
are i.i.d. Stone [6] proved that certain conditions on the 
weights guarantee consistency without making any assump- 
tions on the distributions other than that {(Xi, Yi)} are i.i.d. 
and that EY2 < oo. Universal consistency of specific estima- 
tors was discussed in, e.g., [2, 4]. In this paper, we impose 
no restrictions on the random process except that {Xi} take 
values in a compact subset of a separable metric space and 
that the following assumption holds: 
(A0) For each i and for every measureable set S, 

Pr{Yi G S\XU... ,Xn, Yi,..., Yi-x) = Pr(Yi € S\X{) 

This is a very general setting and as a result, in general, one 
cannot expect to design a consistent estimator. However, we 
show that when restricted to continuous regression functions, 
we can prove that conditions on the weights, analogous to 
those in [6], ensure time-average consistency, i.e., the time- 
averaged estimation errors go to zero for every random pro- 
cess. Our proof techniques are elementary sample path anal- 
yses and are in line with current trends in information theory 
and statistics to evaluate performance in terms of individual 
data sequences. See, for example, [1, 3, 5]. 

We impose-the following assumptions on F(y\x): 

(Al) suVx€AE[Y2\X = x]<oo, 

(A2) m(x) — E\Y\X = x] is a continuous function. 

II. CONSISTENCY 
Our result is an extension of [6] to separable metric spaces 

and to arbitrary random processes. To achieve the latter, we 
can only conclude that the time-averaged squared loss goes"*to 
zero. Accordingly, it is natural that our statements on the 
weights are time-averaged versions of those in [6]. 
Theorem 1 Let Qn = {Xi}?=l be an arbitrary random pro- 
cess in a compact subset A C (X, p) with {(Xi, Yi)}™_]. satis- 
fying (AO). Let {Wn} be probability weights. If 

(C1) h EL Er^i1 wni(nn)i(P(xn,Xi) > e) -> o v« > o, 
(cz) if En=2 

max> w«.-(n») -» o, 
hold a.s., then for F(y\x) that satisfies (Al) and (A2) we have 

N 

^ J2 E[\mn(Xn) - m(Xn)\2\Un] -» 0 
n=2 

Applying this theorem to the fcn-nearest neighbor and kernel 
algorithms, we can show that (C1)-(C2) are satisfied by the 
standard conditions kn —* oo, kn/n —> 0 and e„ —> 0, ner

n —* 0 
(in Rr) resp. This means that these universally consistent es- 
timates are, in fact, also universally time-averaged consistent 
for every random process {Xi}. As a corollary, we have the 
following partial extension of the pointwise consistency result 
of [6] to stationary processes in general metric spaces for con- 
tinuous regression functions. 

Theorem 2 Let Qn = {Xi}n
=1 be a stationary process in a 

compact subset A C (X, p) with {(X, Yi)}"-! satisfying (AO). 
Let {Wn} be a sequence of weights. If 

(SI) ^iXi1 Wni(Un)I(p(Xn,Xi) > e) -> 0, for all e > 0, 
(SS) Emaxi Wni(Q„) -> 0, 

hold, then for F(y\x) that satisfies (Al) and (AS) we have 

1 This work was supported in port by the National Science Foun- 
dation under grants IRI-9209577 and IRI-9457645 and by the U.S. 
Army Research Office under grant DAAL03-92-G-0320. 

E[\mn(Xn) - m(Xn)\2] - 0 

We have also shown Theorem 2 to hold when (A2) is omitted 
and (Al) is relaxed to EY2 < oo. 
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Abstract — Closed-form solutions are presented 
for function estimation using the orthogonal series 
method and various model selection criteria. While 
Akaike's AIC criterion does not lead to consistent es- 
timates, a family of criteria that includes Minimum 
Description Length operates within a logarithmic fac- 
tor of the minimax rate in a range of Sobolev smooth- 
ness classes. 

I. MODEL FOR FUNCTION ESTIMATION 

Consider the following model: j/i = f(i/N) + ei, 0 < i < N, 
where u are iid N(0,1) and the sampled, unknown function / 

admits the representation / = J2n=o ®n$n in the orthonormal 
basis {(pn} of HN. We investigate estimators of the form / = 

Y^n=o ®n^n wnere Ö has /c < Af nonzero components and 9 
and k are chosen so as to maximize the criterion 

5>i-/(;/A0|2-^fc (1) 

N where the constant CN = 1 (AIC [1]), or CN = 5 log2 

(MDL* [2]1), or CN - In AT (DJ, see below). Other model 
selection criteria (choices of CN) may be considered. Related 
work may be found in [3], where the largest model order is 
restricted to be o(N), and [4]. 

II. BASIC RESULTS 

Proposition  1.   The maximizer of (1) is 9n 

where r„ = Yli^ Vi4>n(i), and 

T»(T)± 
0: 
r : else 

TA(T„), 

(2) 

is the "hard threshold" function, with threshold A = \/2CN- 

Proof.   By orthonormality of {4>n} and Parseval's theorem, 
the criterion (1) takes the form -|^n=0 \rn — 6n\   — Cjvfc = 

En=o -M^n) where 

Ln(6„) — -Urn CN 
-   |2 

: if on # 0 
: else. 

of {cfin} and CN- For instance, when {(fin} is a wavelet basis 
and CN ~ In AT, the estimator is almost minimax over a wide 
class of functions [5]. 

A basic problem is to evaluate the performance of the AIC 
and MDL* criteria in (1). We use the squared I2 risk 

RNU) = E 

The criterion may thus be maximized over each coordinate 
independently. The maximizer of Ln{6n) is 6n = rn if 
-CN > -f kn|2 and 9n = 0 otherwise. The statement of 
the proposition follows directly. O 

Prop. 1 establishes the fundamental role of thresholding 
in solving (1) and admits a hypothesis-testing interpretation. 
It also provides a closed-form expression for 9 which may be 
used to evaluate various properties of / for different choices 

^his particular formulation of the MDL criterion accounts for 
the familiar ^fclog2 N bits for encoding the k real parameters d„ 
and k log2 N bits for encoding their index (assuming a uniform prior 
on indices). 

AT"1 Y. \ttnlN^ - f(n/N)\J 

N-l 

AT-^ptAA) 

where p(\,9) = E\Tx(r) - 6\2 = (92 - 1)[*(A - 0) - $(- 
0)] + 1 + (A - 0)<KA - 9) + (A + 9)<t>{\ + 9)> A2$(-3A), 
</>(•) and $(•) are respectively the normal pdf and cdf. 

(3) 

■A- 

and 

Proposition 2. For every choice of basis {(fin}, 
(i) a necessary condition for consistency of / in the RN sense 

is CN —>• 00 as N —¥ 00. 
(ii) the AIC estimator is not consistent. 
Proof. Using (3) and the lower bound on p(A, 9) we obtain 
a necessary condition for RN{!) -> 0: A2$(-3A) -> 0, hence 
(i). (ii) follows immediately. D 

III. ESTIMATION USING FOURIER SERIES 
Convergence rates are computed for Fourier series and func- 

tions      in      the      L2      Sobolev      ball      Wi(R) = 

{/ : /o \f{s)(t)\2dt <R2<oo, /W(0) = /(i)(l), 0 < i < a}. 

The estimator does not know s or R. 

Proposition 3. For the choice 

CN=ß\nN,    2sI{2s + 1) < ß < 00, (4) 

the risk is RN{f) < CnAßN'1 \nN)2s/l-23+1), where CR,S 

does not depend on A^ or ß. The rate above is attained by the 
MDL* (ß = ^ ~ 2.16) and DJ (ß = 1) estimators and is 
within a logarithmic factor of the minimax rate [6]. 
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Abstract — Modified kernel estimators calculated 
from compressed data for density estimation and sig- 
nal recovering problems are proposed. An asymp- 
totically optimal compression technique utilizing the 
quantile process and data binning is employed. The 
statistical accuracy of the introduced kernel estima- 
tors is studied, i.e., we derive mean squared error re- 
sults for the closeness of the these estimators to both 
the true functions and the kernel estimators deter- 
mined from non compressed data. 

I. INTRODUCTION 
The problem of estimating a nonparametric function f(t) from 
a finite data record has received a great deal of attention in 
recent years both in Information Theory as well as Statis- 
tics. Two important models for f(t) include density esti- 
mation and function recovering. In the former case f(t) is 
a density function of a random variable X, whereas in the 
latter situation f(t) is a signal observed in the presence of 
noise. The estimation problem in both settings can be for- 
mulated as follows. Given a sequence of independent ran- 
dom variables {Xi,..., Xn} distributed as X we wish to es- 
timate the density /(£). In the second case one observes 
Vi — f(tj) + ei> at points {tj} and wishes to recover f(t). A 
popular nonparametric technique for recovering /(£) is the ker- 
nel estimator, defined as f(t) = n"1 ^™=1 Kh(t — Xi), where, 
Kh{t) = K(t/h)/h, K is a kernel function and h is a smooth- 
ing parameter. As for the curve recovering problem we can 
use f(t) = Y^i=\ ViAiKh(t - U), where At = U - U-i and 
io < t\ < ■ • ■ < tn is an ordered sequence. 

Under suitable conditions for the kernel function and the 
sequence {tj} it is known that if / € CS(R) then E(f(t) - 
f{t))2 = 0(n~2s/(2s+1>) for h being selected optimally as 
cn~1/(2s+1\ Nevertheless, the aforementioned estimators 
need 0{n) evaluations at each point t and this is often a pro- 
hibitive complexity. It is our aim in this paper to propose 
modified versions of the kernel estimators with a substantially 
reduced computational complexity and yet with the asymp- 
totically optimal rate 0(n~2s/(2s+1)). 

II. KERNEL ESTIMATORS FROM 
COMPRESSED DATA 

The reduced complexity kernel estimators can be designed first 
by utilizing some compression techniques to the original data 
set followed by a binning process applied to the classicial es- 
timators. We utilize a compression technique employing the 
quantile process generated by a certain density function. A 
question of considerable practical importance concerns the ac- 
curacy of our new kernel estimators based on such compressed 
data. Hence, if fit) denotes a kernel estimate from the com- 
pressed data then we examine how close /(<) is to f(t) and 

Research supported by NSERC Grant A8131 and Humboldt 
Foundation 

also to f(t). Hence, f(t) can be treated as a new estimate 
of f(t) or we could think of f(t) as being a compressed ap- 
proximation to the estimator f(t). The general form of such 
estimators for the density estimation problem is the following 
/(*) = J2j=in3Kh(t - aj)/Yjj=inh where ai,...,aN are 
center points representing the partition of the data set into 
N clusters, rij = ^™=1 Wj(Xi), where Wj(x) is the weight of 
assigning a; to the jth cluster. 

For given center points {01,..., ojv} one would like to se- 
lect N yielding the largest possible compression ratio. On 
the other hand, we wish to preserve the rate of convergence 
attained by the classical kernel estimator. These two con- 
flicting factors allow us to select N as a, function of n yielding 
the desire convergence rate. Recommendations concerning the 
choice of h and N are presented. In particular, it is shown that 
N can be selected as N = cns/2(2s+1>, / g CS(R) for a certain 
rule of generation of the center points {ai,..., ajv} • 
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Abstract — We define a regression function estimate 
based on complexity regularization, where the list of 
candidate functions and the corresponding penalties 
are determined from the training data, leading to im- 
proved performance. 

Let (X, Y) be an Hd X %-valued pair of random variables 
with regression function m(x) = E{Y|X = x}. We assume 
that Y (and therefore also m(X)) is bounded with probability 
one, i.e., P{|Y| < B} = 1 for some B <oo. 

The regression function m(x) is to be estimated based upon 
the data T„  =  ((Xi.Yi) (Xn,Yn)), where the (XifYi) 
pairs are independent copies of (X,Y). A regression func- 
tion estimate is thus a function m„ : Hd X {H x %) -> H, 
whose performance is measured by the squared error 

J{mn)    =    B{(mn(X,Tn)-Yf\Tn}-E{(m{X)-Y)7} 

=      f(mn(x, T„) - m(z))2/i(da;), 

where \i denotes the distribution of X. We will use the short- 
hand notation mn(x) instead of Tn„(x,Tn)- 

Complexity regularization (see Barron and Cover [2], Bar- 
ron [1]) selects an estimate m„ from a countable list of candi- 
dates r„ by minimizing the sum of the empirical error 

is used to carry out minimization of the empirical error. For 
convenience, we take m = |n/2j, but other choices as m « ^/n 
may be better in certain cases. 

As the first step towards denning our estimate, consider 
a sequence Ai, A2,... of classes of bounded functions R -* 
[_B, B]. These classes may be uncountable, but to avoid cer- 
tain problems of measurability, we assume that every model 
class A; contains a countable subclass A* with the property 
that every / € Ai is a pointwise limit of a sequence of functions 

from A*. 
Following ideas of Buescher and Kumar [3], we construct 

a proper minimal empirical cover of each class Ai based upon 
the data X? = Xu ■ ■ ■ ,Xm, i.e., for each i, we take a set 
Qi € A, with the following properties. For every / € A, there 
exists g € Qi such that 

m 1 

£P'<*>-«<*i)l<7f. 

•W) = £ £(/(*•)-K)a 

J=l 

and   Qi  has   minimal   cardinality.      Denote  it  by   \Qi\   = 

To each / € Gi, we assign the complexity penalty 

A If V»M      n2logAr(Xr,Ai)-t-Cj 

where the c's are required to satisfy the Kraft-type inequality 
E°°   e~

Ci < 1.   Define the estimate m„ as a function that 
»=i — . . 

minimizes the penalized empirical error 

and an appropriately defined complexity penalty A„(/) over 
/ € r„. Intuitively, more "complex" candidates are penalized 
by more in order to avoid overfitting. Barron [1] proves that 
if the best candidate in T„ is close to m, then the method 
indeed performs extremely well. In particular, 

£ (/(*,)->S)2+A;(/,xn 
J=m+1 

over all/€0 = U£i&. 
For the performance of the estimate we have the following 

result. 

J(mn) = O I   inf   ( — r J(f) j j > Theorem 1  For a universal constant C, 

where the penalties A„(/) are required to satisfy the summa- 
bility constraint 52/er„ 2~An(/) < oo for each n > 1. 

Our goal is to assure that the list of candidates con- 
tains elements—with not too large complexity penalties— 
that closely approximate the regression function. We let the 
data determine the list of functions which adds a tremendous 
amount of flexibility, leading to an improved performance. 

The basic idea is splitting the data in two such that the 
first half 

T\ =((X1,Yl),..., (Xm,Ym)) 

is used to determine the (random) list of functions T„ and the 
corresponding penalties, and the second half 

T^ = ((Am+l, Ym+l),-- -,(Xn,Yn)) 

'The research was supported in part by the National Science 
Foundation under Grants No. NCR-92-96231 and INT-93-15271. 

.|«So«(M!ffito+ÄW). 
The main improvement in our result is that in the second 

term, the infimum is taken over an uncountable collection. 
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Abstract — Suppose we observe au, a32,... € X drawn 
i.i.d. according to some unknown distribution P se- 
lected from a family of distributions V. Let / : V -> A 
be a parameterization of P e V. In this paper, we 
study necessary and sufficient conditions for the ex- 
istence of strongly consistent estimators of f(P). A 
number of previous results along these lines are spe- 
cial cases of our main result. 

I. INTRODUCTION AND FORMULATION 
This paper is concerned with characterizing when strongly 

consistent estimators exist for hypothesis testing and estima- 
tion problems such as those posed in the abstract. Our in- 
terest in this problem stems from the work of Cover [1] and 
subsequent work [5, 8, 6, 2, 4] that significantly generalized 
the set-up in [1]. This paper presents an extension and alter- 
native approach to recent results of Dembo and Peres [2]. The 
flavor of the results is also along the lines of the classical work 
of HoefFding and Wolfowitz [3] and LeCam and Schwartz [7]. 

Let X (the sample space) be a complete, separable metric 
space (e.g., think of ffi.m), and let Mi(X) denote the space 
of all Borel probability measures on X. Let (A, d) denote an- 
other metric space (the parameter space, with d denoting the 
metric), which is tr-compact. Again, one can think of A = ]Rm 

as a characteristic example. Let / : V C Mi(X) -> A denote 
a Borel measurable map. Thus, / denotes a parameterization 
of the probability measures in V, with f(P) being the param- 
eter associated with P. We are interested in the estimation of 
/(P), based on a sequence of i.i.d. observations {x,}.^, with 
marginal distribution P g V. 

Definition 1 (Discernibility and Estimation) 
a) A0, AL, ..., Ak CV are discernible if there exists a strongly 
consistent decision rule for deciding to which Ai an unknown 
P 6 U?     ■    ■  • " 

(A0 ,..., A£) are uniformly discernible for each n. Using this 
result, our approach is to make some quite general assump- 
tions regarding separation properties of the Ai and uniform 
discernibility. The idea is that conditions regarding uniform 
discernibility are easier to check, but still lead to statements 
on (non-uniform) consistency. 

We now assume that Mi(X) is endowed with some metric 
P- .FoI A B C V, define the separation between A and B as 
p{A,B) = mipieA p36B p{Py, p2) . A,B are called positively 
separated if p(A, B) > 0. Sets A0,...,Ak are said to be sep- 
arable by closed sets if there exist closed sets B0,.. Bk with 
Ai C Bi and Bi n B{, = 0 for i # i". We say that A0,...,Ak 

are positively separated by finite covers if each Ai can be cov- 
ered by a finite number of closed balls, and the covers are 
pairwise positively separated. We recall that in a topological 
space a set A is said to be Fa if it is a countable union of 
closed sets, that is, if A = U£iPi where the Ft are closed. 
A0,Alt...,Ak are called Fa-separatedif At C Bi, where the 
Bi are Fa sets with Bi n Bv = 0 for all i / i'. 

Definition 2 (Properness Conditions on p) 
(PI) p is said to be (PImproper w.r.t. V if every Borel Ai C V 
which are uniformly discernible are separable by closed sets. 
(PS) p is said to be (PZ)-proper w.r.t. V if p makes Mi(X)tlT 
into a separable space, and any Borel sets Ai C V which are 
positively separated by finite covers are uniformly discernible. 

In a sense, these conditions impose "non-degeneracy" require- 
ments on the metric p restricted to V. The following result 
extends and corrects Theorem 3.3 of [6]. Results from [1], [5], 
and Theorem 2 of [2] can be recovered using Theorem 1 below.' 
We denote A = U*=0Ai. 

Theorem 1 
a) (sufficient condition) Assume p is (PS)-proper w.r.t. A. If 

       -^o,..., Ak are Fa separated then they are discernible. 
,0Ai belongs — that is, if there exists a sequence of    ^) (necessary condition) Assume p is (Pl)-proper w.r.t. A. If 
notions an  :  Xn  —►  -f0.1h\  *„rh thnt   t™ „„„,    A0,...,Ak are discernible then they are Fa-separated. Borel functions gn~ : Xn -> {0,1,...*} such that* for''any 

P £ Ai, almost surely gn(xu... ,xn) -►„_<„ i. b) A is 
/-estimatable if there exists a strongly consistent estimator 
for f(P). That is, if there exists a sequence of Borel func- 
tions gn : Xn -► A such that, for all P e V, almost surely 
f n(»i. ■■■.«»)->»-.«, /(P). 

We use the term discernibility following [2]. We will also use 
notions of uniform discernibility and estimation in which there 
is a uniformly consistent estimator over all P £ V. 

II. MAIN RESULTS 

We first mention a result showing that it is enough to char- 
acterize discernibility to obtain results on the more general 
estimation problem. Namely, we have shown that A is /- 
estimatable iff for all Ai,..., Ak C A that are positively sepa- 
rated, the sets /_1(Ai),..., /-1(Afc) are discernible. We thus 
concentrate below only on the notion of discernibility. 

We have also shown that A0, Ai,..., Ak C V are discernible 
iff there exist sequences A? / Ai for i = 0,..., k such that 

»This work was supported in part by the National Science 
Foundation under grants IRI-9209577 and IRI-9457645 and by the 
U.S. Army Research Office under grants DAAL03-92-G-0320 and 
DAAL03-92-G-0115. 
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Abstract — The finite-sample risk of the fc-nearest 
neighbor classifier that uses a weighted Lp metric as a 
measure of class similarity is examined. For a family of 
multiclass, classification problems with smooth distribu- 
tions in Rn, the risk is represented as an asymptotic ex- 
pansion in decreasing fractional powers of the reference- 
sample size. An analysis of the leading coefficients re- 
veals that the optimal metric (i.e., the metric that mini- 
mizes the risk) tends to a weighted Euclidean (i.e., L2) met- 
ric as the sample size is increased. Numerical calculations 
corroborate this finding. 

I. THE fc-NEAREST-NEIGHBOR CLASSIFIER 
Let the elements of L = {1,...,C} denote C states of na- 
ture, or pattern classes, and let Px,... ,PC denote their cor- 
responding stationary prior probabilities. Each pattern is 
represented by a feature vector x, drawn at random from 
IRn. Specifically, patterns originating from class £ e L are 
generated by the stationary conditional distribution F4. 

Labeled feature vectors are generated by a two-step pro- 
cess. First, a class t e L is chosen at random so that 
Pr[^ = j] = p}-t then a random feature vector is drawn 
according to Pi. After m independent repetitions of this 
process, we obtain the labeled reference sample, 

Xm = {{x\£l) (xm,im)}. 

Given a weighted lp metric, d(x,y) = ||A(x-y)||p, where 
A denotes an n-by-n, positive-definite, symmetric matrix 
with det A = 1, and an arbitrary point x e Rn, the indices of 
the labeled feature vectors in Xm can be permuted so that 

d(x,xl)<d(x,x2)< ••• <d(x,xm). (1) 

Here ||x||„ = (\xi\f + ■■■ + l%nlp)1/p for 1 < p < °°, and 
llxllco = maxi<i<n \xt\, denote the Lp norm. The k nearest 
neighbors of x then form the subset {(x1,^1) (xkJk)}; 
and the k-nearest-neighbor classifier assigns x to class 
L'(x) = majCtf1 ,...Jk), viz., the most frequently appearing 
class label in the subset. (Ties, and degeneracies in (1), can 
be resolved by an arbitrary procedure.) Using this algorithm 
every point in IRn can be assigned to a class in L. 

II. THE FINITE-SAMPLE RISK 
Given a positive integer k, an Lp metric, and a finite ran- 

dom reference sample Xm, a single test vector (X, I), drawn 
independently by the same random process, is assigned to 
class V = I'(X) by the k-nearest-neighbor classifier. We 
now consider the m-sample risk, 

R-n IlAvPrll' i,L =j], 

with the zero-one cost matrix Ay = 1 - <5y. 
For a family of classification problems, JN, described 

by class-conditional probability densities ft with uniformly 
bounded partial derivative up through order N + 1, and a 
mixture density / = l£=1 Pi ft that is bounded away from 
zero a.e. on its probability-one support S c IRn, we obtain 
the following: 
Theorem 1 There exist constants cj, forj = 2,3,..., N, such 
that 

N 
-(JV+D/71) 

1 This work was supported in part by Rome Laboratory, Air Force 
Material Command, USAF, under grant number F30602-94-1-0010. 

R R» + £ Cjm'iln + 0{m~ 

where R«, is the infinite-sample risk derived by Cover and 
Hart [I]. 

(Aversion of this theorem, restricted to the case k = 1, p = 
2, A = I, and C = 2, appears in a recent paper [2].) The 
coefficient Cz evaluates to 

where, 

c2 =Dn(p) 

Dn(p) 

r(k+i + £) 

24 [T(*±)]' 
trjtA-1)7^-1}, 

r(^ + 1)r(i + i) 

A-1 denotes the inverse of the metric weight matrix A, and 
H is an n-by-w matrix, independent of p. For the two-class 
problem (C = 2), 

r   ,. 2 „ ~ t+i,~   ftl/i   92/i     i   a2/2 Hy = jdxf1-n(PlP2)^(P2     "*' 
s 

-Pi) 
(j /i dxtdxj    h dXidxj 

Here, Pt = Pfft(x)/f(x) denotes the posterior probability 
that a feature vector with value x originates from class £. 

III. A DESIRABLE METRIC 
Since Rx does not depend upon the chosen metric, Theo- 
rem 1 suggests that the finite-sample risk of the k-nearest- 
neighbor may be reduced, for large values of m, by selecting 
a metric that minimizes c2. It can be shown that Dn(p) has 
a global minimum at p = 2 for fixed n > 1. Using the Euler- 
Lagrange multiplier theorem, the trace in c2 is minimized 
if the weight matrix A satisfies ATA = H/(detH)lln. Al- 
though it maybe difficult to determine H, and consequently 
the optimal matrix A, in practice, this analysis and corrobo- 
rating numerical simulations motivate the use of a weighted 
Euclidean metric for large reference samples. 

[1] 

[2] 
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This work develops a unified approach for hard optimiza- 
tion problems involving data association, i.e. the assignment 
of elements viewed as "data", {x,}, to one of a set of classes, 

{Cj}, so as to minimize the resulting cost. The diverse prob- 
lems which fit this description include data clustering, statis- 
tical classifier design to minimize probability of error, piece- 
wise regression, structured vector quantization, as well as op- 

timization problems in graph theory, e.g. graph partitioning. 
Whereas standard descent-based methods are susceptible to 
finding poor local optima of the cost, the suggested approach 
provides some potential for avoiding local optima, yet without 
the computational complexity of stochastic annealing. 

The approach we develop is based on ideas from informa- 
tion theory and statistical physics, and builds on the work of 
Rose, Gurewitz, and Fox for clustering and related problems 

[1].   The optimization problem is embedded within a frame- 

work in which data are assigned to classes in probability, with 
Shannon's entropy measure used to control the level of un- 

certainty or randomness in the assignments. We first address 
"unconstrained" assignment problems such as data clustering 
and graph partitioning, in which the data elements are freely 
assigned to any class, specifiable  by binary 0-1  assignment 
variables.   We consider the joint distribution over all possi- 
ble assignments,  P[Xl e C]{1),...,xN G C}(N)], and choose 
it to minimize the expected assignment cost < E >, given a 

constraint on Shannon's entropy, H.  Thus, we seek the best 
random assignments in the sense of < E > for a given H. This 
formulation is equivalently stated by invoking the maximum 
entropy principle, but the former description is more appeal- 
ing for optimization.   The constrained minimization is equiv- 
alent to the unconstrained minimization  of the Lagrangian: 
L — ß < E > -H, where ß is the Lagrange multiplier con- 
trolling < E > and H.   Physical inspiration for minimizing 
L is obtained by recognizing that it is the Helmholtz free en- 
ergy of a simulated system, with < E > the "energy" and | 

the "temperature". Thus, a deterministic annealing approach 
is naturally suggested, wherein, starting from high tempera- 

ture (ß = 0), the cost and randomness are reduced with the 
temperature.  At low temperature (ß -► oo) the hard cost is 
minimized.  Our formulation unifies the deterministic anneal- 
ing method for clustering with mean-field  annealing  meth- 
ods proposed for combinatorial optimization [2].   Moreover, 
the derivation provides an intuitive, yet precise description of 
what constitutes annealing in these optimization methods. In 
particular, the annealing process is characterized as a reduc- 
tion in the system's entropy and expected cost through the 

increase of a Lagrange multiplier interpreted as the inverse 

temperature. 

While this description may provide insights into existing 
methods, a more significant benefit lies in its generality, and 
hence its potential for stimulating development of novel opti- 
mization methods tackling heretofore unaddressed assignment 
problems. Of prime interest are what we will call structurally- 
constrained problems, wherein the assignments are restricted 

to  be  consistent   with  a  (parametrized)   classification   rule. 
These problems abound in pattern recognition and source cod- 
ing, and include statistical classifier design, piecewise regres- 
sion, and structured vector quantization.   The restricted as- 
signments may be produced by a nearest prototype rule,  a 
decision tree, or neural network structures such as radial ba- 
sis functions or multilayer perceptrons.    Thus, the previous 
optimization framework requires substantial extension in or- 

der to enforce the structural constraint on the assignments. 

To do so, we introduce an additional cost Cs, which quantifies 
achievement of the structural constraint. This cost is incorpo- 
rated within a generalization of the basic formulation we have 
described, so that the annealing process controls < Cs >, as 
well as < E > and H. A second Lagrange multiplier is iden- 
tified which controls < Cs >.   This parameter is chosen to 
provide the optimal "level" of structural constraint consistent 
with  <  E > and H at each temperature in the annealing 
process. At the limit ß -» oo, a "hard" classifier with the req- 
uisite structure is achieved, and the assignment cost is min- 
imized directly.  This general optimization paradigm has sig- 
nificant potential for outperforming descent-based approaches 
for structurally-constrained assignment problems.   In several 
coming papers, these ideas are applied to the two fundamen- 

tal problems of supervised learning - statistical classification 
and regression - as well as to the design of novel source cod- 
ing structures (generalized vector quantizers), with promising 
results achieved in all of these domains [3], [4]. 
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Abstract — In the paper we study convergence prop- 
erties of radial basis function (RBF) networks in non- 
parametric classification for a large class of basis func- 

tions with parameters of RBF nets learned through 

empirical risk minimization. 

I. INTRODUCTION 

In the classification (pattern recognition) problem, based upon 
the observation of a random vector X € IRd, one has to guess 

the value of a corresponding label Y, where Y is a random vari- 
able taking its values from {-1,1}. The decision is a function 
g :JRd -* {-1,1}, whose goodness is measured by the error 

probability L(g) = P{g(X) # Y}. Let g* be a Bayes decision 
and L* be the Bayes risk. An empirical decision rule g„ is a 

function pn : IRd x (IR' 

probability is given by 

x {-1,1})" _+ {-1,1}, whose error 

L(gn) = P{9n(X,Dn)^Y\Dn} 

where Dn = ((Xi, Fi) (Xn, Y„)) is a training sequence of 
i.i.d. random variables independent of (X, Y). A sequence of 

classifiers {gn} is called strongly consistenti{]imn^oo(L(Gn) — 
L*) = 0 almost surely, and {g„} is strongly universally con- 

sistent if it is consistent for any distribution of {X,Y). 

Let K : IRd -*■ IR be a kernel function.    Consider RBF 

networks given by 

II. APPROXIMATION 

We consider the approximation error when Tk is the family of 

RBF networks of the form of (1). 

Theorem 1  . Suppose K : IRd -+ IR is bounded and 

A'€ii(A)nIp(A) 

for some p € [l,oo), and assume that f K(x)dx ^ 0. Let p. 

be an arbitrary probability measure on Md and let q € (0, oo). 

Then the RBF nets in the form (1) are dense in both Lq(p) 
andLp(X). In particular, ifm€ Lq(p)C\Lp(\), then for any e 

there exists a 9 = (wo,.. ■, wk, h,..., bk,clt... ,Ck) such that 

f    \fe(x)-m(x)\qp(dx) <e   and    /     \fe(x)-m(x)\p dx < t. 

Jm.d J^d 

III. CLASSIFICATION 

Define the class of sets 

d = {{x e Md : K(A[x - c]) > 0} :  c € Md,A invertible}. 

Theorem 2 Let K be an indicator such thatVc^ < oo. Then 

for every n, k„ and e > 0, 

Mx) = Y,wiK(M*-«)) + wo (1) 

where 9 = (wo, • • •, «>*, ci,..., ck,Ai,..., Ak) is the vector of 
parameters, «io to* € IR, c\,... ,ck € IR , and Ai,...,Ak 

are nonsingular d x d matrices. Let {kn} be a sequence of 
positive integers. Define Tn as the set of RBF networks in the 
form of (1) with k = kn. Given an fe as above, we define the 

classifier ge to be 1 if fe(x) > 0, and 0 otherwise. 
Let Q„ be the class of classifiers based on the class of func- 

tions Tn- To every classifier g £$n, assign the empirical error 

probability 

^(g) = -^h^Xi^Yi}- 

We pick a classifier g„ from Qn by minimizing this empirical 

error probability. The distance L(gn) - L* between the error 

probability of the selected rule and the Bayes risk is decom- 
posed into the estimation error and the approximation error. 

L(gn) - L* = I L(gn) inf L(g) + inf L(g) 
g€Gn 

I* 

°This work was supported by Canadian National Networks of 
Centers of Excellence grant 293 

P{L(gn)- inf  L(g)>e) <4exp 
SSGn 

e 

32 

C2k„ log (Cm) 

n 

for some constants Ci and C2 depending only on Vct • 
Suppose that the set of RBF networks given by (1), k being 

arbitrary, is dense in L\(p) on balls {x G IR : ||z|| < B} 
for any probability measure p on Md. If kn —* oo and 
n~1(knlogn) -+ 0 as n -* oo, then the sequence of classi- 

fiers gn minimizing the empirical error probability is strongly 

universally consistent. 

Using a result by Macintyre and Sontag we can also prove that 
empirical error probability minimization can fail to provide 
a distribution free upper bound on L(gn) - migean L(g) for 
other kernels however nice these kernels may seem. We have 

the following counter example: 

Theorem 3 There exists a K : IR -+ IR which is symmetric 
around 0, monotone decreasing on IR+ and infinitely differ- 

entiable, such that for k > 2 there is no distribution free up- 
per bound on the estimation error which converges to zero as 

n —> oo. 
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Abstract — We estimate the best, nonlinear, mean- 
square predictor for a Markov process from an ob- 
served, finite realization of the process-when the true 
Markov order is unknown. In particular, we propose 
an universal minimum complexity estimator, which 
does not know the true Markov order, and yet deliv- 
ers the same statistical performance as that delivered 
by a minimum complexity estimator, which knows the 
true Markov order. 

I. INTRODUCTION 
Given a sequence of observations {Xi}f=1 drawn from a 

stationary Markov process {X,}J^_00 of order q, we are inter- 
ested in estimating the conditional mean of Xo given the past 
X-i,X-2,...,X-q, namely 

mq(X-i, X-2, • ■ • ,X-q) = E[Xo\X-i,X-2,... ,X-q\. 

The conditional mean mq is the best, nonlinear, mean-square 
predictor for the Markov process {-X\'}^_oo! an(l is thus an 
important object of knowledge. 

In addition to the Markov assumption, we assume that 
{Xi}iZ-oo is strongly mixing [5] with exponential decay [2]. 
This additional assumption is required, technically, to con- 
struct consistent minimum complexity estimators for mq. 

If the true Markov order q is known, then we can estimate 
the predictor mq by proceeding essentially as in Modha and 
Masry [2]. In particular, if we assume that the predictor mq 

possesses a certain bounded spectral norm [l], then it is possi- 
ble to construct a minimum complexity estimator, say mqiN, 
based on neural networks such that [2] 

MISE(r &9,iV,' g) = o((logJV)*iV-*), (1) 

where MISE denotes a certain mean integrated squared error. 
In this paper, we consider the practically important case 

when the true Markov order q is unknown. In particular, as- 
suming, as before, that the predictor mq possesses a bounded 
spectral norm, we propose (see Section II below) a univer- 
sal minimum complexity estimator, say mj», based on neural 
networks such that [3] 

MISE(mjv,m,) = O ((log#)*#""*) • (2) 

Precise results and proofs can be found in the full paper [3]. 
Comparing (1) and (2), we find that our estimator mjv, 

which does not know q, achieves the same rate of conver- 
gence as that of m9,AT, which knows q. Asymptotically, the 
estimator raj not only learns the true predictor mq, but also 
(implicitly) discovers the true Markov order q. In other words, 
the estimator TUN is universal. This notion of universality 
parallels the notions of universality arising in the context of 
coding of finite alphabet processes and in the context of mean- 
square prediction of Gaussian ARM A processes [4]. 

1 This work was supported by the Office of Naval Research under 
Grant N00014-90-J-1175 

II. UNIVERSAL ESTIMATION SCHEME 

We now outline a two-stage estimation scheme to construct 
the universal minimum complexity estimator mjv, which was 
advertized and discussed in the previous section. Our estima- 
tion scheme, which can be found in the full paper [3], builds 
on the results in Modha and Masry [2], and is inspired by the 
results in Barron [l] and in Rissanen [4]. 

Stage 1: For each fixed memory 1 < p < log N, let mp denote 
the conditional mean of Xo given the past X-i, X-2,..., X-p. 
Given N observations {Xi]f=l, we first estimate mp (for each 
1 < p < log JV) using neural networks as follows. 

A neural network parametrized by a very small number of 
parameters has a small variance (estimation error), but also 
has a large bias (approximation error) in estimating mp; on 
the other hand, a neural network parametrized by a very large 
number of parameters has a small bias, but also has a large 
variance in estimating mp. The minimum complexity esti- 
mator rhPlN, which minimizes a certain penalized empirical 
loss, selects the neural network (parametrized by an appro- 
priate number of parameters) that achieves the best trade-off 
between the bias and variance. Thus, mp,jv achieves the small- 
est statistical risk (bias + variance) in estimating mp. 

Stage 2: Having constructed the sequence of minimum com- 

plexity estimators {mP,N}£=i j we now select the estimator 
rtiN as the element of the sequence that achieves the smallest 
statistical risk in estimating mq. 

In particular, for a very small p, rhPlN may be close to mp, 
but mp may be far from mq; on the other hand, for a very large 
p, mp may be close to mq, but rhPlN may be far from mp. The 
universal minimum complexity scheme selects a data-driven 
memory p, which minimizes a certain penalized empirical loss 
and hence achieves the best trade-off between the competing 
terms. Finally, we use the element corresponding to p, namely 
mPyN, as our universal estimator mjj. 

[1] 

[2] 

[3] 

[4] 

[5] 
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I. INTRODUCTION 

The following problem in nmltiterminal source coding was in- 
troduced in [1]. A firm's CEO is interested in a data sequence 
{X(t)}%l-i which cannot be observed directly. The CEO em- 
ploys a team of L agents who observe independently corrupted 
versions of {X(f)}^!. Let R be the total data rate at which 
the agents may communicate information about their obser- 
vations to the CEO. The agents are not allowed to convene. 
In [1] Berger and Zhang determine the asymptotic behavior 
of the minimal error frequency in the limit as L and R tend 
to infinity. Their result is for discrete memoryless source and 
observations. In this paper we consider a special case of the 
continuous source and observations problem. We assume that 
the source is an i.i.d sequence of zero mean Gaussian random 
variables (A/"(0, <T

2
X)) and the observations are corrupted by 

identical independent memoryless Gaussian noise (A/"(0, <r2N)). 
The CEO is interested in reconstructing the source with min- 
imum mean squared error. We study the asymptotic behavior 
of the minimum achievable distortion in the limit as first L 
and then R tends to infinity. That is we study the behavior 
of 

ß(<r2
x,v

2
N)    = lim    lim  R 

R-+00 L-*oo 

D(R,L) 

The solution to this problem differs sufficiently from that for 
the discrete source problem studied in [1]. Our main result is 
that asymptotically the distortion decays at best as 1/Ä. We 

2 

also derive the upper bound ß{a2
x, cr2N) < 5-^f-. These results 

.x 

should be contrasted with the fact that, if the agents were 
allowed to convene before communicating to the CEO, they 
could smooth out their noisy observations and achieve a rate 
distortion performance corresponding to that of the source 
X, i.e., the distortion would decay as 2~2R.   Thus, there is 
a significant performance degradation in the isolated agents 
case. This problem also serves as an interesting example for 
connections between information theory and statistics.    We 
use the Cramer-Rao bound for random parameter estimation 
for lower bounding the achievable distortion. The problem is 
described in detail in Section 2 and the main result is presented 
in Section 3. 

II. PROBLEM STATEMENT 

The formal description of the Gaussian CEO problem is as fol- 
lows. The CEO is interested in a i.i.d Gaussian data sequence 
{X(i)}^l1 with variance a2

x. This data sequence cannot be 
directly observed by the CEO. Versions {Yi(<)} of {X(t)} cor- 
rupted by independent additive white Gaussian noise with 
variance a2

N are observed by a team of L agents. The agents 
are not allowed to convene; Agent i has to send data based 
solely on his own noisy observations {Y^i)}^. The agents 
are required to send encoded versions of the data observed 
through noiseless communication channels with a total rate 
R. Symbolically, 

Yi(t) = X(t) + Ni(t) 

where X(t) is A/*(0, crx) distributed  and Ni(i) is indepen- 
dent and identical over i, t and is distributed A/"(0, <r2N) for 
t = 1,..., L and t = 1,... n,  

For i = 1,...L, Agent i encodes a block of length n 
from his observed data {yi(t)}iZi using a source code C" of 
rate R" = — log|C"|. The code words from the L agents, 
Cf,...C£, are sent to a central estimator whose task is to 
recover the source message x" = (x(l),... x(n)) as accurately 
as possible in terms of the mean squared error defined as 

n 

Dn{X\Xn)=\EYJ{X{t)-X{t))2 
(1) 

where Xn is the estimate of the random message Xn made by 
the CEO. Denote the CEO's estimate by 

*B = *2(Cr,...C£) (2) 

where C" denotes the code word selected by Agent i ; C" is 
random because of the joint randomness of the message and 
observation noise. 

We study the tradeoff between the total rate, R = 
53i=1-R", and the mean squared error Dn(Xn,Xn) in the 
following format. For the given codes Cf, i = 1,...L of block 
length n, let 

Dn(C?,...,C2) = mmDn(Xn,n(C?,...,C2))      (3) 

Define 

Dn(L, R)    = 

D(R)    = 

min       D»(Cr,...,CE), 
EL*?** 
lim   lim Dn(L,R) 

L—*oo n—*-oo 

and 

ß{a2
x,a

2
N)=  lim  Ä^. 

R—<-00 (Ty 

(4) 

(5) 

(6) 

III. MAIN RESULT 

Theorem Let Q{u\y) be any conditional density on an arbi- 
trary alphabet U, and let Q(u\x) = f W(y\x)Q(u\y)dy. Then 
under the usual Cramer-Rao regularity conditions 

ß(<r2x,0N)    >    Jnf 
I{Y;U\X) 

9(«lw) <r2xE[- £?logQ(U\X)] 
>0 

Also, 

ß(<rx,<r2
N)< 

_2 

2a-2x 

We believe that the bounds are actually tight, but have 
been unable to establish this. 
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Abstract — We consider the problem of sepa- 
rate coding for two correlated memoryless Gaussian 
source. We determine the rate-distortion region in 
a special case that one source plays a role of partial 
side information to reproduce sequences emitted from 
the other source with a prescribed average distortion 
level. We also derive an explicit outer bound of the 
rate-distortion region, demonstrating that the inner 
bound obtained by Berger partially coincides with the 
rate-distortion region. 

I. INTRODUCTION 

Let A" and Y be Gaussian random variables with mean 0 
and variance a\ and a\., respectively. We denote by p the cor- 
relation coefficient between A' and Y. We write n-independent 
copies of A, Y as X" = A'i, A2,..., A„ , Y" = Y, Y2,..., Y„, 
respectively. Data sequences X" and Y" are separately en- 
coded to ipi(Xn) and v>i(Yn) and both are sent to the infor- 
mation processing center, where the decoder function V' ^ob- 
serves ipi(Xn) and ip2{Y

n) to output the estimation (A",!'"1) 
of (A",Y"). The encoder functions vs; (i = 1,2) satisfy 
rate constraints Mog|kp;|| < Ri + 8 (i = 1,2), where 6 is 

an arbitrary prescribed positive number. For (A" , Y") = 
4<(ipi(Xn ),<p->(Yn)), define the mean square errors A; (t = 
l,2)byA1=£:iEr=i(^-^)2.A3 = £;ii:r=li(K.-*i)3. 
For given positive numbers D; (i = 1,2), a rate pair (Ri,R2) 
is admissible if for any 6 > 0 and any n > n0(6) there exists a 
triple (9!, ^2, V') such that A; < D{ + £(»' = 1, 2). We denote 
by TZ(Di,D2) the set of all the admissible pair (Ri,R2). 

Our main goal is to determine rate-distortion region 
K(Di,D2). Berger [1] derived the inner bound of TZ(Di, D2). 
However, the optimality was not discussed in his paper. 

In this paper, we determine the rate-distortion region for a 
certain special case, and show that the inner bound obtained 
by Berger partially coincides with TZ{Di,D2). 

II. STATEMENT OF MAIN RESULTS 

If D2 > a\, there is substantially no constraint between Y" 
and Y". It means that Y" works as an auxiliary information 
to reproduce A" with a distortion level not greater than D\, 
and that Tl(Di,D2) does not depend on D2. We denote this 
region by Tli(Di). Then the following theorem holds. 

Theorem 1  : For every D\ > 0 

Wyner-Ziv [2] and Wyner [3] have determined the rate- 
distortion function for the case ä -> 0 that the decoder can 
fully observe the side information Y". Theorem 1 is an exten- 
sion of their results to the case that the decoder can observe 
partial side information. For the case that the random pair 
(A, Y) takes finite values the inner region of Tli(Di) was de- 
rived by Berger et al. [4], but the determination problem of 
7?.i(Di) still remains open for this case. 

Next, we derive an explicit outer bound of H{D\, D2). Let 
Tl2(D2) be the rate-distortion region for the case D\ > ax- 
We obtain the following theorem. 

Theorem 2 : For every Di,D2 > 0 

n(DuD2)CTZout(DuD2), 

fti(£i) 

=     {(Ä1,Ä2 Äi >*log* [(I-P2
)$-(I + Ä •;*:)_ 

R2 > k log 

for some 0 < s < <7y   >, 

where log* x — max {log .T, 0}. 

where 
TlouADuD2) = 'll1(D1)mi2(D2)r\n,2(Dl,D2), 

fcMDuDt) 

= {(Ru R2)\Ri + R2> I log (!■ P > DXD2\ y 

oiTZ(Di,D2) according to The inner bound 1Zi„(Di,D 
Berger [1] is 

nin(DuD2) = n1(D1)mz2(D2)mzi2(D1,D2), 
where 

ili2(DuD2) 

= {(Äi,Ä2)|Äi+Ä2>ilog[(l 

/3=i+yr+ 
■p2n Dio2J /' 

4p2 

(1-P2)2 
'X"Y' 

The boundary of 7l;„(L>i, D2) consists of one straight line 
segment defined by the boundary of TZi2(Di, D2) and two 
curved portions defined by the boundaries of TZ\(D\) and 
TZ2(D2). Hence, the inner bound established by Berger par- 
tially coincides with 1l(D\, D2) at two curved portions of its 
boundary. The gap between inner and outer bounds is the dif- 
ference of the rate sum given by AR = | log [f ]. We found 
that AR is negligible for relatively small values of D\ and D2. 
However, further discussions are still necessary for resolving 
this gap. 
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Multilevel Diversity Coding with Symmetrical Connectivity 
James R. Roche1,   Raymond W. Yeung2, and Ka Pun Hau3 

I. INTRODUCTION 

Multilevel diversity coding was recently introduced by Roche 
[1] and Yeung [2]. In a Multilevel Diversity Coding System, 
the decoders are partitioned into multiple levels. The recon- 
structions of the source by decoders within the same level 
are identical and are subject to the same distortion criterion. 
A comprehensive discussion of multilevel diversity coding is 
found in [2]. In particular, we refer the readers to [2] for the 
basic results and the notion of superposition in multilevel di- 
versity coding. 

In [2], a class of problems in multilevel diversity coding 
was suggested. In this paper we consider one such problem 
with symmetrical connectivity between the encoders and de- 
coders (see Fig. 1). In this problem, there are three encoders 
and seven decoders. The source {Xk} is an independent and 
identically distributed (i.i.d.) process. The seven decoders 
belong to three levels: Decoders 1, 2, and 3 belong to Level 
1; Decoders 4, 5, and 6 belong to Level 2; and Decoder 7 be- 
longs to Level 3. Note that each Level i decoder has access 
to i encoders, and {(X;)*} is the reproduction of {Xk} by 
a Level t decoder. We are interested in finding the trade-off 
between the rates of the encoders and the distortions of the 
reconstructions of the source by the decoders. 

II. THE MAIN RESULT 
Defining rates and distortions in the usual way, we let Ri 
be the rate of Encoder i and let Di be the maximum allow- 
able distortion for each decoder in Level t, where in general 
each level has its own distortion function. Say that a sextuple 
(Al, R2, R3, Di, £>2, D3) is admissible if there exists a coding 
scheme with the given rates and expected distortions in the 
usual Shannon sense. Let 

H    =    {{Ri,R2,R3,D1,D2,D3):(R1,R2,R3,DuD2,D3) 
is admissible }, 

and let TV be the set consisting of all (R1,R2, R3, Dlt D2, D3) 
satisfying the two conditions below: 

1) for /= 1, 2, 3, there exists Xi such that 

TO 

Edi(X,Xi)<Di; (1) 

2) 
Äi>JpT;.Yi)    forl<i<3 (2) 

Ri + Rj > 2I(X;X1) + I(X;X2\Xl)   for 1 < i < j < 3 

-     -    (3) 2Ri + RiS)l + RiS)2 > U{X;Xi) + 2I(X;X2\Xl) 

+ I(X;X3\XUX2)    forl<i<3 (4) 

Ri+R2+R3    >    3I(X; Xi) + ^ J(X; X2 \XX) 

+I(X;X3\X1,X2), (5) 
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Figure 1: A symmetrical multilevel diversity coding sys- 
tem 

'x + y <3 
x + y> 3. 

where © is defined by 

„ J   x + y if : 
^   x + y - 3    if : 

It is shown in [3] that condition 2) is equivalent to 

2')   For i= 1,2,3, 

Ri=T\+T2
i+r*i, (6) 

where r\,Ti,r\ > 0, and 

TI>I(X;XI)    forl<{<3 (7) 

*i + r) > I{X\ X2\Xi)    for 1 < i < j < 3 (8) 

rl+rl+r3
3>I(X;X3\XuX2). (9) 

We now state our main result. 

Theorem 1 U is the closure of con(TV), where con(TV) de- 
notes the convex hull of TV". 

Proof The rate constraints in 2') are used for proving the 
admissibility of TV, while the rate constraints in 2) are used 
for proving the converse. Please refer to [3] for the details of 
the proof. o 
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I. INTRODUCTION 
Consider discrete memoryless sources X and Y with joint pdf 

PXY and let d : X x X —► [0, oo) be a single-letter distortion 
measure. Suppose the source X must be compressed at rate R 
with distortion no larger than D, when the side information 
Y is available only to the decoder. This is the Wyner-Ziv 
model for lossy source coding with side information at the 
decoder [1, 2]; one method of constructing good source codes 
is described below. 

Let U be a r.v. taking values in U and assume that UXY 
have joint distribution satisfying U —► X —+ Y. Define the 
following concepts: 

1. An ordered collection C of M = e"(i(X;V)+i) „.tuples 

over the alphabet U is called a code book if each n- 

tuple is an element of the 5-typical set T\u\ei let C be 
the collection of all such code books. 

2. For R > 0, a map / : {1,...,M} -> {l,...,enR} is 
called a binning scheme; let T be the collection of all 
such binning schemes. 

Given a code (/, C) £ T x C, we consider standard joint- 
typicality encoding and joint-typicality bin decoding as de- 
scribed in [2]. It is well known that by suitable choice of 
U —^ X —^ Y, one can generate codes (f,C)£TxC which 
operate over the entire region of achievable rate-distortion tu- 
ples. In other words, the family of coding strategies T x C 
contains schemes which are "optimal", in the rate-distortion 
sense. 

This leads to the following question: for a fixed U —* X —* 
Y, is it possible to bound the error performance of the codes 

(/> C) € ^ x C? We can place meaningful exponential bounds 
on the error behavior of codes in the ensemble, if we use a 
minimum entropy decoder [3]. This decoder selects from the 
specified bin (say, bin k) any code word fiy which minimizes 
the empirical conditional entropy H(üj\y). 

II. THE ERROR EXPONENT 
There are two possible error events: 

E'(f,C)    =    {(*,9) :(*,*.-) *Z[3rn,.V«i€C}, 

E(f,C)    =    {(x,y):3i(x,üi)£T{xuh, 

3i# t: /(t) = f{j),B(üj\9) < H(üi\y)}. 

Event E'(f, C) is an encoder failure — if X" cannot be 
encoded into any flj £ C. Event E(f, C) is a decoder failure; 
the decoder is, even with its side information y, unable to 
extract the correct &,- from the specified bin. 

Since Pxy(E'(f, C)) decays as e-"*, we cannot determine 
a non-trivial exponential bound on Pxy(£'(/, C)). Our ap- 
proach therefore will be to ignore the encoder error behavior 
entirely, and we shall only require that a code (/, C) € T x C 
satisfy -PXV(JE'(/, C)) —► 0. In this subclass of codes, we define 

an error exponent based on the decoder failure event E(f, C): 

6{R, UXY): sup 
(/.c)€rxc 

limsup--logP£y(£(/,C)). 
n—0 " 

We believe that this definition is of significance because 
the event E(f,C) arises in virtually every multiterminal 
source coding configuration. Moreover, as recently shown by 
Shimokawa, Han and Amari [4], a variation of E(f, C) takes 
on particular importance in the multiterminal hypothesis test- 
ing problem. The lossy source coding model of Wyner and Ziv 
provides a canonical setup for studying this multiterminal er- 
ror exponent. 

III. BOUNDS ON THE ERROR EXPONENT 
It is easy to see that 0(R, UXY) = 0 for R < I(X; U\Y) 
and 9{R,UXY) = oo for R > I(X;U). For rates R £ 
[I(X; U\Y), I(X; U)], we define: 

9u(R, UXY) : min 

0-*X->¥ pXO=pxu 
R<I(.X;Ü\?) 

D(ÜXY\\UXY), 

and 

0L{R,UXY) = 

min 
ÜXV 

Theorem 1 

D(ÜXY\\UXY) + \R- I(X; Ü) + I{Y; Ü)\+. 

0L(R, UXY) < 6(R, UXY) < 0u(R, UXY). 

The lower bound is proved by random selection of codes 

over the ensemble T X C, and the upper bound follows by a 
sphere-packing argument [3]. As a check, we observe that 
0L{R,UXY) is strictly positive when R > I(X;U\Y); ac- 
cordingly, our result yields another proof of the direct part 
of the Wyner-Ziv theorem. We also note that the sphere- 
packing and random-coding bounds need not agree, even for 
R « I{X; U\Y). We conjecture that the random-coding 
bound is tight near the lower rate boundary; a more clever 
application of the sphere-packing technique might close the 

gap and prove our conjecture. 

[1] 

[2] 
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Abstract — We consider the rate-distortion function 
for successive refinement by partitioning and deter- 
mine error exponents for two-step coding. It is seen 
that even when the rate-distortion functions for one- 
and two-step coding coincide, the error exponent in 
the former case may exceed those in the latter. 

I. INTRODUCTION 

Given a discrete memoryless source (DMS) with probability 
mass function (pmf) P, and a suitable distortion measure, the 
minimum rate of coding at distortion Ai is given by the rate 
distortion function R(P, Ai). If a finer description is required, 
say with distortion A2 < Ai, additional information can be 
provided at rate R2 -i?(P,Ai). Clearly, R2 > R(P,A2). 
The minimum value of R2 is the two-step rate-distortion func- 
tion, R(P, Ai,A2) (Rimoldi [4]). The Markov condition un- 
der which R(P, Ai, A2) = R(P, A2) was determined indepen- 
dently by Koshelev [3] and Equitz-Cover [2]. 

II. PRELIMINARIES 

Let X be a finite set and {Xt}t^i be a ^-valued DMS with 
pmf P. Let 3^1 and y2 be finite reproduction alphabets; and 
di : X x yi —► R+, i — 1,2, nonnegative-valued mappings that 
induce distortion measures on Xn x}1", i = 1, 2, according to 

n 

di(x,y) =-"ydi(xt,yt),    xeXn,yey?, i = 1,2. 
t=i 

A two-step n-length block code consists of two encoder- 
rW (n) decoder pairs  f}n>   :   Xn   ->   Mi   =   {l,-,Mi},   $" 

Ilj^Mj-ty?, t = l,2. 
For given rate Ri > 0 and distortions Ai > A2 > 0 let 

R(P, Ri, Ai, A2) denote the minimum rate of the two-step 
code when the first-step code has rate Ri and distortion Ai 
and the two-step code has distortion A2. It constitutes the 
rate-distortion function for the refining code and follows im- 
mediately from [4] : 

R(P,RuAx,A2) inf 
px=p 

Edi(x,yi)<A! 

Ed2(X,Y2)<A2 

I(XAYi)<.Ri 

III. MAIN RESULTS 

For convenience, we define 

/(XAY1Y2). 

d    =    Pr(d1(X",01(/i(X
n)))>Ai 

ord2(X
n,Mfi(Xn)j2(Xn))) > A2), 

ei    i    Px(d2(X
n,Mfi(Xn),f2{Xn)))>A2), 

where (fi,<f>i) is of rate Ri and distortion Ai. Further, let 

■-,     A inf 
Q:      Ä(Q,A1)>Ä1 

or      R(Q,R1,A1,A2)>R2 

Fi    = inf 
Q:ß(Q,Äl,Ai,A2)>Ä2 

D(Q\\P), 

D(Q\\P). 

Our main results establish that there exists a sequence of two- 
step codes of rates (Ri,R2) with 

■logei    <    -F1+S1, 

•loge2    <    —F2 + 82, 

for any 5i,52 > 0. Further, for any sequence of codes of rates 
(Ri,R2) 

lim inf — log e\    >    —Fi, 
n-»oo   Tl 

fim inf — log e2    >    —F2. 
n-ioo    11 

Finally, even with the Markov condition [2, 3] in effect, so that 

R(P,RUA1,A2) = R(P,A2),   A2<Ai, 

it is possible that F\ < F2. This is illustrated by the simple 
example of a DMS with Hamming distance distortion measure, 
where a simple necessary and sufficient condition for the error 
exponents to differ is 

R2-R(P,A2) >R1-R{P,A1). 
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I. DIRECT CODING WITH HIGH RESOLUTION 

Let {(Xi,Yi)}°Z1 be a sequence of independent drawings of a 
pair of dependent continuous random variables. It is desired 
to block encode X = Xi ... X„ and Y_ = Y\ ... Yn separately, 
and decode them jointly, such that ^E ^"^(X,—Xi)2 < Dx, 

and £££r=1(£ -Yi)2 < Dy. Let H(Dx,Dy) = {(Ri,R2)} 
denote the set of rate pairs of X- and Y- encoders which satisfy 
these constraints for some n. Assume that the joint differential 
entropy h(X, Y) exists and is finite, and let Tl*(Dx, Dy) be the 
set of (Äi, Ä2) pairs which satisfy 

iii > h(X\Y) - ±log2*eDx 

jR2>ft(y|X)-|log2ireZ>B 

Ri + R2 > h(X, Y) - | log(2*e)2 DxDy 

(1) 

Note that 1l*(Dx,Dy) has the known "broken corner" struc- 
ture of the Slepian-Wolf rate region. 

Theorem 1 (Shannon Outer Bound) For any Dx and 
Dy, 

Tl(Dx, Dy) C H*(DX, Dy) . (2) 

Furthermore, if E{X2} < co, E{Y2} < oo and h(X,Y) > 
-co, then, as Dx,Dy —► 0, the outer bound (2) becomes 
achievable, i.e.; H.(Dx,Dy) ~ 1Z.*(DX, Dy) , where ~ means 
that for any ui > 0 and u>2 > 0, 

min    {uiRj + U2R2} min     {wiüi +ÜJ2-R2) 0 . 

(3) 

This theorem has a straightforward extension to general 
difference distortion measures. 

II. REMOTE CODING WITH HIGH RESOLUTION 
Now restrict our attention to the Gaussian case, but consider 
the following more general, indirect coding problem [1, pp. 
78, 124]. We need to reconstruct a (memoryless) zero mean 
vector source 6_ = 0\... 6m, jointly Gaussian with (X, Y), from 
separate encodings of X and Y, with averaged squared errors 
D\ ...Dm- We refer to 0 as the remote source, and to X 
and Y as its noisy measurements. Denote by H(D\ ... Dm) = 
{(Ri,R2)} the set of admissible rate pairs of the X- and Y- 
encoders. 

When X and Y are available with infinite resolution, 
the optimal reconstruction of 9 is the conditional mean 
E(9\X,Y) = H ■ (X,YY, where H is some m x 2 ma- 
trix. The mean squared errors are then the diagonal el- 
ements D°pt... Z>m' °f the conditional covariance matrix 
COV(0|X, Y). Clearly we can only satisfy distortions D{ > 
D°pt, and usually when (Dlt..., Dm) -* (D°pt,..., D%<) the 
coding rates must go to infinity. We are interested in the 
asymptotic behavior in this limit. Let K. = {K} be the set of 
all 2 x 2 nonnegative definite matrices which satisfy 

(HKHt)..<Di-D°pt,    ioxi = l...m, (4) 

"This research was supported in part by the Wolfson Research 
Awards, administered by the Israel Academy of Science and Hu- 
manities, and by NSF Grants NCR-9216975 and IRI-9310670. 

where H is the matrix associated with the optimal estimator 
defined above, and define 

n**{D1...DM)= (J n\Dx,Dy), (5) 
{Dx,Dy : diag[Dx,Dy]e/c} 

where the union is taken over all diagonal matrices in /C whose 
diagonal elements are Dx and Dy, and the rate region H* was 
defined in (1). 

Theorem 2 Assume that E{X2} < 00, E{Y2} < 00 and 
h(X, Y) > —00, and that H does not have all-zero columns. 
Then, as (Di,..., Dm) ->■ (I>°pt,..., D^), the region of ad- 
missible rate pairs satisfies 

where the notation ~ was defined in (3). 

(6) 

III. THE LOSS DUE TO SEPARATE ENCODING 

To gain some insight into these results, we examine below the 
total rate loss caused by the separation of the encoders in the 
high resolution limit. In the direct coding case (Section I) this 
loss is zero, since the rate in jointly encoding X and Y is given 
asymptotically by the Shannon lower bound [1, p. 92]), which 
coincides with the minimal rate sum of the separate encoders 
given in (l)-line 3. 

In the indirect coding case (Section II), however, the loss 
may be positive. Let /C" denote the subset of diagonal ma- 
trices in /C, and let det and det** denote the maximum de- 
terminants over all matrices in /C and /C**, respectively. As 
(£1... Dm) -* {Dlpt... DT), the rate sum of the X- and Y- 
encoders exceeds the rate of the joint encoder by 

1,     / det \ 
2l0gUe7^J (7) 

This loss is due to the fact that at high resolution the quan- 
tization errors made by the separate encodings of X and Y 
are effectively uncorrelated, and so we cannot take advantage 
of the shaping gain. When the number of remote sources is 
smaller than the number of measurements (i.e., when m = 1), 
the quantity (7) equals infinity. In fact, the rate sum of the 
separate encoders in this case is roughly twice the rate of the 
joint encoder (which diverges to infinity). This is because the 
separate encoders quantize two measurements, while the joint 
encoder effectively quantizes one continuous random variable, 
E(8\X, Y), at about the same resolution. 
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I. INTRODUCTION 

Differential layer encoding in progressive transmission refers 
to the process of generating additional bits which, in conjunc- 
tion with a low resolution version of the image, enable the 
decoder to reconstruct the high resolution image. A practi- 
cal algorithm for the progressive transmission of black and 
white images is the JBIG algorithm [1], which primarily uses 
an arithmetic coder for differential layer encoding. We con- 
sider differential layer encoding as an instance of coding with 
side information known to both the encoder and the decoder. 
Based on this idea, we present a sliding window Lempel-Ziv 
algorithm for differential layer encoding, and apply it to com- 
press black and white images. The algorithm presented here 
can also be applied to other problems such as successive re- 
finement of information [4]. 

II. CODING WITH SIDE INFORMATION 

Consider a source coding situation where both encoder and 
decoder know a sequence X± of letters drawn from a finite 
alphabet X. The decoder now needs to transmit a sequence 
Yj* of letters drawn from an alphabet y. This is the problem 
of coding with side information known to both the encoder 
and the decoder. The sequence X± is known as the side in- 
formation. An algorithm for this data compression problem is 
as follows. 

The Parsing 
1. Initialization - First, we fix a window size nw. Transmit 

the first nw symbols of the Y sequence, Y"w without 
any compression. 

2. Matching - Let L1 be the largest integer such that 

a copy of (-XT)""+f _1 begins in the current window 
(XY)"W. Let the copy begin at position start. Denote 

yn
nJ+1

Ll as Y1, the first phrase. 

3. Sliding -   Define the new window to be (XF)^'. 

Repeat steps (2.) and (3.) as many times as necessary until 
the sequence is exhausted. Note that this parsing is identical 
to that produced by applying the sliding window Lempel-Ziv 
algorithm [2] to the XY sequence. 

Representation of the phrases in binary 

The phrase Y1   =   Y"" +£l 

matched portion Y„nJ ff* 
We thus, need to specify three things. 

1. The last symbol, represented using flog(|3^|)] bits. 

2. The length of the phrase, L1, which can be represented 
using riogi1] +2[loglogI1] bits [3]. 

3. Starting point of the match -  Let 

, 1      consists of two parts,  the 
1, and the last symbol Y„w +ii. 

JVX1 = |{A; s.t. start < k < n„ yk + L1-!  _  y-n^+i1- 
■A-k+1 — An»+1 

l|} 

produced by a sta- 

-i> 

4. If the number of bits needed to represent the phrase us- 
ing (1.), (2.), and (3.) exceeds i^logd^l)] bits, then 
encode the phrase without any compression. The num- 
ber of bits needed to do this is less than 72 L1. 

Let the total number of bits needed to represent the first 
phrase be denoted by ^(Y1). Then, 

B{Y1) < min{logATxi + 21oglog JVxi + Tilog I1, 72I1} 

Lemma 1  Consider the sequence (XY)Z 
tionary ergodic source. Define for I > 0, 

Wi{xy)    = mm{k:k>0,(xy)l-1 = (xy)Zk
k_l. 

Nx(l)    = \{k:k<Wl(xy),(x)l-1 = {x)Zk
k_l_1}\ 

Then, Pr{Nx(l) > 2l^H^x)+c)} -+ 0 as  I -► 00 

where H(Y\X) is the conditional entropy. 

Based on this lemma, we conjecture that, if the above al- 
gorithm is used to parse an input of N symbols into exactly c 
phrases, then 

c 

Um    lim £(ir5(F')) = H(Y\X) 
J = l 

We are currently working to prove this conjecture. 

III. APPLICATION TO COMPRESSION OF BLACK AND 

WHITE IMAGES 
We start out with a black and white image of size 1728 by 2376 
pixels. A resolution reduction algorithm is applied to this im- 
age, resulting in an image of size 864 by 1188. This image 
is scanned in a raster scan fashion to produce a sequence X. 
Each pixel in X is associated with four pixels in the origi- 
nal. The values of these four pixels constitute the sequence 
Y. The above algorithm for coding with side information is 
then applied to these two sequences. Applying this algorithm 
to the CCITT facsimile test documents resulted in an average 
compression ratio of 21 : 1. 
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Then, the starting point of the match can be specified 
using [logi^xi] +2floglog./vxil bits. 
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Abstract — A hierarchical lossless source code com- 
presses data by means of a graph used to represent the 
data. We show that the hierarchical codes which per- 
form best as the number of data samples grows have 
a compression performance that can be characterized 
via a notion of the dimension of the data which we 
call compression dimension. 

I. DATA REPRESENTATION VIA GRAPHS 

Throughout this summary, we fix a finite set A as our source 
alphabet. Let x be a generic notation for a data string that 
can be formed from the symbols in A, whose length j sc [ satisfies 
2 < |x| < co. The notation G shall be a generic notation for 
a finite directed acyclic rooted graph whose edges are ordered 
and whose terminal vertices are each labelled by a symbol from 
A. Each graph G gives rise to a data sequence z in a natural 
way, and we shall denote this state of affairs by the notation 
G —► z. We indicate how this is done with an example. 

Example. We define a graph G with nine edges ordered as 
ei, ei eg, and six vertices denoted vo, «i,..., v&, where vo 
is the root vertex and vt,vs are the terminal vertices. Edges 
ei, ej lead from «o to vt\ eg leads from vo to t»i; e*, eg lead from 
"i to V2\ eg, ey lead from V2 to vy, and eg, eg lead from vz to vg. 
Vertices v*, v& are labelled with the symbols 0,1, respectively. 
(The alphabet A is {0,1} in this example.) Starting with 
the sequence e^eg of ordered edges emanating from the root 
vertex, we perform the following steps: 

(1) eie2e3 -* ViViVi 
(2) V41/4V1 —* ViVie^es 
(3) V4i>4e«e6 —► vtViVivi 
(4) vivivivi —* ViV^eeereeer 
(5) ViVteeereeei —* vtViVsvsvtvs 
(6) V4V4V3V3V3V3 —» V4V4 es eg eg eg eg eg eg eg 

(7) V4V4 eg eg eg eg eg eg eg eg —> ViViVbvbvbvi,vi,VBVftVB 

In the odd numbered steps, the sequence on the right is ob- 
tained by replacing each edge in the sequence on the left with 
the vertex to which that edge leads. In the even numbered 
steps, the sequence on the right is obtained by replacing each 
non-terminal vertex in the sequence on the left with the string 
of ordered edges emanating from that vertex. The final se- 
quence on the right in (7) consists entirely of terminal vertices; 
to obtain the data string x such that G —* x, one replaces each 
terminal vertex in this final sequence by the label for that ver- 
tex. We see in this case that x = 0011111111. 

II. CODING PROBLEM FOR HIERARCHICAL CODES 

If G is a graph, we let v(G), e(G) denote the number of 
vertices and the number of edges in G, respectively. In the 
following, all logarithms are to base two. For the purposes 
of this summary, we define a lossless source code a to be a 
one-to-one map which assigns to each data string x a binary 
codeword a(x). Informally, we want to think of a hierarchical 

code as a lossless source code in which the codeword for x 
is generated incrementally as one traverses the edges of some 
graph G« —► z, each edge (or group of edges) contributing at 
least one bit to the codeword. Formally, we define a lossless 
source code a to be hierarchical if there exist positive real 
constants Ci,C2 such that for each x, 

Cie(G,) < |a(x)| < C2e(Gx)logv(Gx) 

for some graph Gm —► x. For example, finite-state sequential 
codes, the Lempel-Ziv code, and bintree codes are hierarchical 
by this definition. We are interested in the problem of charac- 
terizing those hierarchical lossless source codes a for which the 
codeword length |a(x)| grows most slowly as |x| —* 00. Specif- 
ically, we characterize those hierarchical lossless source codes 
for which the "logarithmic compression rate" log |a(x)|/log |x| 
is minimized as |x| —> 00. In the next section, we introduce 
the concept of compression dimension to solve our problem. 

III. SOLUTION VIA COMPRESSION DIMENSION 

We define the compression dimension Dim(x) of the data 
string x as the ratio log e(Gj.)/log |z|, where Gx is a graph 
with the minimal number of edges for which Gx —* x. If a is 
a hierarchical lossless source code, define Dim(x|a) to be the 
ratio log |a(x)|/log |x|. 

Let S denote a data set consisting of infinitely many data 
strings x. We define the compression dimension Dim(S) of 
S to be the limit supremum of Dim(z) as |x| —> 00 through 
members of S. If a is a hierarchical lossless source code, define 
Dim(S|a) to be the limit supremum of Dim(z|a) as |x| —► 00 
through members of S. 

Theorem 1. For any hierarchical lossless source code a, 
(i) liminf^i^oo Dim(x|a)/Dim(x) > 1. 
(ii) Dim(5|a) > Dim(S) for any 5. 

Theorem 2. There exists a hierarchical lossless source 
code a* such that 
(i) lim^i-,«, Dim(x|a*)/Dim(x) = 1. 
(ii) Dim(5|a*) = Dim(S) for any S. 

Remarks. 
(1) Parts (i)-(ii) of Theorem 2 do not hold if a* is the Lempel- 
Ziv code. 
(2) There are several useful bounds on Dim(z), which we shall 
discuss in another work. 
(3) For more on hierarchical lossless source codes, see [1]. 
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I. INTRODUCTION 
Much research work has been done in finding sequences with 
good autocorrelation properties. The conventional receiver 
structure for synchronizing with such a sequence transmit- 
ted periodically is a matched filter matched to the sequence. 
However, synchronization performance of the receiver can be 
further improved if the receiver tries to match to the sequence 
and dematch the circular shifts of the sequence. In [1], the 
authors solve the problem of finding the optimal receiver for 
synchronization in satellite systems, when the preamble is pre- 
ceded by random data. However, the problem at hand is dif- 
ferent since the data preceding the synchronization sequence is 
known. We derive the optimal linear receiver to synchronize 
with a given sequence and demonstrate the synchronization 
gain achieved by employing such a receiver over the conven- 
tional receiver. This gain is obtained by simply changing the 
receiver coefficients, leaving the receiver structure unchanged. 

II. THE OPTIMAL LINEAR RECEIVER 
Let 5 = {so,Si,S2,....,sn-i}; Si G [—1,1] be a sequence and 
SK = {sK,si+K,S2+K,-;Sn+K-i} denote a circular shift of 
S by K. All the additions in the above equation are mod- 
ulo n. Let rss (K) = ' KA- ' denote the autocorrelation of S 

and r™s
ax = maxK6[i,..,n-i] r3S(K) be its maximum off peak 

auto correlation. Assume that the sequence S is being trans- 
mitted periodically and the receiver is trying to synchronize 
with it. This can be modeled by letting the received sequence 
be {r;; i — —oo, ..,0,..}, where ri = s{i + m; rii are samples 

of white Gaussian noise process and i = (i — k )modulo n. 
This problem occurs in the synchronization of spread spec- 
trum systems [2] and in CDMA systems[4]. For a sequence 
X = {x0,xi,..,xn-i}; xt € R, {X,X) = 1, consider the lin- 
ear receiver; Lx(k) = (Sk_ki ,X) + Nk. Substituting xi = -^ 
gives us the conventional receiver, which matches the incom- 
ing data to the sequence S. A measure of goodness of the code 
S is the difference r„(0) -r™x = Vn-r™ax. The larger this 
difference, we can see that in an additive white Gaussian noise 
scenario the better is the estimate of k . Without loss of gen- 
erality, let rsx(0) denote the maximum correlation between 
the sequence S and X and let rjx1 = maxwell ,n-i] rsx{K). 
Now consider the following optimization problem; 
Problem 1 

max {rsx(0)-r^}; \\X\\ = 1 
xeR" 

=>  max        min      (5 - SK,X); \\X\\ = 1 (1) 
xeR

n ife[i,..,n-i] 

Geometrically speaking, equation (1) finds that unit vector 
X S Rn which is closest to the collection of vectors {S — 
SK;K = l,..,n — 1}, in the sense that the minimum of the 
projections of the vectors S — SK on X is maximized. We now 
give the solution to the optimization problem. 

Proposition 1 There BX G Rn, X not necessarily a unit 
vector satisfying the following conditions 

1. It is a linear combination of the vectors {S — SK; K = 
l,..,n - 1} that is; X = YTK=I 

ax{S - SK)- 

2. The solution lies within the cone of the vectors {S — 
SK; K = l,..,n— 1}, implying that the coefficients 0 < 
OLK < 1. 

3. Let each C\K ^ 0 be denoted by a variable a;. The 
collection {a;; 1 = 1, ..m}, m < n — 1 thus denotes the 
set of all the non-zero a/c's. Let Si represent the vector 
SK corresponding to ä;. Then, the vectors {Si; I = 
l,..,m} are linearly independent. 

4. Finally, let 7 = mmK=i,..in-i(S- SK,X), then VZ (S- 
Si,X)=1 

The vector Xopt = TT^JT uniquely solves the optimization prob- 

lem. 

III. EXAMPLES 
Consider the length 31 Gold sequences, there are 33 in all 

[3]. Two of these are the pseudo random sequences. Let S 
denote the remaining 31 Gold sequences. The y/n(rss(0) — 
rgs^) for these sequencs can be seen [3] to be (31 — 7) = 24. 
On the other hand, computing the optimal vector X for these 
sequences, the ^(rsx(0) - r™x

x) turns out to be 26.3, 26.4, 
26, 27, 27, 27, 27, 25.9, 25.6, 25.6, 26.4, 25.6, 25.7, 26.4, 26.5, 
25.6, 25.7, 25.7, 25.8, 26.4, 25.8, 26.5, 26.9, 25.6, 26.4, 25.7, 
26.5, 25.6, 25.7, 25.7, 26.9. The gain in terms of the signal to 
noise ratio can be seen to be between 20log [^f■) = 0.56 dB 

to 2O/05 (H) — 1 dB. This gain is also confirmed by plotting 
the probability of false alarm against the signal to noise ratio 
for the conventional and the optimal linear detectors. Since 
the auto correlation function of the pseudo noise sequences is 
a delta function, we do not expect to get much gain for pseudo 
noise sequences. 

We can thus conclude that for sequences with large off peak 
correlation values, like the Gold and Kasami sequences, sub- 
stantial synchronization gain can be achieved by simply chang- 
ing the matched filter coefficients of the receiver. This gain is 
expected to decrease as the length n of the sequence employed 
increases. However, for applications involving short length 
pseudo random sequences, the gain could be significant. 
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All coherent communications systems 
need a way to regenerate the transmitter's 
carrier at the receiver. Most current 
communications systems do not send short 
messages and so this regeneration is 
performed by a phase locked loop.(Ref. 6) 
However, many communications systems 
now being considered, e.g., networks of 
small instruments on Mars or large 
deployments of free floating oceanographic 
sensors, will transmit short messages 
separated by long periods of transmitter 
shutdown. 

The first section of this talk presents a 
maximum likelihood algorithm for 
estimating the phase and frequency of a 
carrier coming from one of these burst 
transmitters, when the carrier is observed 
against a background of white Gaussian 
noise and for enough time for the variance 
of the maximum likelihood estimate to be 
low. The algorithm avoids the "uncountable 
infinity of devices" which caused Reference 
1 to conclude the maximum likelihood 
algorithm was "clearly unrealizable". The 
talk then analyzes the performance of this 
algorithm and, in the process, not only 
provides a much more compact proof of 
some of the classic results in Reference 1 
through 4, but also strengthens them. 

Simulations of the algorithm's operation 
at a moderate signal ratio are compared with 
the high SNR bound. The talk then outlines 
a similar algorithm to estimate the phase and 
frequency of the decaying sinusoids 
characteristic of physical measurements. 
Both algorithms have important roles in 
making physical measurements, e.g., the 
proton's gyromagnetic ratio. (Ref. 5) 

Although the algorithms are truly 
maximum likelihood only for asymptotically 
high signal to noise ratios, their performance 
is imperceptibly different from this bound at 
all SNR's of practical interest, i.e., having a 

good algorithm for phase and frequency 
estimation is not helpful, if the data is 
insufficient for a fairly accurate 
measurement to be made. The input to both 
algorithms is a coarse frequency estimate 
and a set of samples representing a digitized 
segment of spectrum. The coarse frequency 
estimate can easily be generated by taking 
an FFT of the samples and determining the 
largest bin. For convenience in the 
derivations, the talk assumes that the 
amplitude of the constant sine wave is 
known and that both the amplitude and 
decay constant of the decaying sine wave 
also are known. This knowledge is, 
however, not necessary for either algorithm. 

The talk concludes with a short section 
contrasting the two maximum likelihood 
algorithms with conventional frequency 
measurement techniques. This final section 
demonstrates that the results in this talk can 
greatly improve most frequency 
measurements that are signal to noise ratio 
limited. 
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Multilevel Coding to Combat Quantization of the Sum of the 
Transmitted Signal, a Noise and a Known Interference 
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AT&T Bell Laboratories, 200 Laurel Avenue, Middletown, NJ 07748 

Abstract — Encoding and decoding schemes, pre- 
sented in this paper, are aimed at enabling transfer 
of data through a channel in which two types of inter- 
ference are added to the transmitted signal and the 
sum is quantized. One of these interferences is known 
(note that the input of the quantizer is not accessible), 
whereas the second is an AWGN. An upper bound on 
the error rate, contributed by the component codes of 
a multilevel code, has been developed for multistage 
decoding. 

SUMMARY 

The encoding and decoding schemes presented in this pa- 
per are aimed at enabling transfer of data through a channel 
that is different from the conventional additive white Gaussian 
noise (AWGN) channel. Here we are interested in a channel 
where two types of interference are added to the transmitted 
signal and the sum is quantized. One of these interferences 
is known (or can be approximated), denoted by a, whereas 
the second is an AWGN, denoted by n. Since the input of 
the quantizer is not accessible, the known interference can not 
be removed from the received signal. We will show that the 
error rate for an uncoded transmission through this channel is 
unacceptably large, even for low noise levels and linear quanti- 
zation. It will be shown that the problem becomes even more 
severe when a non-linear quantization is present. Therefore, 
coding is essential and huge coding gain is achievable in this 
application. 

Investigation of the uncoded error events leads to the con- 
clusion that a multilevel coding (see e.g., [1]) is an efficient so- 
lution. Note that coded-modulation structures, including mul- 
tilevel coding schemes, have been designed mostly for AWGN 
channels. The component codes of a multilevel code, employed 
over an AWGN channel, should be selected such that the min- 
imum Euclidean distance between the transmitted sequences 
would increase. However, this design rule is not applicable for 
our channel. 

We derived a new metric, required for maximum likelihood 
decoding of data received over the foregoing channel. How- 
ever, an important parameter of a coded system is the compu- 
tational complexity of the decoder. The multistage decoder 
(see e.g., [1]) is an efficient scheme for decoding multilevel 
codes. The decoder employs a separate binary decoder for 
each component code. In order to decode a component code, 
maximum likelihood decoding is performed under the assump- 
tion that the bits related to higher partition levels are un- 
coded, and that the data transferred from the decoders for the 
codes related to the lower partition levels are correct. How- 
ever, it can be shown that the reduction in the coding gain, 
due to multistage decoding, is very small, whereas the reduc- 
tion in complexity is substantial. 

Let tj be one of the quantization levels. Let s, be the i — th 
element in the alphabet of the transmitted symbols. Let Si0 

and si1 be the closest symbols to the value r, — a, where J'O 

and ii are even and odd labels, corresponding to the least 
significant bit of the symbol being 0 or 1, respectively. Note 
that if the k—th input to the receiver is r,, the k—th output of 
the decoder for C\ (the code related to the first partition level) 
should be either Si0 or Six. The metric related to the symbol 
Si is log(Pr[rj\si,a]), where Si can be substituted by s;0 or 
Si1. The even/odd characteristic of the sequence at the output 
of this decoder should construct a codeword in C\, which is 
applied to the least significant bits of the symbol sequence. 
The decoding of the other component codes, corresponding 
to other bits in the symbol label, is performed in a similar 
fashion. 

Let Sija be the distance between the sum s; + a and the 
threshold of the decision region of TJ , where a negative value 
of Sija indicates that the sum is outside the decision region. 
The conditional probability of the channel output is given by 

Pr[rj\si,a] = Q(-Sija/(r), 

where <r2 is the variance of n and Q{x) = -^ j°° e~y '2dy. 
Based on the conditional probability it can be shown that the 
metrics corresponding to a maximum likelihood decoding of a 
component code is a function of a3. However, in many cases 
the level of the noise is unknown. Therefore, a metric for a 
suboptimal decoding, in which the noise level is not required, 
has been derived. It can be shown that for moderate, as well as 
low, noise levels the performance of the suboptimal decoding 
is very close to that of the maximum likelihood decoding. The 
latter statement is supported by computer simulation. 

An upper bound on the error rate at the output of the 
component code's decoder was derived. For instance, let the 
component code C\ be a convolutional code. Let {ad} be the 
set of error coefficients, used for evaluating the bit error rate 
of a convolutional code [2]. It was proved that the average bit 
error rate, contributed by the decoder for Cj, is bounded by 
the following upper bound 

pb<J2adDd> 

where  D = 

J-°° i   V  <° 'i 
to and ii are even and odd labels, respectively, and fa(<x) is 
the probability density function of the interference a. Note 
that D can easily be evaluated numerically. 
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Abstract 

Differential phase shift keying (DPSK) is widely used 
in communication systems where simplicity and robustness 
are desired. One such system is slow frequency hopped 
DPSK (SFH/DPSK) which can sustain a much higher data 
rate than a fast frequency hopped system while having the 
same hop rate.^' ^ 

In the detection of SFH/DPSK, differentially coherent 
detection is often employed. This is because it is impossible 
to maintain the phase coherence between different hops. 
Differentially coherent detection can take advantage of 
phase coherence within a hop and thus outperforms nonco- 
herent detection. In this paper we present a study of the 
probability distribution of a received differential phase per- 
turbed by tone jamming and Gaussian noise. The intent is 
to study the effects of jamming against SFH/DPSK and to 
provide some tools for the analysis such a system. 

In much previous work, the performance of SFH/DPSK 

has been considered11_5]. Simon[4] has analyzed the perfor- 
mance of SFH/DPSK under multiple continuous tone jam- 
ming for a specific set of signal phases and equally spaced 
decision regions. The analytical results were obtained by 
ignoring the system thermal noise so that the derivation 
relied largely on geometric relation. Gong analyzed the per- 
formance of a specific binary SFH/DPSK scheme in both 

tone and noise interference[3]. In [1], [2], Wang, et al, pre- 
sented a method to derive the general probability distribu- 
tion for arbitrary DPSK signals. In this paper, we give an 
alternative but simple expression of the general probability 
distribution of a received differential phase corrupted by 
continuous tone jamming and Gaussian noise.The probabil- 
ity distributions of the received differential phase corrupted 
by either continuous tone jamming or Gaussian noise is the 
special form of it. Thus this result is a generalization of the 
previous well known results by Pawula, Rice and Rob- 

erts[5].These results are derived by making use of an uncon- 
ventional approach which relates the desired probability to 
a functional of the joint characteristic function of narrow- 
band waveform. Our starting point is the basic relation 

- 2xycosGJ—dxdy    (1) r(G) 
J0 Jo ae7o lx  +y  +'. 

>xy 

where T(0)  is a periodic sawtooth function of period 2n 
defined as 

r(0) = 0        -7i<0<7t 

Then the relation between the joint characteristic function 

and the probability P {yl < v < y2}  (see [5] for definition) 

can be derived. The final result can be given by a simple 
expression in terms of Marcum's Q-function as follows. 

P{v|/1<v)/<v|/2}= G(x|/2)-G(Vl) (2) 

The auxiliary function G (\\i) has the form: 

_ V 
2TC   4KJ_] 

G(y) 

dQ   (3) 
"     V -V "y  J 

where 

S = 1 - cos9cosv|/; T = 1 - cosGcos (AO-v|/) 

q(a,b)  = \-Q(a,b) (4) 

To illustrate the application of these results, we ana- 
lyze the error probability performance of a general uncoded 
SFH/DPSK signal under worst case tone jamming and 
Gaussian noise. Skewed differential phases with unequal 
decision regions and the error performance when a fre- 
quency offset between the jamming tone and DPSK carrier 
is also considered. 
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Abstract — For an on-off slotted dynamic jamming 

game, a relation between the steady state solutions and 

cyclotomic cosets is established. 

I. THE DYNAMIC JAMMING GAME MODEL 

An on-off slotted communication jamming game is modeled as 
a two-person zero-sum non-cooperative dynamic game [1] 

played over T uniform time slots between a communicator (a 

transmitter-receiver pair) and a jammer. In slot t, the commu- 
nicator's power level Xt is randomly distributed over 0, P, and 
the jammer's power level Yt over 0, J (P, J > 0). Each player 

has knowledge of its own and the opponent's previous plays. 
T 

The payoff function J is given by J = y,}]E[f{Xt,Yt)], 
t=i 

where f(Xt, Yt) is the normalized payoff to the communicator. 
Let Zt be a measure of the communicator's past energy 

accumulation at the beginning of slot t, and Si (0 < Si < 1) 
the communicator's thermal memory constant. The relation 

Zt = Xt-i + SiZt-i, for t = 2,..., T, with Z-, = 0, holds. There 
is a power constraint Xt + SxZt < P for all t. The jammer is 
subject to similar constraints determined by analogous quanti- 
ties Wt, S2 and J. The transmitter parameters £, Si, j, S2 and 
the payoff matrix are known to both players. The strategics 

are defined as 

Then U{t - 1) = U(T){JO{U(t))C\[0,P]. For a steady state 

solution with M- 1 c.pts., we force the condition that U(t) = 
{au..., aM-i} = U{t - 1) which gives the c.pt. generation 

system 

pt{x\z, w) = Prob(Xt = x\Zt = z,Wt = w)., (la) 

O(z) ±lt       if 0<Z<P 

P<Z<P. 

aa 

=    O(P), 
=    0(0«  i = 2,...,M-l. (3) 

Here [cu ..., cM_i], the c.pt.  index vector, is a permutation of 

[1,..., M- 1]. The operating condition is given by —^- > r, 

h 
' < 0. If the jammer also has N- 1 c.pts. on the w-axis, 

then S*t (z, w) will have a Mx N grid structure on the (z, w) plane 
and the game will have a steady state MxN grid solution. 
The number of such solutions is related to cyclotomic cosets. 

A full cyclotomic coset mod (2M - 1) can be written as a 
M-tuple (i>i,.. •, vM), where vx < ■ ■ ■ < vM, or, alternatively, as 

(VM, vCi,..., VcM-v), where the coset index vector [ci,..., cM-i] 
is a permutation of [1,..., M- 1] for which we obtain the coset 

generation system 

vci     =    2i^Mmod(2    -1), 

Vei    =    2i/ej_1 mod (2M - 1),   i = 2,...,M-l,        (4) 

which has the same form as (3). Let an operator TM be denned 

as 

,      A  /   2v it   1 < V < —j—, 
Tu{v)-\   2U-(2¥-1)    if^<^<(2M-2) 

(5) 

qt(y\z, w) 4 Prob(Ft = y\Zt = z,Wt = w). (lb) 

The optimal strategies can be found by dynamic program- 

ming. Denoting S*t{z, w) to be the optimum accumulated pay- 

off at time t given the past energy accumulations z and w, 
we obtain an evolution equation which gives S(*_i (z, w) in terms 

of S*t(z, w) for t = Tdown to 2. 

II. M x N GRID SOLUTIONS 

On the {z, w) plane S*T{z, w) changes its value at most once along 

the z-axis at z = S=£, and along the w-axis atw=^. We call 

£=£■ a critical point (c.pt.) on the z-axis, and ^ a c.pt. on 
the w-axis. As time goes backward in the evolution equation, 

the operating points {6U |) and (S2, j) for which the c.pts. of 
Sl{z,w) do not increase indefinitely with reverse time give rise 

to steady state solutions. 

Consider the communicator's case. Let U{T) = | ~JT | d^ 

note the c.pt. set at time T along the z-axis. Using the power 

constraints, an operator O which maps the communicator's en- 

ergy accumulation z at time t to that at t - 1 is defined as 

(2) 

Comparing (3) with (4) we find that the following isomorphisms 

hold for each index vector \cx,..., CM-I] '■ 

TM < > O ,     {VM, Ven ■ ■ ■ . vcM-i) < * (-P. «en • • • i a<=M-i) • 

Thus the number of c.pt. generation systems for any natu- 

ral number M> 2 equals the number h[M) of full cyclotomic 

cosets mod (2M- 1) given by h{M) = jf^ßi^ . where /* 
d\M 

is the Möbius function of number theory. The jammer's case 

is analogous. 
For given M and N, there are h(M) c.pt. generation systems 

for the communicator and h(N) for the jammer. Therefore the 
game has h(M).h{N) different MxN grid solutions. Since 

h{2) = 1, there is an unique 2x2 grid solution [2]. 
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Abstract - A probability distribution function of the 
duration of a search for a fixed pattern in random 
data is derived, in terms of bifix analysis of a 
pattern. 

I. INTRODUCTION 

According to the classical well-known paper [1], the expected 

duration of a search for a fixed L-ary pattern of length n in a 

sequence of random I^ary equlprobable data is: 

E{x} = fjhrLi-n (1) 
(=0 

where hj, i = 0,...,n represent bifix indicator with the following 

meaning: fy = 1 if a bifix (a sequence that is both prefix and 

suffix) of length i exists; otherwise, fy = 0 and by convention /1Q 

= ^VI = 1- This formula is unavoidable for any researclh 

considering synchronization processes (e.g. [2, 3, 4, 5]). 

This paper presents an extension to the research given in [ 1 ], as 

it gives the formula for probability distribution function upon 

which the expected duration and variance of the same process, 

as well as the higher moments, can be evaluated. 

II. RESULTS 

The probability that the n-digit pattern will occur for the first 

time at the /c"1 position within the stream of random data 

equals to: 

Pr{x = k} = ak -p k+n-\ 
(2) 

where a* is expressed using a recursion: 
mm(n,k) 

ak =     E (L • A»+l-i - K-i) •«*-/ • (3) 
7 = 1 

and where p = 1/L is the probability of a random equlprobable 

digit. 

Expression (2)    is the probability distribution function so it 

satisfies the condition: 

S{x} = £Pr{x = i> =f)a,. • pi+"~l = 1. (4) 
7 = 1 7 = 1 

Variance of a duration of a search for the fixed pattern in 

random data can be found by statistical methods: 
00 n 

o2=S2-R-{x=/}-£2{x}=(^}+/7).(£{x}+/7-l)-2-|}-/, .£, (5) 
'=1 7=0 

00 

while   performing   the      summation    E{x) = V / • Pr{x = i} , 

7 = 1 

formula (1) is obtained. 

The expressions (4) and (5) can be easily proven using (2) and 

(3). 

The probability distribution functions for the bifix-free binary 

pattern 01011 and "all zeros" pattern of the same length (for 

which fy =  1, i = 0 n) is plotted in Fig.  1,    dashed lines 

representing the simulation study, simulation being performed 

over the sample of 100000 searches. 
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Fig. 1 Probability distribution function for 5-bit patterns 

III. CONCLUSION 

The probability distribution function derived In this paper might 

be useful for all the researches considering the search problem. 

For some previous researches it has been obtained either using 

the simulation study (e.g. [5]), or by visual inspection for each 

particular pattern (e.g. [6]). 
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Abstract — The Goethals code is a binary nonlinear 
2m+1-3m-2 codewords code of length 2m+1 which has 2 

and minimum Hamming distance 8 for any odd m > 3. 
We construct new codes over Zi such that their Gray 
maps lead to codes with the same weight distribu- 
tion as the Goethals codes and the Delsarte-Goethals 
codes. 

I. INTRODUCTION 

Let Zi denote the integers modulo 4 and let R be a Galois 
ring of characteristic 4 with 4m elements. The multiplicative 
group of units in R contains a unique cyclic group of order 
2m - 1. Let ß be a generator for this subgroup and let T = 
{o,i,/J,/?3,-,i02m-2}. 

The Gray map 0 is defined by 0(0) = 00, 0(1) = 01, 0(2) = 
11 and 0(3) = 10. From any (n,M) code over Z\ the Gray 
map gives in a natural way a binary (2n, M) code. The Lee 
weight distribution of the code over Z\ equals the Hamming 
weight distribution of its binary Gray map. 

Let C\ be the binary code defined by G\ = 0(Ci), where Ci 
is the linear code over Zi with parity-check matrix given by 

Hi  = 

1 1 
0 1 
0    2 

1        1 

ß      ß2 

2ß3    2ß6 
ß2m-2 

Hammons, Kumar, Sloane, Calderbank and Sole [1], have 
shown  that if m  is  odd,   then C\  is  a nonlinear  binary 

(2" hi   02m + 1-3m-2 ,8) code.  This code has the same weight 
distribution as the Goethals code.    They also showed that 
0(ClL) is a Delsarte-Goethals code. 

II. MAIN RESULTS 

The main result is to show that we can construct many 
codes Ck over Zi with the same Lee weight distribution as 
&. In particular, this implies that the Hamming weight dis- 
tribution of Ck = 0(C/b) is the same as for C\ and therefore 
identical to the weight distribution of the Goethals code. From 
the Mac Williams identities and from the results of Hammons, 
Kumar, Sloane, Calderbank and Sole [1] it follows that 0(Cj!") 
has the same Hamming weight distribution as the Delsarte- 
Goethals code 0(Ci"). 

Theorem Let m > 3 be odd and gcd(fc, m) = 1. Then any 
code Ck with parity-check matrix Hk given by 

Hk = 

1 1 1 
0 1 ß 
0 2 2ß2"+1 2ß( 

1 

2fc+l)2 2ß 

1 
ß2m~2 

(2*+l)(2m-2) 

has the same Lee weight distribution as C\ (i.e., independent 
oik). 

1This work was supported in part by the Norwegian Research 
Council under Grant Numbers 107542/410 and 107623/420 and the 
National Science Foundation under Grant Number NCR-9016077 

Sketch of proof. We give an explicit derivation for the 
weight distribution of these codes via exponential sums. In the 
following we will give a brief sketch of the main ideas behind 
the proof. It turns out to be natural to study the Lee weight 
distribution of C^ ■ 

The Lee weight of a G Zi and the real part of ia is related 
by ML (a) = 1 — 5R(ia), where i = y/^1. Hence, the Lee weight 
of c = (co,ci, • • • ,c„-i) € Z^ is related to (the real part of) 
an exponential sum as follows 

dL{c) = n-R(J2iCt)- 

Let T be the trace mapping from the Galois ring R to Z\. Let 
c(a,b) be a vector of length n = 2m indexed by x G T such 
that 

c(a,b) = T(ax + 2bx2 +1),    a€R,beT. 

Let 1 denote the all-one vector of length 2m. Then 

Ck = {wl + c(o,6) I    o G R,be T,u G Z4}. 

Let u G Zi, a G R and b G T and define 

^ „2*+M 

xeT 

S(a,b,u) — 1   y,1 

The main part of the proof is to determine the values and 
the number of occurrences of each value for the real part of 
this exponential sum. It turns out that this distribution is in- 
dependent of k when gcd(fc,m) = 1. Hence from the relation 
between the exponential sum and the Lee weight of the code- 
words in Ck, we conclude that the Lee weight distribution is 
independent of k and coincides with the distribution for the 
Delsarte-Goethals codes that can be found in Chapter 15 in 
Mac Williams and Sloane [3]. 

In Kumar, Helleseth, Calderbank and Hammons [2] large 
families of quaternary sequences with good correlation prop- 
erties were constructed from the codes Ci . We can also con- 
struct families of quaternary sequences with similar properties 
from C£. 
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Abstract — A [6,3,4] code He over an Abelian group 
Ai with four elements is presented. He is cyclic, unlike 
the [6,3,4] hexacode E6 over GF(4). However, #6 and 
Ee are isomorphic when the latter is viewed as a group 
code. He is the smallest member of a class of [2k, k, 4] 
cyclic and reversible codes over Ai. 

I. SUMMARY 
A group code C of length n over an Abelian group A is 

a subgroup of An, the n-fold direct product of A. The rate 
k{C) is defined by k(C) = logj^j \C\, where \X\ stands for 
cardinality. A group code C of length n with rate k and 
minimum Hamming distance &H is called an \ji,k,du\ code. 
A linear code C over a field F is also a group code over the 
additive group of F. It has been shown in [2] that many of the 
important structural properties of codes over F are associated 
with the additive and not the multiplicative group properties 
ofF. 

We present a [6,3,4] group code He over At with \Ai\ — 4. 
Let Ai = {a, b, c, d] be the additive group of GF(4), where a is 
the identity element. The elements of Ai, are called symbols. 
For the purpose of describing some binary codes with the aid 
of Ee, we use various binary representations for symbols, e.g., 
a = 0000, b = 0101, c = 0011, d = 0110. 

Let He be the code that comprises the (symbolwise) cyclic 
shifts, and their sums, of (cabbba). He is obviously a [6,3,4] 
group code, hence it is an MDS code. Consequently, every 
three coordinates in He constitute an information set, whereby 
every three symbols occur exactly once (in any three fixed 
positions), every two symbols occur 4 times and every symbol 
42 = 16 times. He is the smallest member of a class of 
[2k, fc,4] cyclic and reversible codes over Ai- 

There is a unique formally self dual [6,3,4] code over GF(4) 
(see [1, pp. 301-303]), called hexacode and denoted Ee. No 
version of Ee maps onto He under any bijection /: GF(4) >->• 
Ai- In fact, no cyclic [6,3,4] code over GF(4) exists. Nonethe- 
less, if Ee is viewed as a group code then it is isomorphic to 
He- Since (aaaaaa) € He, He and Ee have identical coset 
Hamming weight distributions. 

Some properties of He are the following. 
1) He is invariant under replacement of a by d and 6 by c. 

2) He is invariant under cyclic permutation. 

3) He is invariant under reversal of the symbols. 

4) He is representable by a 4-section 16-states non-symmetric 
trellis diagram, and also by a 3-section 16-states sym- 
metric trellis diagram. 

5) Let 

Co = {aaaaaa, cccdbd,abccba,cdabad} 

C0 = {aaaaaa, bccbaa, ddbcaa, cbddaa) 

CQ     =     {aaaaaa, aabccb, aacbdd,aaddbc} 

and d = Co + Co'. Then Cx is [6,2,4] code. We have 
He = Co + C\ and, using standard notations for group 
partitioning, 

He = [C2/Ci] + [d/CÜ] + CS = C0 + C0+ C0'. 

6) He consists of the blocks of 3 — (24,6,1) constrained design 
(see [3]). He can also be represented as the union of four 
2 — (12, 3,1) constrained designs. (A constrained design 
may exit for parameters values for which no conven- 
tional t-design exits. In particular, neither a 3-(24,6,l) 
nor a 2-(12,3,l) i-design exits.) 

For Ee representations similar to those of 4) - 6) apply. 
Also, there exists a self-dual version of Ee, for which a prop- 
erty similar to 1) holds. However, properties 2) and 3) are 
unshared by (all versions of) Ee- 

We present several constructions for binary codes of length 
24 derived from He- In particular, the MOG (Miracle Octad 
Generator) construction, by which the [24,12,8] Golay code- 
words are described as some set of binary images of Ee, applies 
also with Ee replaced by He. 

An approach to fast maximum likelihood decoding of some 
binary codes of length 24 may be based on He- The binary 
codewords are regarded as images of He- Let z <E An be 
the vector obtained by symbol-by-symbol soft decoding. The 
neighborhood of z is examined in order to identify the most 
likely codeword. A small list of candidate codewords is pre- 
pared by employing certain elimination rules. A substantial 
reduction of computational complexity is achieved in max- 
imum likelihood soft decoding by intensively exploiting the 
structure of He in the decoding procedures. 
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Decoding Binary Expansions of Low-Rate Reed-Solomon Codes 
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Abstract — Binary expansions of low-rate Reed- 
Solomon codes typically are capable of correcting 
far more binary errors than guaranteed by the BCH 
bound on the Reed-Solomon code. Practical decoding 
algorithms that often correct beyond the true mini- 
mum distances of the binary codes are described. 

I. MINIMUM DISTANCES 

The minimum distance of an (N,K) Reed-Solomon code is 
given exactly by the BCH bound (N+l-K). Since low-rate 
Reed-Solomon codes have no binary subfield-subcodes, pro- 
vided that 1 is a root of the generator polynomial, the binary 
expansions of many of these codes have surprisingly high min- 
imum distances. To explore the properties of these codes, 
a large number of weight distributions were computed by 
generating codewords on a KSR1 supercomputer. All Reed- 
Solomon codes with parameters (31,7), (63,6), (127,5), and 
(255.4) were expanded using all normal bases. Then the most 
promising codes with parameters (31,8), (63,7), (127,6), and 
(255.5) were examined. A total of 3064 codes containing al- 
most 50 trillion codewords were generated. 

RS Binary Worst Average Best BCH 
Codes Codes dmin dmin dmin Bound 
(31,7) (155,35) 40 40.944 44 25 
(63,6) (378,36) 84 123.690 136 58 

(127,5) (889,35) 320 359.405 368 123 
(255,4) (2040,32) 680 863.402 920 252 
(31,8) (155,40) 32 32.000 32 24 
(63,7) (378,42) 128 128.000 128 57 

(127,6) (889,42) 352 352.000 352 122 
(255,5) (2040,40) 884 884.000 884 251 

II. DECODING 

A conventional decoder for these codes would map binary 
m-tuples into symbols in GF(2m) and decode using one 
of the standard Reed-Solomon decoding algorithms. This 
approach will decode correctly only if the number of sym- 
bol errors is less than (N+l-K)/2. Although not every bit 
error becomes a symbol error, this approach cannot take 
advantage of the true capabilities of these binary codes. 

At AAECC-3, Bossert and Hergert [1, 2] suggested 
a simple approach to decoding linear codes, based on a 
very large syndrome formed by using all of the minimum- 
weight codewords in the dual as parity checks. The ob- 
servation that the weight of this large syndrome increases 
with the number of errors suggests various simple algo- 
rithms to search for the nearest codeword by reducing the 
weight of the syndrome. The most important requirement 
for this algorithm is that the dual must contain a large 
number of codewords with very low weights, which is the 
case for the codes described above. For example, the 
weight distributions of the duals of 2304 binary (2040,32) 

codes were computed, and 99% of the duals were found 
to have dmin = 5, with one code having 1142808 words 
of that weight. However, a direct implementation of the 
Bossert-Hergert algorithm tends to stop at local minima 
when all of the minimum-weight words are used as checks. 
By varying the set of checks on successive passes, the local 
minima can be avoided. Simulations of several variations 
of this modified algorithm showed that far more errors 
can be corrected than with conventional Reed-Solomon 
decoders. The figure below shows the failure rates of five 
decoders for the code described above (dmin = 768). 

100  200  300  400  500  600  700  800  900  1000 

Number of Errors in a Block of 2040 Bits 

A A conventional Reed-Solomon decoder, which fails 
50% of the time with 165 bit errors. 

B A hypothetical binary bounded-distance decoder, 
which fails with 384 or more errors. 

C A four-pass threshold decoder, which starts by us- 
ing all weight-5 checks, but changes the set of checks 
to avoid local minima. Its 50% failure rate occurs 
with 730 errors. Since the code is quasi-cyclic, a 
hardware implementation of this decoder is reason- 
ably simple and very fast. 

D A similar decoder, which changes only the best bit 
on each of 1500 passes. The 50% failure rate for 
this decoder is reached at 763 errors. 

E A maximum-likelihood decoder, which has a 50% 
failure rate at 878 errors. 
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Abstract — We propose an algorithm for linear feed- 
back shift-register (LFSR) synthesis in the case of 
multiple sequences belonging to a commutative ring 
with identity. It is also shown how this algorithm 

can be applied to the decoding of cyclic codes denned 
over an integer residue ring Zg, where q is a power of 

a prime. 

I. INTRODUCTION 
It is well known the practical and theoretical importance of 

cyclic codes denned over a finite field Fq. Recently, cyclic 
codes over integer rings 2M have also been receiving special 

attention; reasons for that are, for instance, i) the mapping 
of cyclic codes over 24 into nonlinear binary codes with ex- 
cellent error-correcting capabilities, and ii) the matching of 
these codes to MPSK modulation schemes. In this paper 
we extend a set of results of the paper by Feng and Tzeng 
[1], culminating in a decoding procedure for cyclic codes over 

integer rings 2g, with q a power of a prime. We shall be 

considering only those cyclic codes over 29 whose generator 
polynomials divide i" — 1, where n denotes the code length. 
Let ß G GR(q, r) (the r-dimensional Galois extension ring of 
2?) denote a primitive root of xn — 1. Suppose further that 
ßb+ic1+hc2 are roots 0f t^ generator polynomial g(x) of a 

cyclic code C over 2?, for i = 1, 2, ...,do — 1, ft = 1, 2, ...,s + l, 
where gcd(ci,ra) = gcd(c2,n) = 1. Then, dmln(C) > do + s 
(Hartmann-Tzeng (HT) bound for cyclic codes over 2q). 

II. MODIFIED FUNDAMENTAL ITERATIVE ALGORITHM 

Let R be a commutative ring with identity (CRI). Given an 
M x N matrix A with entries in R, and with rank less than N, 

find the smallest t such that the (£+ l)-th column in A can be 
expressed as a linear combination of the previous £ columns. 
The solution to this problem, when the entries of A lie in a 
field F is given by the Fundamental Iterative Algorithm (FIA), 
as proposed in [1]. Henceforth, we follow the notation of [1]. 
By extending Lemma 1 [1] to the ring case, we have devised a 
Modified FIA, which is similar to the original FIA, except for 
step 4), namely, 

4) if dr,s # 0, then, 

• a) if there exists a dT,u G D, for some 1 < u < s and a y 

(over R) satisfying driS—y-dr,u = 0, then C'r-1,s'(x) <— 
C(r-1's)(x) - y ■ C^{x) • is-u, and return to 3a); 

• b) if either there is no such a dT,u € D, for some 1 < 
u < s or if dTlS — y • dTiu = 0 does not have a solution 
in y (over R), then: i) if column s is LI on the previous 

s — 1 columns (up to row r), then dr,s is stored in Table 
D, C(s)(x) <- C(r-M)(x), C<0>s+1>(x) <- C(s)(x), s <- 
s + 1, r <— 1, and return to 2) else, ii) if a^s + aiOh.s-i + 
... + as-\ah,i = 0, 1 < ft < r, for some choice of 
coefficients a;, then C^-1'"' *— l + aix-r-.. . + as-ix

s~ , 
and return to 2). 

Theorem 1   The final s and C^T  l's\x) obtained from the 
Modified FIA is the solution to the problem with minimum s. 

III. EXTENDED BERLEKAMP-MASSEY ALGORITHM 

Given t sequences over a CRI R, find a shortest LFSR that 
is capable of generating them, i.e., solve the linear system of 
equations (1) (in [1]) over R. This is equivalent to finding the 
minimum £ such that the (£+ l)-th column in matrix 5, as in 

[1], can be expressed as a linear combination of the previous 
I columns. Here, our main result was to extend Theorems 2 
and 3, from [1], to the case when the sequences lie in a CRI, 

and incorporate it in the Generalized Berlekamp-Massey (BM) 
Algorithm for Multiple Sequences. The obtained algorithm is 
similar to the original one, except for Steps 2) and 3). We de- 
scribe Step 2 a) and b) below, which refer to the computation 

of a{nJrl'l){x) from ^n'()(x) when d^ ^ 0; Step 3) works in 
a similar way. For more details, see [2]. 

2b)  if d\     ^  0 then find  an mt such that the equation 

a\   — y ■ d\n't — 0 has a solution in y (over R).  Then, 
T(n+i,i)/^ = (x) = ff("-t)(x) - y ■ <T(m'+1^(x) • xn- and 

4+i = max {fn\ n-mt + fm] }; 

2c) if /„.jij = max{/„ ,n + 1 — ft } then go to 3); else 

search for a solution D<-n+1,t\x) with minimum pos- 

sible degree I in the range max{ft ', n + 1 — ft1 } < I < 

max{ft  , &,< + n — mt} such that the polynomial de- 
T(m<>{) (x) is 

-d{1) 

fined by D^n+1't\x) - <7<n''>(x) 

a solution for the first mt power sums, d' 

and (TQ       is a zero divisor in R. If such a polynomial is 

found, then cr(n+1''>(x) «- D^n+1^(x); and J^ «- I; 

IV. DECODING OF CYCLIC CODES OVER Zq 

The error-location numbers are calculated by solving the lin- 
ear system of equations (20) (in [1]) with minimum possi- 
ble v, via the BM Algorithm for multisequences over a CRI. 
In general, one has more than one minimal solution satisfy- 
ing equations (20) (in [1]). However, we have shown that 
when p{z) = z"a(z~1) has v or more roots zi (note that 
p{z) is a polynomial with coefficients in GR(q, r)), then these 
roots are related to the correct error location numbers by 
Zi — x^1 = zero divisor in GR(q,r), for 1 < i < v, and are 

uniquely determined. The error magnitudes are still computed 
using Forney's procedure with minor changes. 

1This   work   has   been   supported   by   CNPq,    under   grant 
301416/85-0, and FAPESP, under grant 92/4845-7, Brazil. 
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Abstract — We present new bounds for the mini- 
mal length starting from which BCH codes of given 
minimal distance It + 1 have covering radius at most 
It. 

I. INTRODUCTION 

A linear [n, k, d] code C is said to be maximal if, for all linear 
[n.fc + l] codes C", 

C'DC=> d{C') < d, 

where d(C') is the minimum distance of C". In other words, 
one cannot add a coset to C without decreasing its minimum 
distance. 

The problem of determining the length starting from which 
the i-error correcting BCH code is maximal amounts to the 
one of finding the smallest length for which its covering radius 
is strictly less than 2f + 1. 

The first result of this kind was derived by Tietäväinen 
[2], following a paper of Helleseth [1], His bound guarantees 
maximality for the t-error correcting BCH code of length n = 
^P±, provided 2m > ((2t - l)N)it+2. Here we sharpen this 
bound. 

For asymptotic results on covering radius of BCH codes, 
see also the paper of Skorobogatov and Vläduts [3]. 

II. THE RESULTS 

Theorem 1 The t-error correcting BCH-code of length 2m-l 
over F2 is maximal provided 

2m > 4(1 +£(*))(*- l)2(i!)2, 

where s{t) is a decreasing function oft, e(4) < 0.581, e(5) < 
0.138, and s(t) < (t_1^t_1) for t > 5. 

Consider the system 

Xi 

X 
(2t-l)JV 

+ 
+ 

+ 

+ 
+ Xi 

hyN 

b2y
3N 

(1) 

+       X (2t-l)N 
bty 

(2t-l)jV 

Let Mi be the number of solutions (a:i,..., x,, y) € (F^m )i+1 

of system (1), with XJ / xk for j ^ k. If, for all (fei,..., bt) G 

F2™ \ {0}, there exists (at least one) i, 1 < i < 2t, such that 
Mi ^ 0, then the covering radius of BCH(2t + 1) is less than 
or equal to 2t. 

To prove the maximality of BCH(2t + 1) it is sufficient to 
prove that, starting from a suitable length, its covering radius 
is less than or equal to 2t. We are done if we can prove that, 
for m large enough, the sum 

t 

i=0 

for some (2< + l)-tuple (a0,... ,a2t)- 
Choosing the (2* + l)-tuple (a0,... ,a2t) to be the coeffi- 

cients of the expansion of a properly chosen polynomial of 
degree 2t in the basis of Krawtchouk polynomials, we obtain 
the aforementioned result. 
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Theorem 2 The t-error correcting BCH-code of length n = 
—j^- over F2 is maximal provided 

2m > (1 + eN(t))((2t - 1)N - l)2(i!)2, 

where erf(t) is a decreasing function of t satisfying, for 
N > 2, eN(4) < 0.347, sN(5) < 0.008, and eN(t) < 

((2t-i)iv-i)2(t_i)2(t-2) for t>5. 

III. SKETCH OF THE PROOF 

Let BCH(2t + 1) stand for the t-error correcting BCH code 
of length n = (2m - 1)/N. 
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Abstract — Primitive binary BCH-codes were sup- 
posed to have binomial weight distributions for all 
code rates R < 1 when N —► oo. Here it is shown that 
this is only true if Ä —► 1. 

I. INTRODUCTION 

The first bound on the differences between weight distribu- 
tions and the binomial distribution was given in [1] for primi- 
tive binary BCH-codes of length N = 2m-l and dmin = 2f+l. 
There it was shown that for 

0 <t <0.1 --s/N (1) 

and any weight (distance) <IH satisfying the inequalities 2t + 
v(t) <dH <N -2t + u(t) with 

u(t). 
2<ln< + 4.5t-|-0.11nAf 
0.51nJV-lnt-2.25 

the number of codewords AdH of weight <LH is given by 

Ad„ = 2-<lt-K> 
(N 

(l+e(iV)),   \e(N)\ < const-iV-01  (2) 

This bound was improved by several authors and lead to the 
common opinion that the weights of long primitive binary 
BCH-codes are binomially distributed for all code rates R < 1 
with N —► oo. In this paper it is shown that this is only true 
if R ->■ 1. 

II. BINARY BLOCK CODES WITH BINOMIAL DISTANCE 

DISTRIBUTIONS 

Using the distance distribution method in [2] it was shown that 
fixed rate code sequences of binary block codes with asymp- 
totic (in N) binomial Hamming distance distribution have a 
cutoff rate that is equal to the channel cutoff rate of the BSC 
and thus are asymptocially optimal according to Massey's cut- 
off rate criterion. Furthermore, in [3] it was shown that the 
error exponent of such a code family attains the BSC error 
exponent, if the code rate Ä lies in the interval between the 
critical rate Rcrit and channel capacity Re- Thus, binary 
codes with binomial distance distribution for N —> oo have 
a positive error exponent for all rates up to the channel ca- 
pacity of the BSC. This argument and (2) lead to the con- 
clusion that primitive binary BCH-codes are asymptotically 
optimal on the BSC, i. e., have a positive error exponent E(R) 
in the interval (0, Re), if they are decoded by a Maximum- 
Likelihood decoder. This conclusion is shown to be false by a 
contradiction based on results from [3] and [4]. 

III. THE CONTRADICTION 
For binary codes with R —► 1 we obviously have 

N -* oo and R -* 1     =» E(R) = 0 . (3) 

Another result from [2] yields that for a fixed rate code se- 
quence of linear block codes with vanishing normalized min- 
imum distance the error exponent cannot be different from 
zero: 

Urn   ^iH=0     =*.     E(R) = 0,       0<Ä<1  .     (4) 
N-*oo      TV 

Using the result from [4], one obtains for primitive binary 
BCH-codes (p. b. BCH) that their normalized minimum dis- 
tances vanish for JV —► oo. Thus, we arrive at a contradiction: 
From the conclusion in Section II we have 

p. b. BCH => E(R) > 0 , R < Rc < 1  ,      (5) 

and from (4) and Berlekamp's result in [4] follows 

p. b. BCH =* E{R) = 0 . 0 < R < 1,        (6) 

There is no contradiction, if we compare expression (6) with 
(3) 

p. b. BCH =» E(R) = 0 , Ä->1. (7) 

In fact, the solution of the contradiction between (5) and 
(6) can be obtained by analyzing the code rate R of the code 
sequences used in [1],  Using equation (1), m = log2(iV + 1), 
and the well known inequality N — K < mt for BCH-codes 
we have 

0.1-log2(JV-H) 

VN 
For long codes, i.e. JV —► oo, this result leads to R —* 1. 
Thus, only a comparison of expression (6) with (7) is possible. 
But for R = 1 all binary codes have binomially distributed 
weights. We conclude that the results obtained in [1] are only 
valid for code rate R —► 1 when N —* oo. Furthermore, from 
expression (6) follows that the weights of these codes cannot 
be binomially distributed for R < 1 and N —» oo. 
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Abstract — In this talk we shall discuss the algebraic 

decoding of doubly extended Reed-Solomon codes. 

I. INTRODUCTION 

Recently, it has been shown that some doubly extended Reed- 

Solomon (DRS) codes have a simple encoder [1]. One way to 

decode a DRS code is to use a standard decoder twice, see [2, 
sec. 9.3]. An extension of the Berlekamp-Massey algorithm 

has been published, which can decode DRS codes using only 

one trial, [3]. The aim of the talk is to demonstrate that any 
t-error correcting RS decoder - such as the PGZ-, the BM- 

or the Euclidean algorithm - easily can be extended to be a 

decoder for a DRS code. In the following we shall show this 

for the decoder based on the Euclidean algorithm. 

II. DECODING 

Let c = (c_, Co,. ..,c„_i,c+),ra < g — 1, be a codeword in 
a (n, k, d = n — k + 1) DRS defined over GF(q). The two 
extended symbols are denoted c_ and c+. A parity check 

matrix for the code is 

H: 

1 1 1 1 0 
0 1 a a""1 0 

0     1 (a      ) 

where a is a primitive element in GF(q). Let r = 

(r_, ro, ■ ■ ■, rn-\, r+) be the received vector and e = r — c 
the error vector. The d — 1 syndromes So, Si,..., Sd-2 are 

calculated as Hr — (So, Si,... ,Sd-i) ■ Let S(X) = So + 
Six + ■ ■ ■ + Sd-2Xd~2 be the syndrome polynomial. Assume 
that w(e) = s < [(d — l)/2j. An error-locator polynomial 

A(x) = Ao + Aii + • • • + As ss is defined as 

A(oT')    =    0  if  ti #0,0 < i < n 

Ao     =    0  if  e+ # 0 

As    =    0  if  e_ # 0 

An error-evaluator polynomial w(x) is defined as 

X(x) 
y(x): v  '     *—<     1 -a'x 

(1) 

(2) 

where I = {i\et # 0,0 < i < n — 1}.   It can be verified that 
S(x), \(x), and w(x) satisfy a key-equation, that is 

d-l X(x)S(x) = w(x) mod z; (3) 

and that 

A set of polynomials (A(x), w(x)) satisfying (3) and (4) can 

therefore in the usual way be determined by the Euclidian 
algorithm. Based on the polynomials A(x) and w(x) the non- 

zero elements of the error vector (eo,... ,e„_i) can be esti- 

mated, since 

e, = W[a/ ')       if  A(a_i) = 0   and   0 < i < n - 1    (5) 
a~'A'(a~') 

which is the usual formula for calculating the error symbols. 

The errors e_ and e+ can now be determined by using the 

syndrome equations, that is 

n-l 

i = 0 

n- 

Sd-2 - y^e8(a
d~2)' 

i e' 
>=o 

n-l 

(6) 

Hence, once the syndromes have been calculated a standard 
RS decoder based on the Euclidian algorithm needs only to 
be extended by (6) in order to be a decoder for a DRS code. 

Example. Consider    a    (17,9,9)     DRS    defined    over 
GF(16). Let a be a primitive element satisfying a = 

1 + a. And let the syndromes be (So, ■.. ,Sy) = 

(a11, a14, a12, a12, a5, a3, a3, a5). Applying Euclid's algo- 
rithm to S(x) and xs, \(x) and w(x) are estimated to \(x) = 
awx3 + a13x2 + ax and w(x) = a11!3 + a7x2 + a12x. The 

non-zero roots of A(x) are a~ and a- which from (5) implies 
that e2 = a5 and e-j = a9. Using (6) e_ = a and e+ = a3. 

In this manuscript we have only considered random error cor- 
rection. The conclusion given here can be extended to include 

erasure decoding as well. 
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deg \(x) < t, deg w(x) < t — 1, deg w(x) < deg A(s),(4) 

deg A(x) + deg w(x) < d — 1. 

Also A(x) is a polynomial of lowest degree, satisfying (3) and 
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Abstract — We determine the generalized Hamming 
weights dr for l<r<7i + 2ofa binary primitive BCH 
code with minimum distance d — 2h — 1. This extends 
a result of van der Geer and van der Vlugt [2], [3] 
who determined dr for 1 < r < 5 for the triple error- 
correcting primitive BCH code. We also consider 
the weight hierarchy of some codes with parity-check 
polynomial which are the product of two primitive 
polynomials of the same degree. In particular we have 
studied some of the codes with few nonzero weights 
studied by Niho. 

I. INTRODUCTION 

Let C be an [n,k,d] binary linear code.   The support x(D) 
of a subcode D of C is defined as the number of coordinates 
which are not identically zero. The r-th generalized Hamming 
weight of a code C is defined as 

dr = min{| x(D) II -D is an r-dimensional subcode of C}. 

The weight hierarchy of the code C is dr, r = 1, 2 • • •, k. The 
weight hierarchy is an important parameter for the code in 
particular for estimating the trellis complexity of the code. 

To find the weight hierarchy of a code is in general a very 
hard problem. For BCH codes some partial results are known. 
For the double error-correcting BCH code of length n = 2m — 
1, it is known that d\ = 5, dz = 8 and ^3 = 10. For the 
triple error-correcting BCH code van der Geer and van der 
Vlugt [2], [3] proved that di = 7,d2 = 11, d3 = 13, d4 = 14 
and di = 15. Our first result is a generalization of this result 
and has a simple and direct proof. 

Theorem 1 Let C be a primitive BCH code of length 
n = 2m - 1 and designed distance d = 2h — 1. Then 

dT = 2h+1 - 2h+1-T - 1 for r = 1, 2, • • •, h + 1 

and 
dh+2 

r,h + l 1. 

Proof. The positions of a primitive BCH code can be 
indexed by the nonzero elements of GF(2m). For a primitive 
BCH code of designed distance d = 2h — 1, it is well known 
that codewords with ones in the locations which correspond 
to the nonzero vectors of a /i-dimensional subspace of GF(2m) 
(considered as an m-dimensional vectorspace) have minimum 
weight. 

It is well known that di = 2h - 1 and dr > Y^Zo \d^/2^ = 
2h+i _ 2h+i-r _ 1 for 1 < r < ft + 1. Hence it is sufficient to 
find an r-dimensional subcode with the support given in the 
theorem when 1 < r < h + 2. 

Let U be a subspace of dimension h + 1. We let c, for i = 
1, 2, • ■ ■, h+2 denote minimum weight codewords with nonzero 
locations corresponding to subspaces V,, i = 1, 2, • • • ,h + 2 

xThis work was supported in part by the Norwegian Research 
Council under Grant Numbers 107542/410 and 107623/420 

of U. We will show how these can be chosen such that the 
subcode Dr generated by ci, C2, • • •, cr has the support dr. To 
select the subspaces Vi for i = 1, 2, • • •, h+2 we first select Vi to 
be any ft-dimensional subspace of U. Suppose Vi, V2, ■ ■ ■, Vi-i 
have been selected, then select Vi to be any /i-dimensional 
subspace of U not contained in Vi U Vj U • • • U V,-i. This is 
always possible as long as i < h + 2. Then it is easy to verify 
that I x(-Dr) |=| ViUVaU- 
proof. 

■UK \= dr, which completes the 

II. ON THE WEIGHT HIERARCHY OF A NIHO CODE 

We have studied the weight hierarchy of some codes with 
parity-check polynomial which are the product of two binary 
primitive polynomials of the same degree m. This is also in 
general a hard problem since it includes the dual of the double 
error-correcting codes BCH codes as a special case, where only 
partial results are known. Let rrii(x) denote the minimum 
polynomial of a a1, where a denotes an element of order 2" — 1. 

As an example of our results on the weight hierarchy of 
these codes, we present good upper bounds on the complete 
weight hierarchy of a 4-weight code of length 2n — 1 where n = 
2m = 0 (mod 4) (whose weight distribution was determined 
by Niho [1]). 

Theorem Let h(x) = mi(x)md(x) be the parity-check 
polynomial ofa[22m-l,4m,22m_1-2m] code C where m > 2 
is an even integer. If d = 2m+1 - 1 then gcd(d, 22m - 1) = 1 
and 

dr < 

(2r- -l)(2
2m-" -2m + 

(2m -l)(2m-2) + (2 
(2m -l)(2"*-l) + (2 
(2m - l)2m + (2r-3m 

■'). 

■1)2" 

1)22" 
1)23 

1 < r < m 
m + 1 < r < 2m 
2m + 1 < r < 3m 
3m + 1 < r < 4m. 

We also give lower bounds and show that equality holds in 
many cases. 
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Abstract — We prove that any Zi — cyclic code has 

generators of the form (fh, 2fg) where fgh = xn — 1 over 
Zi. From this we can easily find the order of the code 
and generators of the dual. A particular interesting 

family of Zi — cyclic codes are quadratic residue codes. 

We define such codes in terms of their idempotent 
generators and show that these codes also have many 

good properties which are analogous in many respects 

to properties of quadratic residue codes over a field. 

I.   Z$ — cyclic CODES 

Let Zi denote the integer residues modulo 4.    Zi is a ring 

which has 2 as a zero divizor.  A set of n — tuples over Zi is 
called a code over Zi or a Zi code if it is a Zi module. 

Let ft: Zi[x] —+ ^[x] be the map which sends 0, 2 to 0; 1, 3 

to 1 and x to x. 

Definition: A polynomial / in Zi[x] is basic irreducible if 
uf is irreducible in Z2[x]; f is primary if (/) is a primary 

ideal. 
Lemma: If xn — 1 = /1/2 • • • fr, where the /; are basic irre- 
ducible and pairwise coprime, then this factorization is unique. 

Theorem 1: Let all /; be as above for an odd n, and let fi 
denote the product of all fj except /;, then the ideals (/;) and 
(2/;), for i = 1, 2, • • -r, generate all ideals of Zi[x]/(xn — 1). 

If / is a polynomial, /* denotes its reciprocal. 

Theorem 2: Suppose C is a Zi — cyclic code of odd length 
n, and 1" — 1 = /1/2 • • • fr, where the /; are basic irreducible 
and pairwise coprime, then C = (fh, 2fg), where g and h are 
coprime and fgh=xn-l, \C\=4n-degf-de3h2n-de9f-de39, and 

CX=(S*A*. Vf). 

Theorem 3: Let C be as in theorem 2, if C=(/), then C 
has an idempotent generator in Zi\ if C=(2/), then C—(2e), 

where e is an idempotent generator in Z2; if C=(fh, 2fg), 
then C=(e, 2v) where fgh = xn — 1, e is an idempotent in Zi 
and v is an idempotent in /?2. 

Theorem 4: If C = (e(x)) where e is an idempotent in Zi[x], 
then C± = (l-e^-1)). 

II. QUADRATIC RESIDUE CODES 

Quadratic residue codes are cyclic codes which can be defined 
in terms of their idempotent generators [5]. 

Let ei = Steo x' anc' e2 = XweJV x'> wnere Q ls the set of 
quadratic residues and N is the set of non quadratic residues 
for a prime p = ±1 (mod 8). Then ei and e2 are idempotents 

of binary Q.R \p,p + 1/2] codes. 

Theorem 5: Let p be a prime = ±1 (mod 8) such that p + 1 
(or p — 1) =8r. If r is odd then e; + 2ej and 1 + 3e; + 2ej are 

idempotents over Zi, where i,j = 1,2 and i 5*= j. 
If r is even then 3e; and 1 + e; are idempotents over Zi, 

where i = 1,2. 

Definition:   A Zi — cyclic code is & Zi— quadratic residue 

(Q.R) code if it is generated by one of the idempotents in the- 

orem 5. 
Theorem 6: Let p be a prime and p + 1 = 8r for odd r, if 

Qj = (ei + 2e2), Qi = (e2 + 2ei) , Q[ = (1 + 3e2 + 2ex) and 
Q'2 = (1 -f 3ei + 2e2) are Zi — Q.R codes, then 

(a) Q\ and Q2 are equivalent, Q\ and Q'2 are equivalent; 

(b) Qi n Q2 = (3/0 and Qj + Q2 = RP = Zi[x]/(xp - 1), 
where h is all 1 vector; 

(c)|Q1| = 4P+1/2 = |Q2|; 

(d)   Qi=Q[+ (h), Q2 = Q'2 + (h); 

(e)\Q'i\ = \Q'2\ = ip-1/2; 
(f) Q\ and Q2 are self-orthogonal and Q^ = Q[, Q2 = Q'2. 

Note: If r is even or p = 1 (mod 8), there are similar results. 

Theorem 7: Let Q be an extended Zi — Q.R code. Then 

the group of Q contains a subgroup which is isomorphic to 

PSL2(p). 

Theorem 8: The extended Zi — Q.R code of length 32 has 

minimum Lee weight 14, minimum Euclidean weight 16 and 
minimum Hamming weight 8. 

The extended Zi — Q.R code of length 48 has minimum 
Lee weight 18 , minimum Euclidean weight 24 and minimum 
Hamming weight 12. 

Their images under the Gray map are non-linear and have 
better minimum Hamming weight than any known binary lin- 
ear codes [3]. 
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Abstract — A recently derived upper bound for 
Weil-type exponential sums over Galois rings leads di- 
rectly to an estimate for the minimum Lee distance of 
/?4-Iinear trace codes. In this paper, an improved min- 
imum distance estimate is presented. The improved 
estimate is tight for the Kerdock code as well as for 
the Delsarte-Goethals' codes. 

I. INTRODUCTION 

Let Rm := GR(4, m) denote the Galois ring (char. 4) of 4m 

elements. Let ß be an element in Rm of order 2m — 1 and set 
Tm = {0, l,/3,/32,...,/32m-2}. Let f(x) <E Rm[x] be non- 
degenerate with weighted degree Df [1]. We define a ^-linear 
weighted degree trace code C(m, D) via 

C(m,D) = {9 + Tr(f{x)) \ Df < D,8 <= Z4}*erro. 

The minimum Lee distance dmjn of the codes C(m, D) can be 
shown to be 

<*min   = ™*    {2m - nE,erm "
6+Tr(/W)} I B € Z<, 

f(x) nondegenerate,   Df < D} 

where 3l(x) denotes the real part of x. 

In   [1], Kumar et al. prove 
Theorem 1 

*6Tm 

,Tr(f(x)) <   (Df-1)2*. 

Thus, |K(^xe7ro wTr(/W)) | < (D/-l)2?. In this paper, 
we show that this estimate can in some cases, be strengthened 
upto a factor of i/2. 

II. IMPROVED ESTIMATES 

Define D\ = D or D — 1 when D is odd or even respectively. 

With the code C(m,D), we associate the sets Si = {ß2 a \ 

1 < a < [f J,0 < i < m - 1}, and S2 = {ß2*0 | 1 < b < 
Z?i,0 < i < m - 1}. Also let S2 = {ßx ■ ß2 \ ßuß2 € Si}. 
Define So = S2 U 52. Using McEliece's theorem on divisibility 
of binary cyclic codes, one can show that 

Theorem 2 Let I be the smallest integer for which the prod- 
uct of terms in SD yields 1. Then 2 _1 divides the Lee weight 
of every codeword in C(m, D). 

'The work was supported in part by the Norwegian Research 
Council for Science and the Humanities and in part by the National 
Science Foundation under Grant Number NCR-93-05017. 

For a more general version of Theorem 2, see [3]. 
We denote 

Pf,< 
i6Tm 

Tr(f(s)) 
)• 

Let f{x) = a(x) + 2b(x), a(x),b(x) € Tm[x]. For any positive 

integer j, let W2(j) denote the Hamming weight of the binary 

expansion of j. For g(x) — Yll=o9JxJ ^ 7^n[a;], we define 

W2(g(x)) = max {w2(j) | g} ^ 0, 0 < j < n}. We then define 
w2(f{x)) = max {2 • w2{a{x)), w2(b(x))}. It can be shown 
that I in Theorem 2 satisfies / > \—/?, ..1. Thus, 

r—m—i 

Let    Pf,ms     =     $l(J2n erm 

2-p/,m. (1) 

r{f(x))y   jn  a  similar   manner, 

21 »2(/(«)) '|2-p/>ms so that 

J'l 2L»2(/(x))J5|2.p/]m (2) 

Using a result of Ax and Moreno and Moreno's adaptation [2] 
of Serre's technique, we have 

Theorem 3  Let hi w2(f(x yyJ - e/ = f 

IP/,- <   2ef~1l 
2hf-1(Df 

w2{f(x] 

2er 

yyl- The 

J- 

Further, 

Corollary 4 Let dmjn be the minimum Lee distance of the 
code C(m,D). Let e = min{ef\Df < D} and h = 
min{hf\Df < D}.  Then 

amin — L 2e~\ 
2h~\D - \)\2>~h Jql 

J- 
The bound in Theorem 3 and Corollary 4 are infact sharp 
when applied to Kerdock and Delsarte-Goethals' codes. 
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Abstract — We point out that a large variety of 
nonlinear OQPSK-Type waveforms can be exactly 
represented as a sum of linear OQPSK-type com- 
ponents. A similar representation, with an in- 
creased number of components, can be adopted 
for any signal obtained by filtering and nonlinear 
amplification of the above mentioned waveforms. 

I. INTRODUCTION 

OQPSK-type modulation schemes are known to be well 
suited for radio applications where nonlinear power ampli- 
fiers operating close to saturation are employed. In most 
cases, a linear modulation scheme is assumed and, hence, 
the complex envelope of the modulated waveform, at the 
amplifier input, can be given by s,„(t) = £2n cnx(t-nT), 
where x(t) denotes the modulation pulse, T is the du- 
ration of the bit interval and, according to the data se- 
quence, c2j = ±1 and c2;+i = ±j. Whenever the envelope 
| Sin(t) | has fluctuations, the nonlinear characteristics of 
the amplifier lead to some distortion. On the other hand, 
if a nonlinear, constant - envelope modulation scheme is 
adopted, no signal distortion appears at the amplifier out- 
put. It is well-known that a Binary-CPM scheme with 
h = 1/2 can also be regarded as a member of a wide 
OQPSK-type class, even for the "partial - response" case 
(e. g., GMSK, TFM, etc.), since the corresponding mod- 
ulated waveforms are similar to those resulting for the 
linear OQPSK-type schemes. In [1] Laurent has shown 
that any Binary-CPM signal can be represented as a sum 
of several linearly modulated signals, each of them char- 
acterized by a specific modulation pulse, x^k\t). The re- 
quired number of linear components depends on the dura- 
tion of the "frequency pulse", g(t), in the standard CPM 
representation. If this duration is LT (for integer L), the 
complex envelope can be written as 

with the signal at the output of a nonlinear power am- 
plifier, for an input belonging to the OQPSK-type class, 
characterized by the above-mentioned complex envelope 
Sin(t). Eqn (1) can still be valid, provided that x(t) has 
duration (L+l) T and the power amplifier is modelled 
as a bandpass memoryless nonlinearity; moreover, all the 
linear components belong to the OQPSK-type class. In 
this case, c„ = c„ and, for L > 2, we have to define 
sequences {c„  },fc = 1, ..,2i-1-l, according to 

«(*) =    £»^>(*-nT) (1) 
fc=0    n 

with pulses x^k\t) and sequences {<& } depending on 
g(t), h and the data sequence. For h = 1/2, all the linear 
components of the CPM signal belong to the OQPSK- 

.(*) „(*) type class: this means that, if Cm   = ±1, then cy
m'+l = ±j. 

II. GENERALIZED REPRESENTATION OF 
NONLINEAR OQPSK-TYPE WAVEFORMS 

Similarly to the Binary-CPM signals with h = 1/2, many 
other OQPSK-type signals can be exactly represented as 
a sum of linear OQPSK-type components. This is the case 

L-l 

c(k) =   (o) TT ßW ,(k) 
(2) 

(=i 

where /?« = 1 if aM = 0 and /?# = c^c^, if 
ctk,i = 1, when (otk,L-\<*k,L-2 ■ ■ -«*,i) IS taken as the 
binary representation of k. The calculation of the 2L_1 

pulses x(k\t) can easily be done by taking advantage of 

the correlation properties of the sequences {ch }; for an 

i.i.d. input sequence, E[c)l'chY*] = 1 if n = m and i - j, 
and zero otherwise. Hence 

*<*>(<) = E[c^*s(t)],k = 0,1,...,21-1 - 1, (3) 

where s(t) can be obtained from Si„(t) by taking into ac- 
count the AM/AM and AM/PM conversion functions of 
the amplifier. If x(t) occupies the interval [0,(L + 1)T], 
the resulting "output pulses" x^k\t) will occupy the fol- 
lowing intervals: [0,(1 + 1)T\, for Jb = 0; [0,(L - 1)T], 
for k = 1; [0, (L - 2)T], for both k = 2 and Ar = 3; ...; 
[0,T], for 2L~2 <k< 2L_1 - 1. We stress the connec- 
tions between the pulses x^k\t) and the low pass equiv- 
alent Volterra kernels which characterize the nonlinear 
transmission system [2]. Additionally, we point out the 
following: if any OQPSK-type signal given by (1) ({ch.'} 
sequences and pulse durations defined as previously) is 
filtered and then power amplified by a bandpass memo- 
ryless nonlinearity, the resulting output signal can also be 
represented as a sum of linear OQPSK-type components; 
the number of output components is 2L+H~1 when the 
filter impulse response has duration HT (integer H). 
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I. INTRODUCTION 

Guided Scrambling (GS) line codes augment the source bit 
stream prior to self-synchronizing scrambling to ensure that the 
scrambling process generates an encoded bit sequence with good 
line code characteristics [1]. With arithmetic from the ring of 
polynomials over GF(2), self-synchronizing scrambling can be 
interpreted as division of the source bit sequence by the 
scrambling polynomial and transmission of the resulting quotient. 
When augmenting bits are inserted in fixed, periodic positions, 
GS codes can be interpreted as block line codes which encode 
source words to quotients. In particular, Block Guided 
Scrambling (BGS) generates a transmitted bit stream which is a 
concatenation of finite-length quotients chosen from sets of 
quotients which represent each source word. Alternatively, in 
Continuous Guided Scrambling (CGS), the transmitted sequence 
appears to be a continuous quotient due to the fact that the 
encoder shift registers are updated following quotient selection to 
contain the remainder associated with the selected quotient. The 
quotient selection mechanisms of both BGS and CGS encoders 
can be modeled as finite state machines with quotient sets as 
input and the selected quotient as output. In CGS encoding, the 
selection mechanism also outputs the remainder associated with 
the selected quotient. 

In this paper we describe several characteristics of GS 
encoders and their coded sequences. We begin by defining 
required terms. 

II. DEFINITIONS 

Let the complement of a polynomial p(x) be the polynomial 
that contains the coefficient one in every position that p(x) 
contains the coefficient zero, and contains a zero in every position 
that p(x) contains a one. 

If a quotient set g- exists such that each quotient contained 
in this set has a complement in set g,, and each quotient in g; has 
a complement in g„ we say that quotient sets g, and g, are 
complementary. Note that a quotient set can be its own 
complement. 

We also say that states in the Mealy machine model of the 
selection mechanism are complementary if complementary 
quotients are selected from these states whenever the input 
quotient selection sets are complementary. 

Finally, we denote a remainder that is generated from a 
particular state with non-zero probability after an undetermined 
period of encoding to be a recurrent remainder for that state. 

III. PROPERTIES OF GS ENCODERS 

We now state three propeties of GS encoders.   Complete 
derivation of these properties can be found in [2]. 

Property El: Every quotient selection set has a complement. 

Property E2: In all selection mechanisms proposed in [1 - 3] 
which enforce symmetrical bounds on the running digital sum 
(RDS) of the encoded bit sequence or do not restrict RDS, every 
state has a complement. In general, this holds for all GS encoders 
where there is symmetry in quotient selection.   If the selection 

mechanism can be modeled with a single state, it is its own 
complement. Finally, when complementary quotients are selected 
from complementary states, the next states are complementary. 

Property E3: When all source words occur with non-zero 
probability regardless of the encoding interval, complementary 
states in the CGS encoder selection mechanism have the same 
number of recurrent remainders. 

IV. PROPERTIES OF GS ENCODED SEQUENCES 

GS coded sequences exhibit the following properties 
whenever the source bit stream is stationary and is comprised of 
words of any length in which the words are independent and all 
words have non-zero probability of occurrence. These properties 
also hold in many instances when one or more of the source words 
do not occur. 

Property SI: In CGS sequences encoded using even-weight 
scrambling polynomials, zeros and ones occur with equal 
probability in all bit positions. Consequently, the power spectral 
density of the coded sequence can contain discrete components 
only at frequencies / = mIT for integers m. The discrete power 
spectrum has the form 

(1) ^(/HW2rl4/~ 
where P(f) is the Fourier transform of the pulse shape, T is the 
duration of each coded symbol, 7] is the average code symbol 
amplitude given by 

.VQ+VI v=- (2) 

and V0 and V! are the values with which the symbols zero and one 
are represented. 

Property S2:   If the scrambling polynomial has odd weight, the 
power spectra of CGS coded sequences resulting from source 
sequences with complementary statistics are identical.   Further, 
when source words are equiprobable, the discrete spectrum is 
given by Equation 1. 

Property S3: When the source words are equiprobable, the power 
spectral density is not affected by the block or continuous nature 
of the code, and the discrete spectrum is given by Equation 1. 
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Abstract — This paper describes methods by which 
the residual correlation in CELP-encoded speech can 
be exploited by an appropriately designed channel de- 
coder. Specfically, the LSP redundancy in FS 1016 
CELP is quantified and used to effect near-MAP 
decoding of Reed-Solomon and convolutional codes. 
Coding gains of up to 3.5 dB are obtained over con- 
ventional ML algorithms. 

SUMMARY OF RESULTS 

We consider the problem of reliably transmitting speech 
compressed with codebook-excited linear predictive (CELP) 
coding over a noisy channel. The particular implementation 
we consider is Federal Standard 1016 4.8 kbit/s CELP. 

Like all practical speech encoders, CELP does not elimi- 
nate all the redundancy in speech samples; what remains is 
the "residual redundancy". In this work, we consider meth- 
ods by which channel codes can use this redundancy to en- 
hance the performance of CELP-encoded speech over very 
noisy channels. Specifically, we describe ways the residual 
redundancy in CELP's line spectral parameters (LSP's) can 
be quantified and exploited. We begin by proposing two mod- 
els for LSP generation; the first model incorporates only the 
non-uniformity of the LSP's and their correlation within a 
CELP frame, while the second provides for correlation be- 
tween frames as well. When these models are "trained" using 
an actual CELP bitstream they show that as many as 12.5 of 
the 30 high-order LSP bits in each frame may be redundant. 

We next present decoding algorithms that exploit that re- 
dundancy via both convolutional and Reed-Solomon codes. 
For convolutional codes, we employ three soft-decision decod- 
ing schemes, all based on the Viterbi algorithm: 

• ML - the "usual" maximum likelihood algorithm; 

• MAP 1 - a MAP algorithm that exploits the redun- 
dancy due to the non-uniformity of the LSP's and their 
correlation within a frame - about 10 bits/frame; 

• MAP 2 - which exploits the redundancy from the non- 
uniform distribution of the LSP's and their correlation 
within and between frames - about 12.5 bits/frame. 

For block codes, we present four soft-decision decoding 
(SDD) algorithms: 

• SDD 1 - which approximates "traditional" maximum 
likelihood decoding and does not attempt to exploit any 
of the residual redundancy; 

• SDD 2 - which exploits only the redundancy due to the 
ordered nature of the LSP's - about 4.4 bits/frame; 

1The work of Alajaji and Fiija has been supported by the 
U.S. Department of Defense under grant MDA 904-94-3008. The 
work of Phamdo has been supported by NTT Corporation. 

• SDD 3 - which like MAP 1 exploits the redundancy due 
to the non-uniform distribution of the LSP's and their 
correlation within a frame; 

• SDD 4 - which like MAP 2 exploits both the inter- and 
intra-frame correlation and the redundancy due to the 
non-uniform distribution. 

Figures 1 and 2 display the simulated performance of these 
decoders in terms of average spectral distortion; the channel 
is AWGN and the modulation is BPSK. Clearly, MAP 2 and 
SDD 4 provide exceptional performance at very low Eb/No. 
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Fig. 1: Average spectral distortion - convolutional code. 
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Fig. 2: Average spectral distortion - Reed-Solomon code. (HDML 
= hard-decision ML.) 
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Abstract — An analytical method for an exact 
evaluation of the coset probabilities of algebrai- 
cally decoded linear nonbinary block codes used 
on stochastic finite state channels is presented. 
The analysis can be performed in a transform do- 
main showing an easy computational structure. 
The transform coefficients are connected with the 
coset probabilities by a complex generalization of 
the Walsh-Hadamard-Transformation. 

I. INTRODUCTION 

A performance assessment of block codes can be achieved 
by rating the decoding events, where the channel has to 
be included. In this paper an analytical method for eva- 
luating coset probabilities of algebraically decoded linear 
block codes over prime fields is presented. The codes are 
used on burst error channels. The ideas explained are 
part of a general modal approach to coding schemes [1]. 

II. STOCHASTIC FINITE STATE CHANNEL 

Input, output and state of the channel are described by 
a finite alphabet X of input symbols x, a finite alphabet 
y of output symbols y and a finite set S of S states s. 
The conditional probability p(y, s'\s, x) is the probability, 
when the channel is in state s, that the input x results 
in an output y and the next state will be s'. They are 
the elements dssi(y\x) = p(y, s'\s, x) of a family of input- 
output-matrices D(j/|a;) = [rf««'(j/|x)]. The sets X, y, S 
and the matrix family {D(j/|a;)} define the stochastic se- 
quential machine V. The machine V together with the 
initial probability distribution <xo on the state set S form 
the stochastic automaton V. Later, the symbols x,y are 
considered as elements of a prime field F = GF(p). For 
the assumed symmetric channels, the matrix family is re- 
presented by the finite set { T)f :=D(T/ = Z+/|X) | /G-F }. 

III. MODAL ANALYSIS OF NONBINARY CODES 

We consider linear (n,k) block codes Vo over the prime 
field F = GF(p) with m = n - k check digits. The 
decoder is modeled as a deterministic acceptor proces- 
sing the output symbols of the channel. The syndrome 

s = Y^v=i J/^b-J is regarded as the decoder state, where 
each h = [/im_i, • • •, h\, /io]T is a column of the parity 
check matrix H. It is useful to evaluate the syndrome 
step-by-step leading to partial syndromes and the recur- 
sion s(") = st"-1) + 2/Wh£; v = 1, • • •, n, where s(°) = 0. 
To each recursions step a section of the code trellis is 

1 The author is on leave from the FernUniversity of Hagen 

assigned. The trellis can be analytically described by 
trellis matrices in the form of the Kronecker product 
Mh(y) = MhTO_, (y) ® • • • <g> Mhl (y) <g> Mho (y) of elemen- 
tary trellis matrices Mft(y) = circ(0 • ■ ■ 10 • • • 0). The one 
element in the first row of the circulant matrix Mft(j/) is 
in the column t = yh mod p. The eigenvectors of Mh(?/) 
are the columns of the modal matrix Wm = Wi®Wm_i, 

where Wi = [u>*'J'] and w = e~3~f. Using Wm for simila- 
rity transformation of the trellis matrices into the trans- 
form domain, we obtain the spectral matrices in the form 
of the Kronecker product Ah(y) = W~1Mh(y)Wm = 

A/im_i(y)<S>- ••®A-hi(y)®A-h0(y) of elementary spectral 
matrices Ah(y) = diag{wlt}, where t = y • h mod p. 

IV. MODAL ANALYSIS OF THE CODED SYSTEM 

The channel-decoder-cascade can be represented by a 
weighted trellis. An analytical description of the weigh- 
ted trellis can be obtained by a weighted trellis matrix 
U

H = lT=iUh„, where Uh = EyGGF(p) Mh(y) <8> D,. 
Then, the row vector of the T = pm coset probabilities 
Pt is P = [P0, Pu ■ ■ ■, iV_i] = (T0 ® <ro)UH(I ® e), with 
To = [1,0, • • •, 0], e = [1, • • •, 1]T and the identity matrix I. 
The mapping into the transform domain can be achie- 
ved by using T = Wm ® I and results in the weighted 

spectral matrix 0H = n"=i 0W = l~l"=i diag{&ibl/}, 

where 0h = T-1UhT and 0ih = Ey6GF(P) D!/«'<i,yhT>; 

< a,b >= Y^!=o a^n mod P, a = vecp(a), b = vecp(b). 
Premultiplying ©H by (t0 ® o"o) = (TO <8> <r0)T and post- 
multiplying the result by I ® e yields the transform coef- 
ficients Qi given in the vector Q = [Qo, Qi, ■■•, QT-I] = 
(to <S> <ro)®n(I ® e). The coefficients Q, and probabili- 
ties Pt are connected via the complex Walsh-Hadamard- 
TransformationPt = ± YA=O Q«-u'~<i't>) whereT = pm. 

V. CONCLUSION 

The automata model of the channel-decoder-cascade al- 
lows an analytical evaluation of the coset probabilities of 
nonbinary block coded systems. By means of the modal 
analysis the task can be shifted into a transform domain 
of easier computational structure and reduced storage re- 
quirements. The domains are connected by a complex 
Walsh-Hadamard-Transformation. The results are exact 
within the framework of the model. The proposed fast 
algorithm is suitable for implementation on a computer. 
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Abstract — Sequential decoding for the Gilbert- 
Elliott channel is considered. The decoding proce- 
dure capacity Co is defined to be the supremum of the 
rates for which there exists a code that gives arbi- 
trarily small decoding error probability. For different 
assumptions of the decoder's knowledge of the chan- 
nel states expressions for G> are derived. 

I. INTROCUCTION 

Assume that a tree code is used together with sequential 
decoding to communicate over the Gilbert-Elliott channel. Let 
P(£) denote the average probability of decoding error over the 
ensemble of random, infinite depth tree codes. In this paper 
we address the question:  "When will P(£) —► 0?". 

Consider the Gilbert-Elliott channel model and denote the 
error probabilities in the Good and Bad states by ea and eB, 
respectively. Furthermore, let P3 and PB denote the fraction 
of time spent in the Good and Bad states, respectively. 

-  II. DECODING PROCEDURE CAPACITY 
Let us define the decoding procedure assumptions, D. The 

optimistic assumption, D = o, assumes that the decoder has a 
complete knowledge of the channel state, which could be given 
by a genie. The pessimistic assumption, D = p, assumes that 
the decoder neither is given any channel state information nor 
tries to make any estimate of it. Given the decoding procedure 
assumption D and the use of the Gilbert-Elliott channel, let 
Co denote the supremum of the rates for which we can guar- 
antee that there exists a code that gives an arbitrarily small 
decoding error probability P(£). We will call Co the decoding 
procedure capacity. 

We have proved that the decoding procedure capacities are 
given by 

and 

Cp    — 

C     —     Ps ■ Casc{ea) + Pe • Case (es) 

Pa ■ (Cksoiea) - h(b)) + Ps ■ (Gsc(eB) - h{g)) 

C0-(Pa- h(b) + PB ■ %)), 

where b and g denote the transition probabilities from Good 
to Bad and from Bad to Good, respectively, in the channel 
model. 
Theorem 1 Given the Gilbert-Elliott channel and the decod- 
ing procedure assumptions, the use of a rate R random, infi- 
nite depth tree code with the stack decoder, then for any rate 
R<Q> and r) € Z+, 

P(N >v)-+0  if V — oo, 

where N is the number of computations in an incorrect subtree. 

'This research was supported in part by the Royal Swedish 
Academy of Sciences in liaison with the Russian Academy of Sci- 
ences, and in part by the Swedish Research Council for Engineering 
Sciences under Grant 91-91. 

When we wish to transmit over an ordinary Discrete Memory- 
less Channel at rates (above RComp and) close to its capacity, 
it is sufficient to allow the number of computations of sequen- 
tial decoding to go to infinity to be able to guarantee that 
P(£) can be chosen arbitrarily small. We will show that this 
is also sufficient for transmission close to rates Co, which is 
the motivation why we call these rates "decoding procedure 
capacities". 

Theorem 2 Given the assumptions of Theorem 1, then for 
any rate R < Co the average probability of decoding error 

P{£) -, 0, 

if the number of computations, N, is allowed to go to oo. 

Since the important condition in Theorem 2 is that R < Go, it 
is clear that the theorem's statement, given the decoding pro- 
cedure assumptions, is equivalent to stating that the maximal 
transmission rate over the Gilbert-Elliott channel is at least 
the rate Ch>. 

In the pessimistic case we can interpret this as follows. For 
arbitrarily small P(£), there exists a code such that the trans- 
mission rate will be (at least) Cp, even without any knowledge 
of the channel state or any attempt to estimate it. 

III. CHANNEL CAPACITY 

A common method to lowerbound CSE is to calculate 
Gssc(e), where e = P3 ■ ea + Pe • eB, but it turns out that Cp 
is a better lower bound for channels with a stable behaviour. 
The optimistic case helps us to find a stronger result: 

Theorem 3 Given that the receiver has a complete channel 
state knowledge, then the channel capacity for the Gilbert- 
Elliott channel CS^ is equal to 

CjB = C0. 

From the proof of Theorem 3 follows immediately 

Corollary 4 Given that both transmitter and receiver have 
complete knowledge of the channel state sequence then for the 
channel capacity of the Gilbert-Elliott channel C§B   

we have 

f-TR _ (~R 
<
*-GE   — M3B' 

It should be noted that the capacities C^f and C^, in con- 
tradiction to what is the case for Co, are parameters purely 
dependent of the channel's properties and that nothing is as- 
sumed about the decoding method. In the derivations of Co 
we assume sequential decoding, but by deriving them we show 
that they are achievable rates as such, given the decoding pro- 
cedure assumptions. 
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Abstract - The use of real time channel estimation 
information is known to result in significant performance 
advantages in coded systems operating on fading 
channels. Little work has been done in fast and accurate 
channel signal to noise ratio estimation in a very noisy 
channels (SNR< 0 dB). In this paper, a new real time 
channel estimation technique using the Viterbi algorithm 
and Fuzzy logic concepts is presented. 

I- INTRODUCTION 

The distortion imposed by the channel on the transmitted 
data stream in a digital communication system is normally 
observed in the form of errors at the receiver. The main 
objectives of any communication system are to minimise the 
number of these errors and to maximise the throughput of 
the system. In order to optimise the system performance 
adaptively in response to channel conditions, an estimate of 
the receiver's error rate is required to initiate control actions. 

Real time channel estimation techniques [1] are useful tools 
for obtaining an on-line estimate of the channel state. 
Previous work [2] in this area could not accurately estimate 
channel SNR fast under very noisy condition. 

As a by-product of the Viterbi decoding algorithm, the 
cumulative metric of the most likely path through the 
decoder trellis is available as an additional information 
besides the decoded output symbol. This information may be 
interpreted as a measure for the signal-to-noise ratio (SNR) 
in the transmission channel [3] and consequently the error 
probability of the decoded sequence could be estimated. 

In the channel estimation scheme described here, the path 
metric values at the output of the Viterbi decoder are applied 
to a Fuzzy-logic unit, which retrieves this information by 
means of post-processing and mapping into membership 
functions (MF). Channel SNR estimation is made after a 
fixed number of decoding steps. 

II- THE FUZZY-LOGIC UNIT 

computes the membership-values for each SNR-membership 
function in steps of 1 dB in a range between -7dB and 27dB. 
The rule base consists of a small look-up table, which 
contains the mean values of the input information obtained 
during off-line training for SNRs between -10 to 30dB in 
steps of 1 dB. Each membership function is triangular 
shaped, where the highest membership-value is assigned to 
the Fuzzy input being equal to the stored mean value for the 
£fh dB step, with k E {-7,-6, ... , 27}. After comparing the 
input values with the rule-base, a vector of membership- 
values is obtained, which represents a fuzzy description for 
the SNR estimation. In order to reduce the variance of the 
channel SNR estimate, the membership-values are 
defuzzificated by the Centroid inference method [4,5]. 

III. SIMULATION RESULTS 

Simulation results have shown that after receiving 2 kbit of 
decoded output symbols (i.e. eight taps), the estimated value 
for transmission Eb/No- between 0 dB and 25 dB can be 
obtained with 100% certainty with variance of 0.25 dB 
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After a fixed number of decoding steps the Fuzzy-Logic unit 
(FLU) reads the transformed trellis side-information and 
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Abstract — Fundamental properties of the ambigu- 
ity function and the uncertainty relation of Fourier 
transforms assert a fundamental limitation on the 
ability of any single radar waveform to simultane- 
ously resolve targets closely spaced in both time-delay 
and Doppler-shift. In this paper, a method of using 
multiple waveform sets to make high-resolution delay- 
Doppler measurements is proposed. The fundamen- 
tal theorem that supports this method is established. 
Explicit optimal phase, frequency, and joint phase- 
frequency coded waveform sets having constant am- 
plitude are presented, as well as algorithms for the 
construction of such sets of arbitrary size. 

I. INTRODUCTION 
A radar or other pulse-echo delay-Doppler measurement sys- 
tem can be viewed as an imaging system that forms a delay- 
Doppler image of the illuminated environment. When a radar 
system is viewed in this way, it becomes clear that its delay- 
Doppler resolution is determined by its imaging point-spread 
function or ambiguity function of the illuminating signal s(t), 
defined as 

satisfies 

Xs(r,u) f j — < 

s(t)sm(t - r)e -}2lTUt dt. 

We have some control in selecting this point-spread function. 
However, some fairly strong constraints on the mathematical 
form of the ambiguity function prohibit the ability to simul- 
taneously achieve high-resolution in both delay and Doppler. 
For example, the total volume under the squared modulus of 
the ambiguity function of a signal with energy E is always E2, 
while the peak of the ambiguity function always has height 
E. This is true for any single waveform s{t) and cannot be 
changed by any modulation scheme. 

One way around this delay-Doppler resolution constraint is 
to make multiple pulse-echo measurements using waveforms 
having sufficiently different ambiguity functions and then pro- 
cess and combine the individual waveform returns in to form a 
high-resolution delay-Doppler image. This leads to the intro- 
duction of the composite ambiguity function of a set of signals. 
A main theorem on the composite ambiguity function is es- 
tablished to support the validity of our idea. 

II. MAIN THEOREM ON COMPOSITE AMBIGUITY 

FUNCTION 
Theorem 1 For a set of signals {so(t),si(t), ■ ■ ■ ,SK-i{t)} 
with total energy 

.■_n   J — 

\si(t)\2dt, 

the volume V under their associated composite ambiguity func- 
tion C{T, V) defined as 

/oo        rot 

-oo J — c 

K-l 

^Xsi{r,v) drdu 

Ej* 

~K 
<V = 

K-1K-1 

EE 
i=0     7=0 J — a 

Si(t)s*j{t)dt <E\. 

Furthermore,   the minimum is achieved when {so(t),si(t), 
• ■ ■, SK-i(t)} is a set of equal-energy orthogonal signals. 

This theorem provides a general rule of selecting signal set 
for waveform-diverse measurements. However, a point-spread 
function with a small volume is not sufficient for obtaining 
high-resolution image. It has been shown [1, Ch. 3] quanti- 
tatively that in addition to small ambiguous volume, an ideal 
point-spread function for delay-Doppler radar imaging should 
have a thumbtack shape. This is achieved by appropriately 
selecting modulation schemes for the coded waveform set. 

III. CODED WAVEFORMS DESIGN 

We will study only coded waveforms because the structural 
constraints of these waveforms result in designs that can be 
easily implemented in real systems.    Particular families of 
waveforms that are investigated include 

1. Phase-modulated signals; 

2. Frequency-modulated signals; 

3. Frequency and phase modulated signals. 

The coded waveform sets we've investigated contain K signals 
{s0(t),si(t),- ■ ■ ,SK-i(t)} where 

Si{t) = ^2^i,n(t-nT)e j2-n- V- (1) 

consists of a sequence of N baseband pulses of length T with fi- 
nite energy. Each pulse is modulated by an integral frequency 
modulating index dj,„ and a phase modulating index 4>iiU that 
can take on any real number. 

The modulating patterns of a set of coded waveforms deter- 
mine the distribution of the ambiguity sidelobes of its result- 
ing composite ambiguity function. Phase modulating pattern 
controls the polarities of the ambiguity sidelobes while fre- 
quency modulating pattern determines their locations. The 
examples that will be shown demonstrate that by appropri- 
ately selecting the phase modulating pattern, it is possible 
to cancel the ambiguity sidelobes, and by selecting the fre- 
quency modulating pattern, we can spread out the ambiguity 
sidelobes so that the resulting composite ambiguity function 
resembles a thumbtack. The combination of both phase and 
frequency modulations gives the best result. 
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Abstract — Reduced complexity symbol-by-symbol 
demodulation is examined. We examine the perfor- 
mance with standard complexity reduction techniques 
(e.g., M-algorithm and T-algorithm) and then derive 
a reduced state symbol-by-symbol demodulation al- 
gorithm which makes symbol-by-symbol demodula- 
tion performance and complexity competitive with se- 
quence estimation. 

I. INTRODUCTION 
Symbol-by-symbol demodulation (SYD) structures, (e.g.,[l]) 
while optimum in terms minimizing symbol error probability, 
typically have a complexity greater than sequence demodula- 
tion (SED) techniques (e.g.,the Viterbi algorithm) for a fixed 
decoding lag. Consequently when only hard decision outputs 
are required SED techniques are invariably used in practice. 
However, soft decision metrics are often needed (e.g., inter- 
leaved or concatenated coding schemes), and hence reduced 
complexity high performance SYD structures are of inter- 
est. In this paper we propose a new algorithm that produces 
symbol-by-symbol metrics at roughly the same complexity as 
SED without a significant loss in performance and examine 
methods to significantly reduce the complexity of SYD. 

II. OVERVIEW OF OPTIMUM RECURSIVE ESTIMATION 
Consider a modulation with memory described by a time in- 
variant Markov chain transmitting m bits of information per 
symbol corrupted by an AWGN. Define K as the decoding lag, 
<Tk to be the modulation state, ||o-fc|| to be the cardinality of 
the modulation state, and w(fc) to be all the observations until 
time k. We also use Qj as the transmitted symbol space and 

In (fc) = {Ifc-n,Ifc-n + l,. ■ ■ ,Ik} 

to represent the last n+1 transmitted symbols. 
Assuming equally likely transmitted symbols, recursive 

symbol-by-symbol and sequence estimation algorithms have 
the same three part structure: 1) measurement update, 
2) metric production, and 3) sufficient statistic update. 
The measurement update takes the sufficient statistics 
from the previous time iteration and the latest measure- 
ment and computes an updated information state. From 
this information state the output metric and the suffi- 
cient statistic for the current iteration can be produced. 
The forward recursion optimum SYD has sufficient statis- 
tics p (o-jt |w (fc - 1)) (the posterior probability mass function 
(pmf) of the modulation state) andp (Ik-i \o~k, w (fc — 1)), i = 
1,K (the conditional posterior pmfs of the transmit- 
ted symbols). Similarly the sufficient statistics for opti- 
mum   SED   are max p (IK-I (fc - 1) , <Tfe |w (k - 1) ) 

(the   largest   posterior   pmf   for   each   modulation   state) 
and arg max p (Ix-i (* - 1), <?k |w (fc - 1)) (the se- 

iK-i(k-i)enf 
quence that  achieves the maximum).    It should be noted 

1This work was supported by NSF under Grant NCR-9406073 

that SED can operate on log-likelihood functions while SYD 
cannot, but the exponential function evaluation needed in 
the measurement update for SYD could easily be done 
with a lookup table. The complexity of optimum SYD is 
O (KM2 \\<7k\\) where M = 2m and the complexity of SED 
isO(Af||fffc||). 

III. COMPLEXITY REDUCTION TECHNIQUES 
Often in practice the complexity of an optimal demodulator is 
prohibitive and reduced complexity demodulation techniques 
need to be used. Since the structure of SYD is so similar to 
SED the best complexity reduction techniques are also similar. 
Two of the most applicable techniques are the M-algorithm [2] 
which saves the M most likely sequences and the T-algorithm 
[3] which saves and processes only the statistics or posterior 
likelihood values which break a threshold each iteration. The 
T-algorithm version of the SYD provides the best average 
complexity performance tradeoff and the threshold for this 
algorithm can be chosen in a principled fashion. Conversely, 
the T-algorithm version of the SYD has the disadvantage of 
having variable complexity and memory requirements. 

Additionally a reduced state SYD algorithm analogous to 
the RSSE [4] can be derived using the approximation: 

Al: {IK-I (k — 1) ,crk}       is       deterministic       given 
{IK-I (k - 1) ,<Tfc} € 5-fc and w (k - 1) 

where 5% is the reduced state partition. The recursion result- 
ing from (Al) has a similar form as the optimal algorithms 
and the sufficient statistic is p (äk |w (fc - 1)) (the posterior 
pmf of the state partition) and Ik-i (fffc, w (fc — 1)), i = 1,K 
(the conditional decisions). The complexity of this reduced 
state demodulator is O (KM ||äfc||). For medium to high SNR 
and when äk = <?k, this reduced state SYD has roughly the 
same complexity as SED and produces performance almost 
indistinguishable from the optimum estimator. 

IV. CONCLUSIONS 
The combination of the reduced state symbol-by-symbol de- 
modulation and the T-algorithm provides a demodulation al- 
gorithm that maximizes average performance versus compu- 
tational complexity while still maintaining a reasonable max- 
imum complexity and memory requirement. 
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The Representation of Multicomponent Chirp Signals Using Frequency- 
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Abstract - We propose a new representation method for 
multicomponent chirp signals. This representation is based on 
the 2-D frequency-shear plane. Analytical results for the chirp 
signals are presented. 

i. INTRODUCTION 
The conventional tools for analysis of this class signal are time- 
frequency distributions (TFD) which can be interpreted as a 
smoothed version of the Wigner distribution (WD) of signal to be 
analyzed [1], Much current efforts have put on designing nice 
kernel functions to achieve better performance in suppressing cross 
terms while retaining high time and frequency resolutions of auto 
terms. However, those kernel functions are based on rectangular 
tessellaion of the time-frequency plane and therefore they may not 
suit for representing a certain types of signals such as chirping 
signals, hi this paper, we introduce a frequency-shear distribution 
that maps a signal onto frequency-shear plane. The properties of 
this distribution are investigated and analytical results are 
presented. 

II. THE FREQUENCY-SHEAR DISTRIBUTION 

Let us define a transform of signal x(t) as follows 

= U !ä(v,?)=K0g(0 >dl 

where, V and q denote frequency and shear, respectively. g(t) 

is a weighted window function. The frequency-shear distribution 
(FSD) is defined as the squared magnitude of   Q (Vtq): 

(2) 

= ^})WAt,a>Wg{t,co- v - qt)dtdco 

where, W(t,m) is the so-called Wigner distribution. From the 

definition, we know that the time-frequency function of the signal 
is weighted with a chirplet function, which corresponds to the 
local structure of the chirp signal. The weighting function has an 
oblique analysis cell on the time-frequency plane that is suitable 
for analyzing multicomponent chirp signals. 

in. THE REPRESENTATION OF MULTICOMPONENT 

CHIRP SIGNALS 
In this section, we will consider several typical signals and 
analytically calculate their FSDs. 
(1) Single chirp signal 
A linear chirp signal with constant magnitude has the following 
WD    WXt{t,a)=A127TÖ(co-w0-yt) 

This work was supported by the State Education Commission and the 
Climbing Programme-National Key Project for Fundamental Research in 
China, Grant NSC 92097. 

which is highly concentrated about the chirp's linear instantaneous 
frequency. In the FSD, we chose a Gaussian signal as the 
weighted function. The FSD of this chirp signal is calculated and 
given by 

®x(v,q) = Vfa-r)! ,    if cr» 1 (3) 
p(q-r)\ 

The chirp signal is located at the point (co0,y) on the frequency- 
shear plane as expected. 
(2) The signal of two chirp components 
Assuming that the signal is consisting of the sum of two chirp 
signals 

x1(J) = Aie       2     +A2e        2 

we consider a particular case that yt=y 
the signal for comparison 

WXi{t,co) = Al27rS{co-o)l-yt) + Al27iS(co-co1-yt) 

+ 4jzA1Alcoi((col-col)t)s(co-j(co1+wi)-yt) 

There are two auto terms centred at a> = 6)l,co2 and a cross term 

whose peak locates on the straight line <y = !(», + co2)-yt ■   The 

FSD of the same signal is given by 

y and give the WD of 

(4) 

(1) ©,2 (>',</) = 
A1A14TT 

k q-y] 
e "i(",! +, 

1A.A,Jn  -'■ 
+ -i—i-2—re 

reduces to 

when <T» 1 (5) 

V    q-y    ) 
where a. =ö), The cross term at   v- 

®Av,q) 
2A.A,4K ~*o'ti-r)' . The magnitude of the cross term is 
p(q-y)\ 

largely suppressed if compared to that of the WD. 
The analytical results given in this paper have shown that the 

new frequency-shear distribution provides a more effective tool 
for analyzing multicomponent chirp signals than the generalized 
time-frequency distribution. It can suppress the cross terms and 
clearly locate the signal components onto ihe frequency-shear 
plane. In fact, this advantage is caused by introducing a chirplet 
function that corresponds to the structure of a chirp signal. 
Similarly, signal representation can be extended to scale-shear and 
shift-shear plane using so-called fan bases and chevron bases [2] 
whose elements scale or translate and shear in the time-frequency 
plane. 
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Abstract — We present a new paradigm for the de- 
centralized detection problem under communication 
constraints. In this problem, local sensors send a hard 
decision or the likelihood ratio itself to the fusion cen- 
ter based on the specified communication constraint. 
Optimal system is designed by minimizing the risk 
function. Also, a simpler system design procedure 
based on Ali-Silvey distances is presented. 

In this paper, we present a novel paradigm for the decen- 
tralized detection problem under communication constraints. 
The proposed approach is flexible and combines the features 
of both centralized and hard decision decentralized detection 
problems. Under specified constraints, we design the opti- 
mum decentralized detection scheme. The system can oper- 
ate at the two extremes, i.e., it can be a centralized system or 
a hard decision decentralized detection system, or anywhere 
in-between. In this scheme, local sensors send a hard decision 
to the fusion center when the local sensors have a relatively 
high confidence in the decision, otherwise a perfect version of 
the LLR (in practice, a finely quantized version of the LLR) is 
sent. The degree of confidence at which this switch is made is 
determined by the specified communication constraint. The 
fusion center makes a final decision based on the received in- 
formation from local sensors. 

Observation samples at the local sensors are denoted by rj, 
i = 1, • • •, M, and their joint conditional densities are assumed 
known. Based on its own observation rj, each local sensor 
makes a local decision «,• € {0, 1, 2}, »' = l,---,Af, where 
«,- = 0 and «i = 1 represent the fact that the i local sensor 
decides hypotheses Ho and Hi and correspondingly sends a 
zero and a one to the fusion center, u, = 2 indicates that 
the i* local sensor computes and sends its LLR Li to the 
fusion center. Let «F; represent the output of the sensor t, 
i.e., UF{ = «i when «i=0 or 1; uj^ = Li when «j=2. Local 
sensor outputs are transmitted to the fusion center where a 
global decision is made based on the received data vector, 
UF

T=[UF1  UF3   ■■■   UFM]. 
The probability that £t(rj) is transmitted from the sensor 

i is employed as a measure of the transmission rate on the 
channel t. We define 

Ri = p(send Li) = 1 — p(send Ho or Hi). 

"Research sponsored by Air Force Office of Scientific Research, 
Air Force Systems Command, USAF, under Grant No. F49620-94- 
1-0182. 

By employing the person-by-person optimization methodol- 
ogy, the system is designed so as to minimize the risk function. 
The system is specified by 

• Optimal local decision rule at sensor k, k = 1, • • •, m: 

«it    = 

o *rk|H° < «(*> 
. KrkIHO ^ .(*) 
*• 3*rj^7 > *» • 
2. otherwise. 

(2) 

• Optimal fusion rule: 

«o = l 
p("Flffi)     >     £l 
p(u*F\Ho)      <      Cd' 

«o=0 

(3) 

where up is the one of the 3M possible combinations of 

UF- 

Motivated by the difficulty and excessive computational re- 
quirements of the above PBPO system design, a simplified de- 
sign procedure based on the class of Ali-Silvey distance mea- 
sures is also presented. Following the lead of [3, 4], we obtain 
local decision rules that maximize the Ali-Silvey distances be- 
tween the conditional densities at the input of the fusion cen- 
ter. 

It should be noted that both system designs are obtained 
under communication constraints given in Equation (1). An 
example is considered for this flexible hybrid decision scheme 
for the decentralized detection problem. Results show that 
the system performance of the proposed scheme with lower 
average communication rate is fairly close to the performance 
of the centralized system. 
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Abstract — The problem of change detection is con- 
sidered in a decentralized setting. A Bayesian frame- 
work is introduced for this problem, and an optimal 
solution is obtained for the case when the information 
structure in the system is quasiclassical. 

I. PROBLEM FORMULATION 

The centralized version of the change detection problem— 
where all the information about the change is available at a 
single location—is well-understood and has been solved under 
a variety of criteria since the seminal work by Page [1]. How- 
ever, there are situations where the information available for 
decision-making is decentralized, an example being link fail- 
ure detection in a large communication networks. We focus 
on this decentralized setting. 

Consider a system with N sensors Si,..., SN- At time 
k € {1,2,...}, sensor Si observes a random variable Xk , 

and forms a message Uk ' (belonging to a finite set) based 
on the information it has at time k. Assume that two-way 
communication is possible between the sensors and the fusion 
center. In particular, at time k the fusion center broadcasts to 
each sensor, all the sensor messages it received at time k — 1. 
This means that at time k, each sensor has access to all its 
observations up to time k and all the messages of all the other 
sensors up to time k — 1, and the fusion center has access to all 
the sensor messages up to time k. Based on the sequence of 
sensor messages, a decision about the abrupt change is made 
at the fusion center. 

We take the approach of Shiryayev [2] and assume that the 
change time V is geometric distributed, i.e., 

p(r = o) = i/  and   p(r = i|r>o) = p(i-p)i 

Further, we assume that observations at each sensor Si are 
independent, have a common pdf /Q ' before the disruption, 

and common pdf f[ ' from the time of disruption. We also 
assume that the observations are independent from sensor to 
sensor. 

As in [4], we restrict the local memory at sensor Si to only 
past messages. The resulting information structure is said 
to be quasi-classical [3] and it makes the joint optimization 
problem tractable via DP arguments. At any time k, the one- 
step delayed information is the same for all members and is 
given by h-i = {Ufo^yU^ (2) 

[l,fc-l]' CLJ- 
With this understanding, the sensor function at Si at time 

k can be regarded as a quantizer of the observation Xk' that 
r(«h depends on h-i, i.e., Uk

l>  = <t>kI _ {Xk
l)).   The message 

Uf.' is assumed to take some value (say, di) in the finite set 
{l,...,Z>i}. Further, we use the notation <t>k, d and Uk to 
denote the corresponding JV-dimensional vectors. 

The fusion center policy $ consists of selecting a stopping 
time T at which it is decided that the disruption has oc- 
curred. In a Bayesian formulation, the goal is to minimize 
a linear combination of the cost associated with incorrect de- 
cision ("false alarm") and the cost associated with the de- 
lay in detecting the disruption under the assumption that the 

"alarm" signal is correctly given. This leads to the following 
optimization problem. 

Problem (P): Minimize E [l{r<r} + C(T — T)l{T>r}] over 

all admissible choices of il> and <ßk', I — 1,..., N, k = 1,2,..., 
where the constant c > 0 is the cost of each unit of delay. 

II. RESULTS 
The solution to (P) is obtained using dynamic programming 
(DP) arguments. A sufficient statistic at time k for the DP 
recursions is the posterior probability of the change having 
happened before time k given Ik, i.e., pk — P (r < k\h). This 
one-dimensional sufficient statistic is all that the sensors and 
fusion center need to store at any given time k, and it can be 
easily updated using the recursion given below in (1). The 
complete solution to (P) is stated below. 

Theorem 1 (i) The optimum fusion center policy is to stop 
and declare that a change has occurred at the first k, such 
that pk > a, where a is the solution to c + Aj(a) = 1 — a. 
(ii) At each time k, it is optimum for the sensors to use 
monotone likelihood ratio quantizers [4] whose thresholds de- 
pend onpk- Furthermore, a stationary set of sensor functions 
is optimal, and this set is given by 

<t>*Pk =sxgmva.Wj((j>;pk) 

where the function J is the unique solution to 

J(jp) = min {(1 -p),c + Aj(p)} ,   for all p e [0,1], 

and 
Aj(p) = min Wj(<j>;p), 

<t> 

g(d;<j>;p) = [p + (l -p)p] ql(i)(di)---ql<.N)(dN), 

f(d;cß;p) =g(d;<f>;p) + (l -p)(l-p) gyi)(di) • • • g£w (dN), 

and 

<(„(*) = v>(*(0^(0) = *)- 
Finally, the recursion for pk is given by 

g(Uk+i;4>*k;pk) 
Pk+1 f(Uk+1;4>*;pky 

Po = v (1) 
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Abstract - The loss associated with a distributed signal detection 
system as compared to a centralized scheme is evaluated with 
respect to probability of error. Such a loss is numerically 
computed for several members of the exponential family. 

I. INTRODUCTION 
An important problem in a Distributed Signal Detection 

(DSD) scheme is the loss associated with the system. Hence, 
error analysis plays a significant role in the design of DSD 
processors. Here, we make an attempt to quantify the loss 
associated with a DSD system as compared to a centralized 
scheme by providing an easily computable probability of error 
expression. 

Consider a network of n distributed sensor 

communicating with a fusion center. Let 1 £/ ,U   U   \ 
L    1      2 kJ 

'assed from the sensors numberec . 

r. Let IX       ,X       , ,X   \ 
L*+l        * +2 nJ 

represent the observations at the remaining sensors, which are 
passed directly on to the fusion center without any quantization. 
Let us assume that C/.'s, i = 1,2,....,k are binary valued and 

that the problem is to decide between two hypotheses Hg and 

Hj. Denoting the density of the ith sensor as /1 JC; \H ■ I, 

7 = 0,1, and assuming that sensor observations given the 

hypothesis are independent and identical, we can formulate an 
optimum fusion center test based on a Likelihood Ratio Test 
(LRT) [1]. The LRT is given by the following 

represent the quantized data passed from the sensors numbered 1 

through k to the fusion center. 

^k=Ck.Dk 

> 

< (1) 

where 

ck = 
fo ■*+!• •*«K> 
fix *+l' *„Fo) 

,aadDk = P{UX Vk\HQ 

P(U,,...,Uk\H0) 

and tfc is an appropriate threshold. 
(2) 

H. AVERAGE PROBABILITY OF ERROR 
The average probability of error corresponding to (1) 

can be written as 

This work was supported by BMDIO/IST and managed by the 
office of naval research under contract N00014-94-1-0736. 

Pe(k)=P(H0)P \cki^-\H0    +/>(*!)/> 
V       Dk 

(3) 
In many problems of practical interest, sufficient statistics of 
fixed low dimensions exist. Hence, the probability sets involving 
the Ck in (3) can be replaced by appropriate sets involving the 

sufficient statistic. Moreover, the Dk in (3) can only take 

discrete number of values, a maximum of k + 1 different values. 

, j = 0,1,...,&, where These possible values are V S ' — 

r = ■——, and S = ■ H~     (4) 
P(U( =ltf0) P{U:   =0ff„) 

Therefore, the probabilities of the type (3) can be very easily 
computed as a function of k . Such computations are carried out 
for the case when the density of observation belongs to an 
exponential family. 

m. PERFORMANCE ANALYSIS 
Closed form error expressions for gamma, exponential 

(for testing scale parameter) and normal (for testing location 
parameter) densities are derived. Table 1 shows the ratio of the 
error probabilities when n = 5 and Signal power to Noise power 
Ratio (SNR) is 10 dB. a is the shape parameter of the gamma 
density. As a increases the ratio of the error probabilities also 
increases. 

Exponential Normal Gamma , a = 3 

P(2) 
e 
P(l) 
e 

1.2 1.6 2.0 

P (4) 
e 

P (1) 
e 

1.8 4.4 8.0 

Table 1 

Numerical results indicate that for normal and gamma 
(with large a) densities the loss due to quantization is more 
significant than for exponential density. 
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HOS-based noise models for signal-detection optimization 
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Abstract - Two pdf models suitable tor describing non- 
Gaussian iid noise are introduced. The models are used in the 
design of a LOD test for detecting weak signals in real non- 
Gaussian noise. Results obtained in the context of an 
underwater acoustic application are encouraging. 

1. INTRODUCTION1 

Conventional signal processing and detection criteria, optimised 
in presence of Gaussian noise, may decay in non-Gaussian 
environments. Higher Order Statistics (HOS) |1] is a powerful 

means to analyse non-Gaussian noise and build robust detectors. 
This work focuses attention on the problem of optimizing detection 
in presence of additive, iid, stationary. non-Gaussian noise under 
the conditions of weak signals (i.e., for low Signal-to-Noisc Ratio - 

SNR). In order to optimize the Probability of Detection P(jel fol- 
low SNR values, the selected binary statistical test consists in a 
Locally Optimum Detector (LOD) |2|, whose test rule is computed 
on the basis of new models of noise univariale probability density 
function (pdf) [31. The investigated models are expressed in terms 
of the HOS parameters skewness (of the 3rd-order) which 
quantifies the deviation from shape symmetry, and kurtosis (of the 
4th order) which quantifies the sharpness of a shape. The detector 

has been tested in the case of deterministic signals corrupted by 
real shipping-traffic noise, acquired during a sea campaign, in the 
context of CEC MAST-I SNECOW project (May 1993) [4|. 

2. DESCRIPTION OF THE APPROACH 

The proposed method is based on the statistical analysis of 
channel noise. As LOD requires the analytical model of noise pdf, 

attention is focused on this aspect. The first model is a generic 
pdf introduced by Champernowne and used in [3j. It can be 
applied if the N noise components have an hyperbolic distribution 

of power. In this acoustic application, in which noise main 
components are the ship, from which the sensor was dropped 

(strong source), and the surrounding traffic ships (which can be 
considered equally distributed on the sea, and contribute weakly 

to noise), this pdf model is reasonable. It depends on ß->, the ratio 

between the 4th and the square of the 2nd moments |3). A second 

new model is presented, the "asymmetric Gaussian" pdf, 

consisting of two Gaussian parts, and depending on two second- 

order parameters (deriving from the definition of variance), i.e., 
the "left and right variances", which together maintain the same 
information provided by the skewness. The non-linear function 

g[0('), in terms of which the likelihood-ratio of the LOD rule is 

expressed [2], is easily expressed in terms of these two models. 
Information added by HOS-based description is contained in 
simple parameters (ßo or 0; and o"r), and no constraint has to be 

satisfied about signal characteristics. 

3. EXPERIMENTAL RESULTS AND FUTURE WORK 

An extensive test phase was carried out. Noise was acquired in a 
coastal shallow-water area. The presence of a lot of traffic and of 
reflection and refraction makes the detector work in critical 
conditions. The LOD performances are summarized in Fig. 1 in 

terms of P^,t vs. SNR. A comparison among the results of the two 
proposed pdfs and the Gaussian model is presented. 

The tests were carried out by fixing the Probability of False Alarm 

Pp/\=a=5"/a. Non Gaussian real underwater acoustic ship-traffic 

noise was characterized by |i=0, ß2=2.84, op 1860, oy=1500. 

The proposed models appear approximately equivalent, as noise 

presents deviation from both Gaussian sharpness and symmetry. 

The next investigation step, concerning the model of propagation 

through a real shallow-water channel, is going to be carried out. 
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1 This work was partially supported by the Commission of European 
Community in the context of MAST-I SNECOW Project 

Fig. 1 Results of the LO detector under the Champernowne (a), the 
asymmetric-Gaussian (b) and the Gaussian (c) hypotheses. 
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Abstract — 
This paper handles the detection of Gaussian sig- 

nals in compound-Gaussian noise. We show that the 
optimum detector is the conventional one plus an esti- 
mator of the short-time noise power spectral density. 

I. INTRODUCTION 

In this paper we consider the problem of detecting one out 
of M Gaussian processes with known autocorrelation func- 
tions (acf's) in the presence of non-Gaussian noise: such a 
problem is commonly encountered in radio communications 
over fading dispersive channels subject to atmospheric noise. 
Denoting by ai(t), a2(t),..., <XM(<) M complex Gaussian ran- 
dom processes with given acf's, the detection problem under 
study amounts to the following M-ary hypothesis test: 

Hi-.     r(t) = ai{t) + c(t) (1) 

wherein r(t) and c(t) denote the complex envelopes of the re- 
ceived signal and of the impinging noise, respectively. Such 
a noise is modeled as a compound-Gaussian process, namely 
as the product of a real, non-negative component, s(t) say, 
times an independent, Gaussian, possibly complex process, 
g(t). Theoretical considerations, supported by experimental 
results, show that, if the correlation time of s(t) is much s- 
maller than that of g(t), then the model represents a faithful 
description of some important noise sources, such as atmo- 
spheric noise and scattering from composite surfaces (see [1] 
and references thereof). Since the signalling interval is typ- 
ically much smaller than the average decorrelation time of 
s(t), the modulating process degenerates into a random con- 
stant and the noise process reduces to a Spherically Invariant 
Random Process (SIRP). 

II. RECEIVER DESIGN 

We focus on the case of uncorrelated noise observations 
with Power Spectral Density (PSD) 2Af0E[s2] (where 2A/"o is 
the PSD of the Gaussian component and E[-] denotes statis- 
tical expectation), since, due to the closure of both Gaussian 
processes and SIRP's with respect to linear transformations, 
the case of correlated noise can be easily handled via whiten- 
ing approach. 

Denoting by A9[r(t); 2Af0\Hi] the likelihood functional un- 
der hypothesis Hi for complex, uncorrelated Gaussian noise 
with PSD 2A/Ö, the likelihood functionals in the presence of 
SIRP can be shown to assume the form 

A[r(t)\Ht] : Ag[r{t);2Af0  lim  8%\Hi] 
N-*oo (2) 

wherein s2
N represents a consistent estimator of the random 

variable s and can be computed by properly processing the 
observables. Otherwise stated, since the noise process, as ob- 
served in sufficiently short time intervals, is a conditionally 
Gaussian random process, then the likelihood functionals co- 
incide with those for Gaussian noise, provided that the noise 

PSD is substituted by an estimate of the short-term PSD (i.e., 
of the conditional noise PSD given s). This fact does not entail 
that the conventional detector is optimum under SIRP dis- 
turbance, since the estimator-correlator is to be keyed to the 
estimated short-term noise PSD. In any case, we stress here 
that the receiver is canonical, in the sense that its structure 
is one and the same, independent of the probability density 
function (pdf) of the modulating process and, hence, of the 
statistics of the noise process. 

So far, the structure of the estimator s2
N has been left aside: 

interestingly, it can be shown to coincide with the average of 
the square modula of the projections of the first N versors of 
the received signal along any orthonormal basis of the space 

L (0,T); as N —► oo, s2^ can be shown to converge in the 
mean square sense to the random variable s2. 

Choosing the complex exponentials of period T as a basis 
yields 

N , 
1        1     X-M„     /fcx   2 

2Äf0 NT EN?) (3) 

where Rr(f) is the Fourier Transform of the received signal, 

as observed in the interval (0,T): thus, s2
N is an average of 

the sampled periodogram of the received signal. 
Summing up, the minimum error-probability decision rule 

for equally likely signals is written as 

Hu /i 
Jo 

decide Hi:    r(t)a*(t)dt - 6, >   r(t)a*k(t)dt -bkVk^i   (4) jr\ 
Jo 

wherein ak(t) is the linear minimum mean-square estimation 
of the k—th signal in Gaussian noise with PSD 2Afos2 and 
6, = bi(s ) are proper bias terms, depending on the value of 
the noise short-term PSD. 

III. PERFORMANCE ANALYSIS 

As to the performance of this detector, the analysis of On- 
Off Keying (OOK) signalling with exponential correlation sub- 
ject to noise with Laplacian pdf demonstrates that the er- 
ror probability depends on two parameters, the ratio of the 
received energy to the noise long-term PSD and the time- 
bandwidth product of the signal, namely the product of the 
correlation length times the spectral width of the Gaussian 
random process. Interestingly, as for the case of Gaussian 
noise, the larger such a product, the better the performance. 
Additionally, the noise spikyness seems not to dramatically 
affect the performance, even though, as for the case of non- 
dispersive channels, increased noise spykiness results in worse 
and worse performance, especially in the interest region of 
extremely low error probabilities. 
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Abstract — While locally optimum detection requires 
complete knowledge of the noise density, we use only the 
first few absolute moments of the independent, identically 
distributed (iid) noise to obtain a robust detector that is 
locally optimum for the least favorable noise satisfying 
these moments. This robust detector's efficacy approaches 
that of the asymptotically optimum detector, while requiring 
limited knowledge of the noise statistics. 

I. SIGNAL AND NOISE MODEL 

The problem is modeled as deciding between the null 
hypothesis X = W and the alternative hypothesis 
X = 0s + W where X is an n -element observation vector, 
W is a vector of zero-mean iid noise random variables with 
univariate density /, s is a vector of known signal samples 
with nonzero, finite asymptotic average power, and 
6 = K/4n, for some unknown K > 0. 

II. COMPLETELY KNOWN NOISE STATISTICS 

The locally optimum (LO) detector of a known signal in iid 
noise is a memoryless nonlinearity followed by a correlator 
[1]. The memoryless nonlinearity g depends on the noise 
density by g(x) = -f'(x)/f(x), where f'(x) = df(x)/dx. 
When the noise is zero-mean Gaussian with unit variance, 
g(x) = x and the LO detector is a linear correlator. A 
generalization of the LO detector is a nonlinear correlator 
where g is any function satisfying mild regularity 
conditions. A common example is the sign correlator, whose 
nonlinearity is the signum function. 

Efficacy t](g,f) is an asymptotic measure for predicting 
detection performance. In the asymptotic case, n -> °° 
which implies 6 —> 0. The asymptotic LO detector is 
equivalent to the asymptotically optimum (AO) Neyman- 
Pearson detector, and its efficacy is equal to Fisher 
information /(/). rj(g,f) is concave in g and convex in / 
and     satisfies    the     saddle    point    inequalities 
*?(*. /o) * n{go • /o) = l{fo) * Vigo. /). where 8o = -fo/fo 
for some density /0. At the saddle point, efficacy is equal to 
Fisher information. 

III. PARTIALLY KNOWN NOISE STATISTICS 

Only the first few absolute moments of the noise are as- 
sumed known. The admissible set of absolutely continuous 
densities is <F = {/| j \x\J f(x)dx = v;, j = 1,2,..., J), where 
J is typically 2 or 3. It can be shown that there exists a least 
favorable density /LF e (F such that /(/LF) = inf /(/) for all 
/ e <F. Since it is difficult to analytically determine /LF, a 
Gram-Charlier series approximation [2] is used to model the 
noise densities in the admissible set. Many terms are used to 
develop good Gram-Charlier series approximations for the 
/ e <F. Constrained numerical optimization is used to find 
the series coefficients that determine the least favorable 
density. The robust detector is a nonlinear correlator with 
nonlinearity ghF = -/LF//LF 

tnat *s LO for this least 
favorable noise density. 

IV. NUMERICAL RESULTS 

Our results demonstrate that only the first few absolute mo- 
ments of the noise are needed to approach the performance 
of the AO detector derived with full knowledge of the noise 
density. Apparently, these low-order absolute moments are 
most influential in determining the shape of the density 
about the mode, and therefore in shaping the nonlinearity at 
values most often occupied by the noise. We have used the 
first two and three absolute moments of Gaussian-Gaussian 
mixture (GGM) and Johnson distributions to derive the LO 
nonlinearity (NL) gLF for the least favorable noise density. 
The efficacy of the resulting asymptotically robust detector 
r;(gLF,/) is only slightly less than that of the AO detector 
and is significantly greater than the asymptotic linear and 
sign correlators. Fig. 1 shows efficacy results for detectors 
in one example: the density / = /GGM is from a unit-vari- 
ance Gaussian-Gaussian mixture class with a contamination 
parameter of 0.05, and the first two absolute moments of 
/GGM 

are usec* t0 obtain /LF and hence gLF. Fifty terms 
were used in the Gram-Charlier series. The abscissa in 
Fig. 1 is the ratio of the contamination variance to the nomi- 
nal variance of the two Gaussian distributions comprising 
the Gaussian-Gaussian mixture. When this ratio is one, the 
noise is Gaussian. The results are computed for correlators 
preceded by a linearity, sign NL, robust NL, and GGM LO 
NL using GGM noise. The robust NL's performance is also 
shown for the least favorable noise for which the robust NL 
is LO; while this noise satisfies the moment constraints, it is 
not GGM. Clearly, the performance of the robust detector 
approximates that of the AO detector, far exceeding that of a 
linear correlator or a sign correlator. 

1 20 40 60 80 100 
(Contamination Variance)/(Nominal Variance) 

Fig. 1. Comparison of Detector Efficacy for Example 
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Conditional Testing In Two-Input Detectors With Single Input Conditioning 
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Abstract- In this paper we examine some new   methods in 

conditional  testing  in  two-input   signal   detection     with 
condition on one of the inputs. In  this method ,the number of 
samples has been considerably reduced. 

I. INTRODUCTION 
In  a   conditional test the threshold and randomization 

probability   of a  threshold  test   are   not taken to be fixed 
parameters   independent of the data but are directly dependent on 
the specific data   set being analyzed for a test of hypotheses. In 
our paper, conditional testing in two-input detectors is performed 
by using only one of the inputs. Asymptotic Relative Efficiency 
(ARE) has been computed with respect to Generalized Cross 
Correlation (GCC) ,e.g.[l]. Also this method is performed on two- 
input   optimum  Three   Level Coincidence (TLC) correlator 
eg.[2]. 

II. DETECTOR STRUCTURE 
Consider a binary problem with a null hypotheses H and an 

alternative hypotheses K and let Xn =(xl,X2 ,...., %n ) and 

•Si = (y\ J y^ ■> ■ ■ ■ • •> y„ ) denote the n-component random 

observation vectors. A fixed threshold test for H against K is 

compared with test function T{Xn,Yn). Block diagram of our 

detector is shown in Fig. 1 

Vc* Q.[ 
"Tw       1 A(X.c) «.) 

3il=0- 7j.r^T 

«J.1 

/00 Filler I        /(?■> 
O, .-,7.) 

Z«CwJ 
H 

K 

Kg.l 
A(X,c)   is a function of Xn and a parameter C./ and 

h  are pdf of noise inputs. The threshold pn a is a function of 

Xn or Yn . When Xn is passed through the block A(X,c), 

a subvector X'm has been formed from Xn comes to detector, 

where m<n and in general case m is a random variable. 

Ill. ASYMPTOTIC PERFORMANCE 
If      the  functions/and   h   are  even  functions   and 

components of Xn and Yn are iid and ]im(m / ri) = k /Then 

the efficacy of two input conditional testing with single input 
conditioning according Fig. 1 is 

$ fq(*,y)[h"(x)f(y) + 2h'(X)f>(y) + h{x)f»(y)+)lxdy 

4\\<?{*,y)h{x)f{y)dxdy 
(1) 

_ IV. SPECIAL CASES 
Let A{X, c) is a function as in Fig.2 

_A(x.c) 

Then Fig . 3    shows 

Gaussian noise. 

Eig.2 
the   ARE cond.GCCjGCC and   m for 

Fig.3 
The ARE of conditional TLC detector with respect to TLC ,e.g. 
[2], in Gaussian noise has been shown in Fig. 4 . 

\ 

Fig. 4 
V. CONCLUSION 

For single input conditional testing in two inputs detector 
when the noise is Gaussian or nearly Gaussian we have an 
appropriate method for detection . Also the number of 
observation for process is considerably reduced. The percentage 
of this reduction depends on the number of input samples,« as 
shown in Fig.3 and Fig.4 . However , the percentage oftime 
processing reduction is much higher than that for the samples. The 
detail of the method is presented in [3]. 
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Abstract — We consider a signal detection prob- 
lem in a continuous-time white Gaussian channel. 
The signal is assumed to be a stationary Gaussian 
process. We prove that the error probability in 
the signal detection tends to zero exponentially 
fast, as the observation time goes to infinity. 

Summary 

The aim is to study the exponential-type asymptotic 
behavior of the error probabilities of the signal detection 
in a continuous-time white Gaussian channel (WGC). 
The model of a WGC is presented by 

Y(t)= / X(s)ds + B(t),    te[o,T\, 
Jo 

or 
Y(t) = X(i) + B(t), 

where {B(t)} is a Gaussian white noise, X(t) and Y(t) 
are a channel input and the corresponding output, re- 
spectively. The signal detection problem consists of de- 
ciding, based on the observation of the output {Y(i)}, 
whether the signal {X(t)} is sent or not. In other words, 
we consider testing problem of two hypotheses 

H0:     Y(t)=B(t), te[0,T}, 

Ht :     Y(t)=  ( X(s)ds + B(t),    t € [0,T]. 
Jo 

Two probabilities of error are defined by 

e0(r) = Pr({Y(<)} i S\H0 is true), 

ei(r) = Pr({Y(*)} € S\Hi is true), 

with a decision region S C R[0'TJ. A Neyman-Pearson 
test is a test given by a decision region of the form 

ST(u)=i[yen^Th^og^(y)<uY 

where ßf is the probability distribution of {Y(t)} under 
the hypothesis Hi. It is well known that Neyman-Pearson 
tests are optimal to minimize e\(T), where u is chosen 
so that e0(T)  =  $(ST{U)

C
).    In this casse, ei(T)  = 

We assume that the signal {X(t)} is a regular sta- 
tionary Gaussian process with spectral density function 
(SDF) /. Note that {B(t)} is a generalized station- 
ary process with SDF /o(A) = 1/(2%) and that, under 
H\, {Y(t)} is a stationary process with SDF /i(A) = 
/(A) + l/(27r). To state the result we define a SDF f9 by 

l//s(A) = (l-fl)//o(A) + ö//1(A). 

We define H(f;g), for each SDF's / and g, by 

H(f;g) -f ( /(A) 
5(A) 

- 1 - log 
5(A), 

dX. 

We can show that H(fg; fo) is the relative entropy (or 
information divergence) of a stationary Gaussian process 
with SDF }e with respect to the white noise {B(t)}. 

Concerning the exponential-type asymptotic behavior 
of the error probabilities, we can prove the following the- 
orem. 

Theorem 1 Assume that the SDF / is continuous. 
Then, for any a > 0, there exists a constant ua such 
that 

lim T"1 log//£ (ST(ua)) = -a. 
T—*-oo 

If 0 < a = H(fe;f0) < #(/i;/o) (0 < 0 < 1), then 

lim T-l\ogßl{ST{ua)
c) = -H{Je;h). 

T—+oo 

If a = H(h;f0) > H(h;h) (0 > 1), then 

lim T-1\og{l-fi(ST(ua)
e)} = -H(fe;fi). 

The proof is based on a large deviation theorem. 
In discrete-time cases, the asymptotic behavior of error 

probabilities in hypothesis testing has been studied [l, 2]. 
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I. INTRODUCTION 
We address the problem of optimal detection of a random 

signal transmitted over a time-varying frequency-selective cor- 
related Rayleigh fading channel. We present a general re- 
cursive solution which may be operated at full complexity to 
provide optimal detection or at reduced complexity, using Per- 
Survivor Processing (PSP) techniques [1], to yield a subopti- 
mal receiver. An alternative full-complexity solution based on 
the innovations approach may be found in [2]. 

II. PROPOSED RECURSIVE RECEIVER 

To derive the optimal receiver structure, we adopt a 
discrete-time representation of the received signal obtained 
by Nyquist sampling (let ß be the resulting oversampling 
factor). We denote with {rn}^L1 the samples of the re- 
ceived signal (sufficient statistics), {ofc}^Lj the information 
sequence and Lisi the intersymbol interference length in 
symbol periods. We also denote with Lc the channel co- 
herence time expressed in symbol periods and assume it fi- 
nite. Let L = LISI + Lc and define the following vectors: 
*iß = (ri,r2,...,riß), a* = (oi_t,a2-t,... ,a0,ai,... ,a{), 
r'iß = (r(i-Lc)ß+i,r(i-Lc)ß+2,---,riß), a; = (ai+1-L, ■ ■ ■ ,at), 
Tiß = (r{i-1)ß'-r(i-i)ß+i,r(i-i)ß+2, ■ ■ ■ ,riß), a" = (a!i_1:ai), 

where (• : •) denotes vector concatenation. 
Optimal detection requires to perform the maximization 

äj = arg maxa p(riß\&i) where p(r</a|ai) is the conditional 
Probability Density Function (PDF) of riß given a*. Because 
of the assumed channel model, this PDF is multivariate zero- 
mean Gaussian. Due to the limited channel coherence time 
Lc, it is possible to factorize this PDF. By the second Bayes 
theorem, each factor may be expressed as a ratio of the PDFs 
of the partial observation vectors rl^^o and rkg, which do 
not depend on the complete data sequence but only on a'k_1 

and a'fc', respectively. The parameter L, which is the length of 
the vector a'fc_!, plays the role of an overall channel memory, 
as pointed out also in [2]. 

Making use of the correlation matrices Rr/ (a'fc) = 
E\r'kf *'kß I a'k], R-rj^W) = E[*kßn *'lß I a'fc']. we can express 
the likelihood function (path metric) to be minimized as: 

* /detRw, (a'^ra*) 

*<«>   -   I>     detRrf 
k=l \ (k- -l)ß to-l) 

+ (1) 

/ 
+  TkB    R... ?kß 

J H 
r
(fc-l)/3 «r; R; {*k-i)*{k-i (k-i)ß (ajfc-i •a-k)*kß 

kß " 'r (k-l)ß 

where det(-) denotes the determinant of a matrix and [-]H 

is the Hermitian operator. The above minimization can be 
performed by searching the optimum path in a trellis diagram 
whose state is defined as \ik = &'k. This search may become 
prohibitive for highly correlated channels, since the number of 
trellis states might be very high (ML, if M is the number of 
constellation symbols). 

An alternative suboptimal solution is offered by well-known 
PSP  techniques.    We define a reduced state ßk   =  &k   — 

10u 

10" 
<D 
CO 

CC 

|   10": 

u] 

CO 

10" 

10" 

EJN0 (dB) 
{ak-K+i,ak-K+2,- ■ ■ ,a*) where K (1 < K < L) is an in- 
teger which controls the degree of desired complexity reduc- 
tion and a vector a!k = (äk+i-L,- ■ ■ ,äk-K '-a-k), in which 
{at; i = k — K,... ,k — L} denote information symbols associ- 
ated with the survivor of state ßk. The resulting path metric 
is formally identical to (1) after substituting &'k_1 with ä!lt_1. 

III. NUMERICAL RESULTS AND CONCLUSIONS 
The performance of the proposed receivers is assessed in 

terms of Bit Error Rate (BER) versus Eh/N0 (Eb is the bit 
energy averaged over channel and data statistics). The over- 
all channel is a symbol-spaced (ß = 1) finite impulse response 
filter with three independent taps, modeled as first order au- 
toregressive (the forgetting factor is 0.998). For a QPSK mod- 
ulation format, blocked transmission with blocks of 60 symbols 
is assumed. A preamble and tail both of 2 symbols are used. 

In the figure, BER of the proposed detectors is compared 
to lower and upper bounds derived as in [3]. Complexity sav- 
ings (M instead of ML trellis states) may be achieved with 
the proposed suboptimal algorithms based on PSP at the ex- 
pense of a moderate performance loss (compare the perfor- 
mance when L = 5 for K = 5,4). Furthermore for an equal 
number of trellis states (K — 5), PSP allows to improve sig- 
nificantly the performance by increasing the assumed channel 
memory from L = 5 to 6 and 7. In three cases the proposed 
receiver performance lies between the lower and upper bounds. 
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Abstract - New robust detection algorithms have been 
developed for detection of pulse signals in the presence of a 
random noise and random pulse interferences. The 
algorithms are designed in assumption that a priori 
information on compactness of the useful pulse signals is 
known. It is shown that estimation of the noninformative 
signal parameters decreases the detection quality. The 
numerical simulation of the proposed algorithm is carried 
out. 

I. INTRODUCTION 
The problem of detecting pulse signals in the presence of a 
random noise and random pulse interferences is of great 
significance for time synchronization channels of TDMA 
systems, for radionavigation (VOR/DME) and radars [1,2,3]. 
The presence of pulse interferences can lead to appearance of 
outliers at the input of a signal detector. The outliers 
considerably complicate the solution of the problem [4]. 
As the input the detector is assumed to use time delay of the 
received signal which can be written and stored in a detector 
memory. Thus in the time domain the problem of robust signal 
detection can be formulated in the following way: 

tfi-^Yi^ + uJ + Cl-Yje,., y> 

where *,- is observation (time delay), s,- - time delay of the 
interference impulse, yy -a random sequence with a value 1 
when Xj belongs to an informative (signal) set and zero when 
Xj belongs to a noninformative (interference) set, v, - time 
delay estimation error due to a random noise. Conditional 
probability density functions (pdf) fj(x/0i,/i=l) and 
f2(x/yj=0) are assumed to be either normal or exponential. 
A dynamics of time delay of the received signal can be 
described by a difference equation 
yk=$yic-i+a>k ,Qk=Hkyk     ,    where    all    symbols    are 

commonly used. 

II. ROBUST DETECTION ALGORITHMS 
For solving    the problem it is necessary to calculate the 
generalized likelihood ratio (GLR) 
l(xn / ®,T) = f(xn / ®,T,Hi) / f(x„ /H0), where 
0=[0j,...,0n]T is the vector of informative parameters and 
T=[yj,...,yn]T is the vector of noninformative parameters. 
The detection statistics can be obtained either by averaging the 
GLR by all possible values of noninformative parameters or by 
estimation of them (the case of classification of the received 
signal). In both cases first of all it is necessary to estimate the 
informative parameter vector that is to estimate time delay of 
the received signals. The problem is complicated by the 
presence of outliers in the observations. In this paper we 
developed a fixed-interval smoothing algorithm on the basis of 
the invariant embedding method [5]. This algorithm showed a 
high accuracy of the estimates and it consists of two nonlinear 
Kaiman filters of which one is a backward filter. A matrix gain 

of   the    filter    depends    on    a    posteriori    probabilities 
P(yi=j/xi)j = o,i. 
As was mentioned above one way of developing an optimal 
detection statistics is averaging the GLR by all noninformative 
parameters. It is easy to show that in this approach the 
likelihood ratio logarithm can be written as: 

1=1   l J 
(2) 

The statistics (2) is optimal for given vector © . The other way 
is to estimate the noninformative parameters of the received 
signal. Two possible situations which can be encountered in 
practice have been considered: 
1). If the number of the signal samples q is known, we can 
classify as the signals those of them which has maximum value 

of P(yt = l/Xj,®). Then it follows that 

(3) 

2). For unknown number of signal samples q the estimate of 
the vector T can be found as a maximum of the a posteriori 
probability P(T / x,® ). In this case the expression (3) can be 
written in approximate form 

1=1 
(4) 

III. CONCLUSION 
The computer modelling of proposed algorithms for a 
radionavigational system was carried out for Gaussian and 
Laplace pdf of contaminated observations. The best results 
were obtained for Laplace pdf because of the great contrast 
between pdf of normal measurements and outliers. The 
algorithms (2) and (3) showed a higher efficiency in 
comparison with a nonparametric (median) signal detector 
which is usually used in such a situation. The algorithm (4) 
had practically the same characteristic as the median detector. 
It should be noted that all proposed algorithms are sensitive to 
a priori information on probability p. 
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Abstract — Time-varying mappings are used in place 
of a stationary mapping to improve the performance 
of Euclidean-space codes on ISI channels. 

I. INTRODUCTION 
A Euclidean-space (ES) code that utilizes a group code de- 
signed over the group G is mapped to a signal set S of QAM 
modulation waveforms by a stationary mapping p : G —* S. 
The underlying group code is described by an encoder of finite- 
length generator sequences [1]. The QAM system used on a 
channel with ISI can be equivalently represented as a discrete- 
time (DT) ISI channel with AWGN [2]. The combination of an 
ES code with a DT ISI channel can be combined into a more 
complex composite ES code. A Viterbi decoder is the nearly- 
optimal ML decoder. Typically, there is a significant reduction 
in the free distance for the resulting composite ES code com- 
pared to the d2jfree for the memoryless channel. A technique 
known as TH-precoding has been used to regain some of the 
loss by performing the inverse of the DT ISI channel in the 
transmitter along with a modulo power constraint [3]. This 
technique requires that the transmitter has exact knowledge of 
the ISI channel through a feedback channel from the receiver. 

II. TIME-VARYING MAPPINGS 

An alternative proposed method for coding on a Jt'^-order DT 
ISI channel is to use an ES code that has time-varying map- 
pings m : G -► Ri(S) where m = R{ o p. These codes will 
be called TVMES codes. For a specific channel and station- 
ary ES code, there typically exists an ordered collection of 
mappings Ri that regains some of the loss in d2

Jree. In many 
cases, the performance is better than that of the TH-precoding 
technique, but at the cost of an exponentially more complex 
Viterbi decoder which requires synchronization. The trans- 
mitter does not require exact knowledge of the ISI channel, 
so a more robust code can be designed over a range of possi- 
ble channels. Implicit knowledge of the range is necessary to 
find the best combination of group code and mappings for the 
range. 

III. RESTRICTIONS ON THE TIME-VARYING MAPPINGS 

Just as an exhaustive search is required to find the best ES 
code on the memoryless channel, the TVMES codes require 
an additional search over all ordered collections of mappings 
for each ES code. To make this search managable, restric- 
tions are necessary for the type of mapping Ri that is permit- 
ted, and restrictions are necessary for the form of the ordered 
collection of mappings. This is a current area of research. 
The most severe restrictions are that the collection be of the 
form of incremental powers of a single unitary transformation 
Pi = R'p. This will be called a rotating (or reflecting) ES 
code (RESC). RESC codes have shift-invariant distances on 
the kth-oidei DT ISI channel, but more importantly, the prob- 
lem of finding the best unitary transformation can be set up as 

an unconstrained optimization problem. A Newton-Raphson 
type algorithm can be used to solve for the pseudo-globally 
best unitary transformation for a given DT ISI channel and 
a given ES code. This severe restriction on the time-varying 
mappings actually includes many other types of collections 
because TVMES codes do not have a unique representation. 
Many good codes have been seen for small order DT ISI chan- 
nels. Several specialized techniques for designing a code for 
the ISI channel can be generalized as TVMES codes. 
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Abstract — An algebraic characterization is given 
for the groups that can appear as the branch group 
(« trellis section) of some convolutional code over a 
group (ring, field). 

A convolutional code over a group G is basically a shift- 
invariant subgroup of Gz (subject, perhaps, to some further 
conditions such as controllability and observability, or com- 
pleteness) [1] [2]. The trellis of such a code consists of identi- 
cal sections, each of which is a triple (G, S, B), where S is the 
state space (or state group) and the branches B are a subgroup 
of S x G x S. 

The standard "algorithm" to construct convolutional codes 
over a field goes as follows: 

i. Choose a configuration of shift registers (cf. Fig. 1). 

ii. Choose a linear mapping from the shift registers into 

Note that the configuration of shift registers corresponds to 
the projection of the above group B onto S x S. 

The attempt to generalize this "algorithm" to codes over 
general groups leads to the problem of characterizing those 
groups that can appear as (the projection onto S x S of) 
B. Our main result is the following characterization of such 
groups. 

Definition: A shift structure (H0, Hi,... Ht; ip) for a group 
(module, vector space) H consists of a collection Ho, Hi, 
... Hi of normal subgroups (submodules, subspaces) of H 
(that need not be disjoint) together with an isomorphism ip 
from H/Ht onto H/Ho such that 

i. Ho * H\ * ... * Hi — H; 

ii.  (Ho * Hi * ... * Hj) n (Hj * Hi+i *...*Ht) = Hj for 
0 < j < £; 

iii. <p(Hj * Hi) = Hj+i * Ho for Ö < j < L 

Main Theorem: Every strongly controllable, shift-invariant 
group code over any group (module, vector space) G can be 
found by the following "algorithm": 

i.   Choose     a     group     H     with     a     shift     structure 
(H0, Hu... Hi; ip). 

ii.  Choose a homomorphism ui : H —► G. 

iii.  Construct the trellis (G, S, B) with states S — H/Ho 
and branches 

B = {(h*Ho,u>(h),<p(h* Hi)) :heH}. 

For Euclidean-space codes, G need not be specified a priori. 
In this case, step (ii) may be replaced by 

ii. Choose a homomorphism w from H into the isometry 
group of 1Z   . 

U2 

Ui 

Uo 

«2,0 «2,1 «2,2 

«1,0 «1,1 

«0,0 

Figure 1: shift register. 

The simplest example of a group (module, vector space) 
with a shift structure is a direct product 

U = U0xU?x Ue
e
+\ (1) 

where Uo, U\, ... Ui are groups (modules, vector spaces) and 
where the terms U-+1 are themselves direct products. Such a 
group may be represented as a collection of delay lines as in 
Fig. 1, where the mapping (p may be interpreted as the shift 
operator. Note that the corresponding class of group codes 
includes all (strongly controllable) convolutional codes over 
any field. 

If H is an arbitrary group with a shift structure, it can be 
shown that a (set-theoretic) one-to-one correspondence exists 
between H and a group of the type (1) such that ip corresponds 
to the shift operator in Fig. 1. In general, however, this one-to- 
one correspondence is not an algebraic isomorphism; in other 
words, the shift register of Fig. 1 is equipped with an algebraic 
structure other than the "natural" direct product. 

So far, we have found just one class of groups with a non- 
standard (i.e., not the direct-product) shift structure: (multi- 
plicative) groups of matrices with ones in the main diagonal 
and zeros above the main diagonal. By the main theorem, 
these groups give rise to a whole new class of noncommuta- 
tive group codes. (Some such codes seem closely related to 
certain codes from [3].) 

REFERENCES 

[1] G. D. Forney, Jr., and M. D. Trott, 'The dynamics of group 
codes: state spaces, trellis diagrams and canonical encoders', 
IEEE Trans. Inform. Theory, vol. 39, pp. 1491-1513, Sept. 
1993. 

[2] H.-A. Loeliger, G. D. Forney, Jr., T. Mittelholzer, and M. D. 
Trott, 'Minimality and observability of group systems', Linear 
Algebra & Appl, vol. 205-206, pp. 937-963, July 1994. 

[3] E. J. Rossin, N. T. Sindhushayana, and C. Heegard, 'Trel- 
lis group codes for the Gaussian channel', submitted to IEEE 
Trans. Inform. Theory. 

304 



Minimality Tests for Rational Encoders over Rings 
Thomas Mittelholzer 

Signal and Information Processing Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland 

Given an encoding matrix over some field, various criteria are 
known to check minimality (cf. [1], [2], [3]). Most of these 

criteria apply to encoders of a particular class, e.g., basic en- 
coders or systematic encoders, and only a few criteria are gen- 
eral in the sense that they apply to arbitrary rational encoding 

matrices. In this paper, causal rational encoders over commu- 
tative rings are considered and a general criterion of Johan- 

nesson and Wan [2] is generalized to rings, which satisfy the 
descending chain condition. Moreover, a new simple test is 

presented that reduces the minimality question from the ring 
to the field case. The basis for these new minimality tests are 
the concept of minimality of group systems and convolutional 
codes as presented in [4] and [5]. 

Let R be a commutative ring and let R[D] denote the ring 
of polynomials over R. The ring of rational functions over R 
is defined by 

R{D) f{D) 
Dms{D) f(D),s(D)£R[D],s(0) = 1 and m € Z 

A kxre-matrix G(D) over R{D) is called a rational (re, k) en- 
coding matrix over R if it has k linearly independent rows 
over R{D), or equivalently, if its kernel is zero. The matrix 
G(D) is called causal (or realizable), if all its components are 
causal rational functions, i.e., they have an expansion as for- 
mal power series in D. Every rational (re, k) encoding matrix 
G(D) gives rise to an (re, k) convolutional code over R, which 
is defined by C = {u(D)G(D) : u(D) € R{D)k}. 

To every convolutional code C, one can associate a canoni- 
cal state space Sc that depends only on the code and not on a 
particular encoding matrix for C (cf.[4], [5]). A causal encod- 
ing matrix G(D) is said to be minimal, if the abstract state 
space of G(D) is isomorphic to the canonical state space Sc 

of the code C, which is generated by G(D). In case of a finite 
alphabet, this definition is equivalent to the usual notion of 
minimality, which states that the encoder G(D) requires the 
least number of states among all encoders that generate the 
code C. 

Johannesson and Wan have presented the following general 
minimality criterion for the field case [2]. A causal encoding 
matrix G(D) is minimal if and only if G(D) has a polynomial 
right inverse in D and a polynomial right inverse in D_1. This 
criterion cannot be generalized to arbitrary commutative rings 
because one can show that it does not hold over the ring of 
integers. However, there is a suitable class of rings to which 
the criterion can be extended, namely, the class of commu- 

tative rings satisfying the descending chain condition (DCC). 
The DCC is a rather weak restriction for practical purposes 
because most encoding alphabets are finite and every finite 
ring satisfies the DCC. There exists an important structure 
theorem for commutative rings satisfying the DCC, which can 
be viewed as an extension of the Chinese Remainder Theorem 
(cf. Chap. 7.10 of [6]). Such a ring decomposes into 

Ä=Ä1 ©Ä2 0...0Ä,, (1) 

where the Ä;'s are local rings satisfying the DCC. In partic- 
ular, it follows from (1) that R has only a finite number of 

maximal ideals I\, I2,..., I3. 

Theorem 1 Let R be a commutative ring satisfying the DCC 

and let the maximal ideals be denoted by h,h, ■ ■ ■, Is- Let 
G(D) € R(D)kxn be a causal encoding matrix. Then the fol- 
lowing statements are equivalent: 

(i)     G(D) is minimal; 

(ii)     G(D) has a polynomial right inverse in D and a poly- 
nomial right inverse in Z>_1 ; 

(iii)     for all i = 1,..., s, the reduction of G(D) modulo It is 
minimal over the field R/I{. 

Condition (ii) of this theorem extends the Johannesson/Wan 
criterion to the ring case. Condition (iii) gives a new minimal- 
ity test that reduces the question of minimality from the ring 

to the field case. It is illustrated by the following example. 

Example 1 Consider the following encoding matrix over the 
ring of intergers modulo 4, Z4, given by 

G{D) = TT3D'[ 1 + D   1 + 2D + 3°2 ]■ 
Reducing G(D) modulo the only maximal ideal (2) C #4, one 
obtains the binary encoding matrix 

G(D)= [l    1 + D ], 

which is minimal over the binary field Z4/(2). Hence, condi- 
tion (iii) of the theorem holds and, therefore, G(D) is minimal. 
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Abstract — We consider suboptimum decoding of 
group codes, represented in the form of a set of n- 
vectors whose components are obtained by permut- 
ing the components of an initial vector according to 
a certain group Q of permutations. Permutation de- 
coding consists of the following two steps. First, we 
decode the received vector by searching for the most 
likely permutation in the symmetric group Sn> next 
we select the element in Q closest to the permutation 
found. Here we focus on the first step. In particular, 
we show how any group code can be represented as 
a permutation code, and we determine the minimum 
value of n. 

I. INTRODUCTION 

Consider, for motivation's sake, decoding of a binary (n, k) 
block code transmitted over the additive white Gaussian 
noise channel with the standard mapping m :GF(2)—► R de- 
fined byO —► -1,1 —► +1. Soft decodingisperformedbypick- 
ing the code word closest to the received vector r, while hard 
decoding can be viewed as an approximation of maximum- 
likelihood decoding performed in two steps. First, one uses 
preliminary decision regions formed by the orthants of R", 
thus obtaining an element y e ro_1{±l}n. Next, algebraic 
decoding transforms the resulting «-tuple y into a code word. 
The whole procedure may be viewed as an approximation of 
the Voronoi regions of the code by a union of orthants of Rn. 

This procedure works because, while the determination 
of the one among the Voronoi regions in which r is falling 
is a complex task, we can make it easier by approximating 
them by a union of regions such that it is easy to determine 
in which one the received vector is falling. Here we apply 
this idea to group codes: their Voronoi regions are approxi- 
mated by a union of smaller regions with the property that 
determining the position of r with respect to them is an easy 
task. 

II. GROUP CODES 

Group codes are generated as follows. Consider a group 
G of N x N orthogonal matrices which forms a faithful rep- 
resentation of an abstract group Q with M elements, and an 
"initial vector" x g Rw, RN the Euclidean N-dimensional 
space. A group code X is the orbit of x under Q, i.e., the 
set of vectors Gx. By assuming that the only solution of the 
equation Gx = x, G € G, is G = I (the identity matrix), the 
code X has M elements. We may thus denote x9 the code 
vector associated with g E.Q- 

With the vectors of X transmitted over the additive 
white Gaussian noise channel, the optimum (i.e., maximum- 
likelihood) decoder,   upon reception of the  noisy vector 

r = xg + n, chooses as the most likely transmitted vector the 
one that yields 

min 
see 

(1) 

If Q is not endowed with any special structure, decoding (i.e., 
the solution of (1)) is obtained by exhaustive search among 
all the candidate g g Q. This requires a number of calcula- 
tions vc = NM (in fact, M scalar products of N terms each 
must be computed) and a storage of vs = NM real numbers 
(M vectors of N components each). In addition to this, the 
minimum has to be found, which requires VM operations. 

III. PERMUTATION DECODING 

We call Permutation Signal Set (PSS) a set of vectors that 
are obtained by applying a group Q of permutations it to an 
initial vector x. If the vectors have n components, applica- 
tion of the symmetric group S„ of all the permutations of n 
letters to an initial n-vector gives a class of codes known as 
"permutation modulation". 

The latter codes admit an especially simple maximum- 
likelihood (ML) decoding algorithm. Assume that vector r 
was received. The ML decoder must seek the vector 7rx 
which maximizes the scalar product 

/ j rt (-KX)( 

This maximum is achieved when the largest component of 
7TX is paired with the largest component of r, the second 
largest component of ix is paired with the second largest 
component of r, etc. This algorithm is algebraic in nature, 
and does not require the receiver to store all the code words. 

Now, if the PSS is generated by a subgroup Q of Sn, we 
may use the same basic decoding idea in two steps: 

1. We first decode r as if Q = S„, obtaining as a result a 
permutation x of n letters. This may not belong to Q. 

2. Next we "algebraically decode" w into an element of Q. 

Here we focus on the first decoding step. In particular, it 
can be proved that 

• Every group code can be represented in the form of 
a permutation signal set acting on an initial vector x 
with n components. 

• The minimum value of n is obtained as follows. If 
\H'\ denotes the largest non-normal subgroup of Q that 
does not include normal subgroups of Q other than the 
identity, then n is given by the ratio 

\wy 
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Abstract — Algebraic fundamentals of convolutional 

encoders are given by using the Schreier product and 

the Theory of Machines. 

I. INTRODUCTION 
The majority of the convolutional encoders known in the tech- 
nical literature are over algebraic fields. Recently, [1], and [2], 

have shown that these encoders essentially make use of the 
additive group of those fields. We take this approach and de- 

fine the elementary convolutional encoder (ECE) over abelian 
groups and we point out their main properties that will serve 
as a reference to the definition of general machines. By use 
of the Schreier product, the general* convolutional encoder 
(GCE) is defined. As a consequence, the ECE is a partic- 
ular case of the GCE. The Schreier product can be properly 
exploited in the design of the encoder. As an example of this 
fact, we provide two results about the machine only by looking 

at the properties of this product. 

II. MACHINES 
Definition 1 A machine is a quintuple M = (X, Y, Q, 8, ß); 
where X is a finite set of inputs; Y is a finite set of outputs; Q 
is a (not necessarily finite) set(space) of states; 8 : X xQ —* Q 

is the next-state application; ß : X x Q —* Y is the output 

application.^ 

Let x* be a finite string of elements of X. We say that the 
machine M = (X, Y, Q, 8, ß) is controllable if for all q and q' 
€ Q; there is a string x* such that q' = 6*(x*,q). Where 6* 
is the natural recursive extension map of 6. Given j £ N; if 
Vg, q € Q3x* € X* with \x*\ < j such that q = 8*(x*,q); 
then we will say that the machine is j-controllable. Clearly, if 
M is j-controllable then it is (j + l)-controllable. The number 
i/ = min {j | M is j — controllable] is the control index of 

M. 

III. ELEMENTARY CONVOLUTIONAL ENCODER 

Definition 2  Let n, k, and m be natural numbers such that 
n > k > 1, and m > 1.   Consider the matrices T°, T1, ...,Tm, 

with T* = (4s)  , where i\.s € Z, 1 < r < k, 1 < s < n, and 
i = 0,1,..., m.    We define an elementary convolutional 
encoder with parameters (n, k, m) over a finite abelian group 

G as a machine M = (X, Y, Q, 8, ß) where: 
X C Gk is the finite set of the input alphabet; 
Y C Gn is the set of the output alphabet; 
Q= {q = (x\x2,...,xm)\xi eX} C (Gk)m &Gkm, is the 
set (or space) of the machine states; 
8 : X xQ -* Q, is given by 8{x°,q) = (x°, x1, x2, ...,£m_1) 
(the next state map); 
ß : X x Q -+ Y,  is given by ß(x°,q) = ^(i0,!1,. 
x°T° + x1^ + ... + xmTm; (machine's outputs), o 

') = 

From this definition we can show the following properties of 

the ECE: 

Proposition 1 If X is a group, then: i) Q and ß(X, Q) 
are also groups, ii) The Cartesian product X x Q becomes 

a direct product of groups and the mappings 8 and ß are 
group homomorphisms, with 8 being surjective. iii) The sets 
Y0 = {ß(x,eQ)}xex and Yi = {ß(x, q) | S(x,q) = eQ} are 

normal subgroups of ß(X,Q) and ^21 « ^21 « Q. iv) 
The ECE is a controllable machine, with control index v < m. 

xThis work was supported in part by FAPBSP under grant 
92/4845-7, and it has been supported by CNPq under grant 
301416/85-0, Brazil. 

IV. GENERAL CONVOLUTIONAL ENCODER 

Definition 3 Let X and Q be two finite groups. Let a : Q —* 
Aut(X) and ß : Q x Q —* X be mappings such that for any 
gi,q2,q3 G Q, and x E X both satisfying the following con- 

ditions: 1) <r(q1)(n(q2,q3)).ß(qi,q2qi) = p{qi,q2)-ß(qiq2,q3) 
and 2) a{qi){a{q2){x)) = ß(qi, q2).o-{qiq2){x).ß(q1, q2)~

1 ■ 
Then, we define the Schreier product XCTlMQ, of X and 

Q as the ordered pair of the elements of the respective groups 
(h, k) satisfying the following operation: 

(x, q) * (z\ q) = (x.a(q)(x').ß(q, q), qq) .O 

This Schreier product is a group with identity element 
(/t(eQ, eg)-1 , eq), where CQ is the identity element of Q. 

Definition 4 A general convolutional encoder, with pa- 
rameter v, is a v-controllable Schreier machine M^^ = 
(X,Y,Q,8,ß) such that the application^ : X<rlßQ —► QxYxQ 

given by W(x,g) = (q, ß(x,q),6(x,q)) is infective. O 

Assuming the set X is a group, and since the direct product 
is a particular case of the Schreier product, we have that the 
ECE is a particular case of GCE. Let T = Imfö) be the 

edges of the trellis of MCT,M. T is a group isomorphic to 

Xa,iiQ. Moreover the sets To = {^(x,eQ)}xex and Ti = 

{^(x,q) | 8(x,q) = eq} are normal subgroups of T and -f- « 

2- « Q. On the other hand, To w X. Hence, if To = Ti; then, 
given q / eQ, there is no x* such that 8*(x*, ecj) = q. Thus, 

we have: 

Theorem 1 // the class x = {H C Xa,y.Q / H is a normal 
subgroup with \H\ — \X\}, has no more than one element, then 
the machine is non-controllable. 
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Abstract —   We show how to construct and classify Given an unlabeled group trellis, the next step is to assign 
inequivalent homogeneous rate-fc/Ai+1 trellis codes us- 
ing principles of computational group theory. Given 
a complete classification of useful trellis structures, 
trellis codes based on groups are no more difficult to 
construct than trellis codes based on binary fields. 

I. MOTIVATION 

A homogeneous code Q [1, 2] is the orbit Cx of a group 
code C [3, 4] acting on a constant sequence x. The class 
of homogeneous codes is larger than the class of binary linear 
convolutional codes, and may therefore be expected to contain 
new useful trellis codes. While linear codes, which are always 
homogeneous, can be found by enumerating parity check equa- 
tions, codes constructed from non-abelian groups cannot. We 
are therefore forced to use more complex methods from group 
theory. 

II. METHODS 

We can separate the problem of finding homogeneous codes 
into three parts: choosing a group structure for the trellis, as- 
signing labels to trellis branches, and testing for pathological 
behavior. Like the enumeration methods used for convolu- 
tional codes, the partitioning and labeling of the signal set is 
essentially independent of the code search. 

A suitable definition of equivalence for homogeneous codes 
greatly reduces the number of distinct structures that must 
be examined at each step. Two homogeneous codes are equiv- 
alent if there is a bi-infinite sequence of label permutations 
that maps one to the other. It can be shown that equivalent 
codes are always related by a constant sequence of permu- 
tations. Thus, code equivalence is simply trellis equivalence, 
where two labeled trellises are equivalent if there is a permu- 
tation of states and labels that takes one trellis to the other. 

Group trellis structures are enumerated using derivative 
codes and group extensions. The size, rate, and controllability 
properties of the trellis are selected in advance; this fixes the 
locations of the trellis branches. A given trellis admits only 
one binary linear algebraic structure. But it may have several 
different group structures. Fortunately, despite the enormous 
number of nonisomorphic groups of even small order, only a 
handful appear as the algebraic structure of a trellis. 

These groups are found by enumerating group extensions. 
If C is a group code, its derivative code C" is formed by taking 
the set of state sequences traversed by the sequences of C. 
Iterated derivatives terminate at the trivial code. If C has 
no parallel transitions then C and C' are isomorphic. Hence 
(unlabeled) trellises can be enumerated up to equivalence by 
enumerating derivatives up to isomorphism. 

The derivative operation strips away any parallel transi- 
tions in the trellis of C. Reversing the derivative in such cases 
requires a group extension of the trellis by its parallel branch 
group. Group extensions of 2-ary groups by 2-ary groups, 
which are the only type that arise for r&te-k/k + 1 codes, are 
straightforward to enumerate for moderately sized groups. 

labels to branches. It suffices to assign only the zero-labeled 
branches in the trellis because, for a homogeneous code, the 
zero-labeled branches form a subgroup of the trellis, and each 
right coset of this subgroup is distinctly labeled. 

Zero labeling proceeds as follows. The states which have 
exiting zero branches are a subgroup of the state group, as 
are the states with entering zero branches. In fact, these two 
subgroups must be isomorphic and, for r&te-k/k + 1 codes, 
must be half the size of the state group. Choosing the left 
and right zero-labeled state groups therefore amounts to enu- 
merating a restricted class of subgroups of index 2. The zero- 
labeled branches define an isomorphism between the left and 
right zero-labeled state groups; assigning zero branches is tan- 
tamount to enumerating isomorphisms from one subgroup to 
another. Recent advances in computational group theory have 
solved this problem for 2-ary groups. 

The last step in the construction of useful trellis group 
structures is to test the trellis for catastrophic behavior. For 
group codes, this test is performed by checking if the zero- 
labeled branch group admits a periodic path through the trel- 
lis. Interestingly, this final test eliminates many nonabelian 
state groups for which no noncatastrophic labeling exists. 

The final step of mapping branch labels to elements of a 
partitioned signal set can proceed as with the standard binary 
linear case. 

III. RESULTS 

The methodology developed above reduces the problem of 
enumerating useful groups to an essentially mechanical pro- 
cess. Preliminary results for small codes are tabulated below. 
The results for binary linear codes were computed primarily 
for verification; they can also be found by counting parity 
check equations. Note that nonabelian codes become more 
plentiful beyond 16 states. 

states rate state group number 
4 1/2 Z2 x Z2 4 
8 1/2 

2/3 
2/3 

Z2x Z2x Z2 

Z2x Z2x Z2 

D8 

16 
12 
1 

16 1/2 
2/3 

{Z2f 
(Z2)

4 
64 
48 

iThis work was supported by NSF Grant NCR-9457509 
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We consider codes of the following type. Let S (the signal 
set) be a subset of n-dimensional Euclidean space lZn. Let / : 
S —* S be a continuous mapping.  The code C(S, f) consists 
of those bi-infinite sequences x = ... £_i, Zo, X\, X2,... 6 S 
that satisfy 

xt = f(xt-i) 
for all t 6 Z.   Note that the "future" of each codeword is 
completely determined by its "past." 

At first sight, it might seem that the information rate (i.e., 
the number of information bits per code symbol) of any such 
code must be zero. However, as the example below shows, this 
need not be so if S is an infinite set. 

Throughout the paper, A will denote some finite alphabet 
and B will denote a subshift (i.e., a closed, shift-invariant 
subset) of Az. Let a : Az —► Az be the left shift operator. 

Example:    Let A = {0,1}, let B be any subshift of Az, and 
let p ; B —+ [0,1] be the mapping 

00 

...b-Ubo,b1,b2,...^^bt/2t+\ 
t=o 

We then define a code C as the image of the encoding rule 
B —<■ C : b 1—> x with 

Clearly, the information rate of C is one bit per symbol. The 
signal set S is some subset of the unit circle. But 

t27r-2p(<7,-1(6)) 
Xt 

2 
Xt-l, 

which shows that C = C(S, f) for / : x >—► x2. 

For B = Az, this example was first presented in [1], where 
it was shown that the code is a group code (or geometrically 
uniform [2]) and has a well defined minimum distance. It then 
turned out that this code is actually a standard example of a 
chaotic dynamical system [3]. The related idea of using chaotic 
systems to produce waveforms for communications had earlier 
been proposed in [4]. 

The choice of B = A in the example causes the following 
problem: the all-ones information sequence and the all-zeros 
information sequence are mapped to the same codeword. (One 
can prove that some problem of this type always occurs if S 
is connected.) The remedy is to restrict B to a subshift of Az 

that forbids too many consecutive zeros (or ones, or both zeros 
and ones). The resulting effective signal set S is a fractal and 
totally disconnected (like the Cantor set). While this seems 
odd at first sight, the resulting codes are well-behaved in every 
respect; in particular, they can be encoded and decoded with 
finite memory and finite-precision arithmetic. 

It can also be shown that codes of this type can have an ar- 
bitrarily large minimum distance, which dispells any lingering 
suspicion that such codes are somehow inherently "bad." 
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Abstract— A class of binary-to-g-ary convolutional 
codes is studied where the operation performed in 
the encoder is addition modulo g. For rate 1 codes 
an extended spectrum for the codes is defined and a 
necessary and sufficient condition for the encoder to 
be catastrophic is given. Optimal codes, for relatively 
small alphabet size g and memory size m, found by 
computer search are reported. 

I. SUMMARY 

Consider a rate 1 memory m binary-to-g-ary encoder where 
the operations in the encoder are performed over Zq (the ring 
of integers mod g). The encoder input sequence is binary and 
the encoder output sequence as well as the encoder generator 
coefficients are g-ary, i.e. 

v(D) = u(D)g(D) mod q, 

where 

v(D) = v0 + vxD + v2D
2 + ... 

«(£>) = U0 + «1-D + U2D
2
 + ... 

g(D) = g0+g1D + ...+gmDm 

vi e{0,l,...,9-l} 
ui € {0,1} 
gi e {0,l,...,g-l}. 

If the input bits are viewed as indicator functions, the only 
operation performed in the encoder is addition modulo q. 
In comparison to the encoders reported in [l], the choice of 
output alphabet is therefore less restrictive. Since the in- 
put alphabet is not a subfield of the output alphabet a dif- 
ferent approach must be taken regarding free distance and 
distance spectrum for the code. Furthermore, it is possi- 
ble that a rate 1 binary-to-g-ary encoder is catastrophic al- 
though no input sequence of infinite Hamming weight results 
in an output sequence with only a finite number of nonzero 
symbols. An example is the rate 1 binary-to-6-ary encoder 
g(D) = 2 + 2D+4D2, shown in Fig. 1. 

Figure 1: Rate 1 binary-to-6-ary encoder. 

For this encoder it is easily seen that no input sequence with 
infinite Hamming weight gives an output sequence with finite 
Hamming weight. However, the encoder is catastrophic since 
the two (infinite) input sequences u = 10010111 1001 ... and 
u' = 01111001 0111 ... result in output sequences that only 
differ in the first position. Moreover, the distance spectrum for 
a binary-to-q-ary code can not be defined in an appropriate 
way, because different output sequences may have different 
distance spectra. 

In order to "circumvent" these difficulties we observe that 
the difference between two input sequences, u and u', is a vec- 
tor with elements € { — 1,0, 1}. The properties of an encoder 
are for this reason evaluated by use of an extended input al- 
phabet with elements from { — 1, 0,1}, i.e the input sequence is 
«ext (D) = «o+ «i D + u2D

2 + ..., where ut € {-1, 0,1}. The 
corresponding weight distribution of the output sequence is 
then evaluated. For the encoder above we find that it is catas- 
trophic since the (infinite) input sequence 1 —1 —10—1110 
1 — 1 —10... results in the output sequence 2000 .... 
The conditions for a rate 1 binary-to-q-ary encoder g(D) to 
be catastrophic can be summerized in 

Theorem 1 A rate 1 binary-to-q-ary encoder is catastrophic 
if and only if there exist an integer N and a sequence 
UN{D)such that (1 — DN)\ux(D)g(D) mod q, where ux(D) = 
no + u\D + ... + UN^ID N-l i„e {-1,0,1}. 

Applying the theorem to the encoder in Fig 1, we find that it 
is catastrophic since for N = 8 and UN(D) = 1 — D — D2 — 
D* +D5 + D6 we have uN(D)g(D) = 2 + 4D8 = 2(1 - DB) 
mod q. 

To find an optimum code an "extended distance spectrum" 
corresponding to input symbols from the extended input al- 
phabet was calculated according to the idea described in [2]. 
If we let n(dfree + i) denote the (i + l)th spectral component, 
then the codes found by computer search are optimal in the 
sense that the free distance is maximal, i.e. dfree = m + 1, 
and no code exists such that, for any / = 0,1, 2,..., 

n(dfree + i) = nopt{dfTee + *')      i = 0,1, 
n{dfree + i) < n0pt(dfree + l)       i = I. 

...l-l 

In Table 1 the first three spectral components for the found 
optimal codes, corresponding to distances m + 1, m-f 2 and m+ 
3, are given. 

memorysize 
m= 1 m = 3 m = S m = 7 

q = 4 (2,4,8) (6,20,92)     
q = 5 (2,4,8) (4,16,100) (8,70,364)   
q = 6 (2,4,8) (2,12,62) (4,16,126) (10,42,224) 
q = 7 (2,4,8) (2,8,32) (2,24,64) (4,48,184) 
q = 8 (2,4,8) (2,4,16) (2,6,42) (2,14,70) 

Table 1: Best distance spectrum for some values of mem- 
ory size m and alphabet size q. That no code with 
dfree = m+1 was found is indicated by " ". 

REFERENCES 
[1] William E. Ryan and Stephen G. Wilson, "Two classes of convo- 

lutional codes over GF(q) for g-ary orthogonal signaling," IEEE 
Trans. Commun. vol. COM-39, pp. 30-40, Jan. 1991. 

[2] Mats Cedervall and Rolf Johannesson, "A fast algorithm for 
computing distance spectrum of convolutional codes," IEEE 
Trans. Inform. Theory, vol. IT-35, pp. 1146-1159, Nov 1989. 

310 



Abelian group codes, duality and MacWilliams identities 
1 2 

Thomas Ericson   and Victor Zinoviev 

Dept. of Electrical Engineering, Linkoping University, 
S-581 83 Linkoping, Sweden 

2 
Institute for Problems of Inf. Transmission 

Ermolova Str. 19 
GSP-4, Moscow, 101447, Russia 

Abstract - The concept of dual codes is formulated 
in terms of characters and abelian groups. The 
MacWilliams transform is established under 
general conditions. It is demonstrated that this 
transform can naturally be regarded as a 
partitioning of a fourier transform. 

Let A be a finite abelian group and let U = { ZE C: 
I z I =1} be the set of units in the complex plane C. 
Any homomorphism cp: A->U is an irreducible 
character of A . The set A of all irreducible 
characters is an abelian group isomorphic to A 
(Herstein [1], p 115). Let 1» : A->A be a fixed 
isomorphism from A to A, taking the element a 
in A to the irreducible character *P& in A. 

By a code we understand a subset C in the group 
A . The code is a group code if it is a subgroup in 
A. For any group code C in A we define the dual 

C     according to 

C1 A {aGA:¥a(C) = {l}}. 

It is easy to see that  C    is also a group. 
Now suppose there is a weight  w(x)   associated 
with each element    xe A.  More  formally,  let 

w:A-»SR+ be a map from the finite group A into 

the set SR+ of non-negative real numbers. Denote 
by W the range of this map and let C be a code in 
A . For any ueW we define 

Au= l{xeC:w(x) = u}l. 

The weight distribution of the code C is A = {(u, 
Au):ueW}. 

A bijection T: A-»A such that w(Tx) = w(x) 
holds for any element x in A is called a weight ■ 
preserving transformation. If T and S are two 
weightpreserving transformations, define the 
product TS according to TS(x) = T(S(x)), XEA. 
It is clear that the set of all weight preserving 
transformations forms a group under this 
product. We denote this group by Q . 
Lemma: Let the characters *PX satisfy ^Frp^Ty) 

= ^x(y); x, ye A; Te Q. . Under this assumption 

there is a function K: AxA->9t+ such that 

Ju(y) = I ju(x) ^x(y) = K(u, w(y)),     x, yGA, 
xeA 

where ju(x) is the indicator function for the 
weight w and where Ju(y) is its fourier 
transform. Morever, under these conditions the 

weight distribution A   for the dual code C   is 

given by 

A£=   I'    K(u,v>V 
veW 

The last relation is the MacWilliams identity. 
We address the question under what conditions 
this holds. One general result is as follows. 

Denote by  9t     the set of all functions f : A->9t 

and let  L(w)  denote the linear subspace in  9t 
spanned by the functions   {ju: ue A } . It is clear 

that this set forms an orthogonal basis in L(w). 
The set {Ju: ue A} is of course also an orthogonal 

basis. We denote by L (w) the linear space 
spanned by this new basis. In general the spaces 

L(w)   and   L-'-(w)    are different. Occasionally, 
however,  they might coincide. 
Theorem:    the MacWilliams identity holds if 

and only if the weight   w   is such that L(w) = 

L^Cw) . 
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Abstract- This paper investigates the performance 
(differential SNR) of two detectors for spread-spectrum 
signals modeled as random processes embedded in chan- 
nel noise. Linear interference suppression is performed on 
the multiple-access interference prior to detection; thus 
the noise in the detection problem is comprised of col- 
ored noise and residual multiple-access interference. It is 
observed that a non-linear detector outperforms a purely 
linear detector. 

1. Introduction 
A Code-Division Multiple-Access (CDMA) based digi- 

tal communication system is considered. Bandwidth effi- 
ciency, complexity and security issues motivate the search 
for schemes to integrate new user information into central- 
ized demodulators. In order to accommodate a new user into 
a receiver, its presence must be detected. 

It is straightforward to show that the locally optimum de- 
tector for this detection problem optimizes the differential 
SNR. However the locally optimal detector is infeasible to 
implement; thus, simpler, noise-distribution-independent de- 
tectors are pursued. A non-linear detector is considered to 
compensate for the presence of the residual multiple-access 
interference (RMAI) which is non-Gaussian in nature. Com- 
parison is made with a linear detector which is better suited 
to Gaussian noise. 

2. The Detection Problem 
The signal to be used for detection of the spread-spectrum 

signal is a linear transformation of the received signal. The 
transformation, V, is chosen to suppress multiple-access in- 
terference. This gives rise to a hypothesis testing problem 
that can be cast as follows: 

Ho : x{ = Vn, + Si 

Hi-.x; = Vn{ + St+ 6s, for i £ [1, N], 
$ is an SNR parameter. Vn; is the ambient channel noise 
which will be modeled as a zero-mean, colored, additive 
Gaussian process. 6{ is the RMAI. For K existing users, 
8- is drawn from one of 2 possible random vectors with 
equal probability. We assume that the stochastic signal s; is 
zero mean. 

We examine detectors based on real-valued detection 
statistics, TN(X), compared to thresholds. The differential 
SNR for the random signal case is defined as , 

12 

£(T)     =      lim 
lime2_0 foEe{TN(x)} 

N Var0{TN(x)} 

The two detectors under study have the following form: 
Ä T 2 L 

TN(x)       =       ^2^2$(x2i-l k) $(X2i k), 
i=l  k=\ 

where $(x) = x for the simple correlator (Tsco) and 

$(s) = sgn(a;) for the non-linear polarity coincidence corre- 
lator (Tpcc)- It can be shown that the decision statistics 
for these two correlators under both hypotheses are asymp- 
totically normal and hence justify the use of the differential 
SNR as a performance measure. 

While one can easily determine the differential SNR for 
Tsco, calculation of the differential SNR for Tpcc involves 
the evaluation of the following probability: P[x > 0, y > 0] 
for x and y two jointly Gaussian, correlated random variables 
with non-zero means. No closed form expression exists for 
this quantity [1]; thus we bound this probability to yield the 
following, 

0 < |E{sgn(a:)sgn(y)}| < — arcsin 

where p = Cov{:r, y}. Use of these bounds yield upper and 
lower bounds for the differential SNR of Tpcc ■ 

3.    Performance Example 
Performance is studied in the context of a decorrelator 

[2] based multi-user receiver system. It is assumed that the 
spreading codes are mismatched between the mobile trans- 
mitters and the receiver (e.g. due to multi-path) thus RMAI 
will be present. We consider an environment where the ab- 
solute value of the cross-correlation between the signature 
sequences is increased by 0 < £ < 1, and the auto-correlation 
is decreased by £; £ captures the worst-case mismatch due 
to propagation effects. It is clear from Figure 1 that the 
non-linear detector maintains a distinct advantage over the 
linear one. The performance of a multi-user system based on 
conventional matched filter receivers is also studied, but not 
presented here. 
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I. INTRODUCTION 

Minimum Mean Squared Error (MMSE) demodulation for 
direct-sequence CDMA systems [1] eliminates the near-far 
problem, and can be implemented adaptively (i.e., without 

explicit knowledge of the parameters of the multiple-access in- 
terference), given a training sequence for the desired transmis- 

sion. However, prior to timing acquisition, the receiver does 

not know the phase of the training sequence, i.e., it does not 
know, for a given observation interval, which bit of the train- 

ing sequence contributes the most signal energy. Conceivably, 

this timing information could be obtained using conventional 
acquisition techniques by correlating over long enough inter- 
vals and applying enough power control to resolve the near-far 
problem. In this paper, however, we present an adaptive ap- 
proach to the problem of near-far resistant joint acquisition 

and demodulation. 
Our method is to use a training sequence with a short pe- 

riod P, and run P adaptive algorithms either serially or in 
parallel, one for each assumed phase of the training sequence. 

The adaptive algorithm that yields the least Mean Squared 
Error (MSE) corresponds to the correct phase, and yields in 
addition an MMSE correlator that can be used for continued 
training or for decision-directed adaptation. Thus, acquisition 
results in a near-far resistant demodulator that implicitly ac- 
counts for the timings and amplitudes of all the transmissions 

without explicitly estimating even the timing of the desired 
signal. (Estimates of the latter can be derived from the result- 
ing MMSE demodulator if required.) We note that a method 
for joint acquisition and demodulation that does not require 
a training sequence has also been devised [2]. 

II. MODEL AND ALGORITHM 

We consider an equivalent synchronous model for an asyn- 
chronous direct-sequence CDMA system, obtained by chip 

matched filtering, sampling at (a multiple of) the chip rate, 
and restricting attention to a finite observation interval for 
each bit decision. The received vector r„ € Hd used for the 

nth bit decision is given by 

rn = bo[n]u0 + 2j&j["]ui + w" (1) 
J'=I 

where Uo is the vector modulating the desired bit bo[n], and, 
for 1 < j < J, bj[n] are interfering bits due to intersymbol 
interference and multiple-access interference, Uj are interfer- 
ence vectors modulating these bits, and wn is additive white 

Gaussian noise. The received vector for subsequent bits are 
obtained by sliding the observation interval by T, where T is 
the bit interval. The vectors u> are linear combinations of 

shifts of the spreading sequences used by the various trans- 
missions; we do not assume knowledge of these vectors.  Our 

'This work was supported in part by funds from the University 
of Illinois Research Board. 

objective is to arrive at a linear receiver that provides a bit 

estimate 6o["] = sgn(c rn), where c is chosen to minimize the 

MSE£[(cTrn-60[n])2]. 
The desired transmission sends a periodic sequence (period 

P) of training bits t[n]. We consider an observation interval of 
at least 2T, so that one bit of the desired transmission must 

fall completely within it. Letting bo[n] denote this bit, we must 

have bo[n] = t[n + fc*] for some unknown integer k* between 0 
and P — 1. Since the phase fc* of the training sequence is not 

known while in acquisition mode, we run P adaptive MMSE 

demodulators, each corresponding to one of the following hy- 
potheses about the phase of the training sequence: 

Hi:    bo[n] = t[n + i],     i = 0,1, ...,P - 1 (2) 

For example, under a least squares implementation of this 
algorithm spanning M observation intervals, the correlator 

for the ith hypothesis is given by 

Ci=R-1üti> (3) 

where R = (1/M) Y2n=i r"r" 's 'ne empirical crosscorrelation 
matrix for the received vector, and 

M 

ü(,) = (l/M)^r[« + i]rn 

n=l 

is the estimate of the desired signal vector Uo under hypoth- 
esis Hi. The estimated MSE under hypothesis Hi is given by 
rji = 1 — c[Ü*. The best hypothesis is the one with the small- 
est estimated MSE, and the corresponding correlator c; is a 
near-far resistant demodulator by virtue of the near-far resis- 
tance of the MMSE demodulator [1]. Good hypotheses can be 
combined to further enhance performance. This method relies 
on the training sequence having good periodic autocorrelation, 

and on the data bits for the interfering transmissions being un- 
correlated with those of the desired transmission. If multiple 
transmissions are being simultaneously acquired, their train- 
ing sequences should have good periodic crosscorrelations. 

In the conference presentation, we will (a) show via simu- 
lation of the least squares algorithm that a near-far resistant 
demodulator is obtained after a very small number of itera- 
tions, (b) provide an approximate analysis of the effect of least 
squares estimation errors on acquistion performance (i.e., on 
the probability of choosing the wrong hypothesis), and (c) 
comment on directions for future research. 

[1] 

[2] 
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We present a blind adaptive interference suppres- 
sion algorithm for Direct-Sequence Code-Division Multi- 
ple-Access, which is based on the Minimum Mean 
Squared Error (MMSE) criterion. The algorithm is blind 
in the sense that it does not require a training sequence, 
although it does require (approximate) knowledge of the 
user spreading waveform and associated timing. The 
algorithm is related to the blind interference suppression 
algorithm presented in [1], and assumes that the MMSE 
filter is expressed as the sum of two orthogonal compo- 
nents: the matched filter (referred to as the anchor) and an 
adaptive filter. However, instead of using the minimum 
variance (MV) criterion, as in [1], we consider an alterna- 
tive cost function which is closer to the actual MSE. This 
cost criterion was proposed by Sato and Godard [2] for 
blind equalization of a single-user channel. However, 
without the orthogonal decomposition presented in [1], 
this cost function is not suitable for the multi-user applica- 
tion due to the presence of a local minimum associated 
with each user. 

The orthogonally anchored Sato cost function leads 
to a stochastic gradient (or least squares) algorithm that 
has the following advantages relative to the MV algo- 
rithms in [1]: 

• The algorithm is insensitive to mismatch between 
the anchor and desired signal. 

• Multipath components within the window spanned 
by the filter are coherently combined. 

• The stochastic gradient algorithm produces (much) 
less asymptotic MSE than the MV stochastic gradi- 
ent algorithm for the same speed of convergence. 

A disadvantage associated with this cost function is 
that there is a local minimum associated with each user. 
However, if the crosscorrelation between any pair of pulse 
shapes is small, then the orthogonal anchor ensures that 
the norm of the coefficient vector that achieves any of 
these local minima must be very large. These local min- 
ima can therefore be excluded by an appropriate norm 
constraint on the vector of filter coefficients. 

Orthogonally Anchored Adaptive Algorithm 

Consider a synchronous DS-CDMA system where 
the vector of received samples corresponding to the ith 

transmitted bit at the output of the chip matched filter is 
given by 

r[i] = Z bk[i]Aksk + n[i] (1) 
k=\ 

where K is the number of users, r has N components, N 
being the processing gain, {&*[«']} is the sequence of 
binary symbols corresponding to user k, sk is the spread- 
ing code for user k where llstll = 1, Ak is the amplitude for 
user k, and n is a noise vector. 

The linear MMSE detector for user 1 consists of the 
coefficient vector C] that minimizes E[(bx[i] -c/rf«])2]. 
To obtain the blind algorithm Cj is constrained to be of the 
form c/ = S] +W] where sj is an estimate of sj, and 
(WJ/SJ =0. Ci is then chosen to minimize the Sato cost 
function 

F(c,) = E< c/rt/J-sgn^'rff]) (2) 

where sgn (x) = xl\x\. 

A stochastic gradient algorithm that minimizes (2), 
subject to the preceding orthogonal decomposition, is 
given by 

w[i] = w[i - 1] - fie[i]\ r[i] - (r'^s^si (3) 

where e[i] = Ci'r[i] - sgn (C]'r[i]), and n is the step-size. 
(The MV stochastic gradient algorithm presented in [1] 
simply replaces e[i] by the output sample ci'r[i].) A least 
squares adaptive algorithm based on the preceding 
approach is easily derived. Numerical examples compar- 
ing the performance of these algorithms with the MV 
algorithm in [1], and with the conventional LMS algo- 
rithm will be presented at the conference. 
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I. INTRODUCTION 

During the last few years there has been much work on multi-user 
detection (MUD) for Direct Sequence Code Division Multiple 
Access (DS/CDMA) systems, and several solutions have been 
presented [1]. Another active field of research considers methods 
for combined source and channel coding in vector quantization 
(VQ) [2]. The present paper combines these two areas. We present 
a method for robust transmission of VQ-data over a CDMA 
channel. Our approach differs from most prior work in two ways: 
(1) The decorrelation of the users and the decoding of the VQs are 
carried out simultaneously; (2) The decoding is based on the 
unquantized matched filter outputs, and no binary decisions are 
taken. We use the term soft decoding to emphasize this latter fact. 
Thus, our approach considers estimation based rather than 
detection based decoding of the channel and the VQs. Similar 
studies for single-user channels can be found in [3], [4], and [5]. 

II. SYSTEM MODEL 

Consider a symbol synchronous CDMA system with K users. User 
k produces a sample vector Xt, which is encoded into an index lk 

by the VQ encoder of user k. The index is thereafter converted into 
a block b(/t) of L bits in polar format {+1}. For simplicity we 
assume that all users have the same block length L. The bits are 
transmitted one by one on a CDMA channel that is distorted by 
AWGN. Thus, the matched filter outputs of the received signal at 
time n can be expressed as, (c.f. [1]), Y„ = RW ■ b„ + N, where R 
is the cross-correlation matrix between the different spreading 
codes of the users and W = Amg{wv...,wK) is the amplitude matrix, 
where wk denotes the amplitude of user k. All user bits at time n 
are represented by the vector b„ = (£„(/,),...,£„(/*• ))r where bn(Ik) 
denotes the nth bit of user k. The channel noise vector N is white 
and composed of Gaussian zero mean variables with variances a . 

III. OPTIMAL SOFT DECODING 

For decoder design we adopt the minimum mean square error 
(MMSE) criterion. That is, the decoder Xt(Y), for user k, is 
designed to minimize £||Xt-X*(Y)||\ where Y = (Y,,...,YJ 
denotes the matrix of matched filter outputs. The main result of this 
paper is a formulation of the MMSE decoder based on estimates, 
^(y„) = tanh(o-"2{(RW)Ty„}t), of the individual bits, bn{Ik). 
Here, {&}k denotes the Mi element of the vector a. The derivation 
is based on the Hadamard transform description of a VQ [3]. To 
treat this in some more detail, let 3 be the super-index defined by 
the binary forms of all the VQ encoder outputs, Ik, such that user 1 
defines the L least significant bits and user K the L most significant 
bits of 3. Also let c3 =[(c<;))r,...,(c(*))7T denote the vector 
composed by the centroids, c\k) = E[Xk \Ik = i], of the VQs. Then 
c3 can be described as c3 = Th3, where h3 is the 3th column of a 
size 2KL Hadamard matrix and T is a sparse transform matrix (c.f. 
[3]). It is easy to show that the MMSE estimate of the input vectors 
of all users is X(y) = Th(y), where h(y) = £[h31Y = y]. This leads 
to the expression 

X(y) = [(X,(y))r, .(Xr(y)) 

for   the   MMSE   decoder.   Here   R, 
mh=£[h3-/(3)], 

= T R„ 
n»hP(y) 

■P(y) 

Furthermore, the bit-estimates, bk, enter as p(y) = pK ® ■ ■ ■ ® p,, 
where jjk = (l&k(yL))T®■■■<%>(h^iy^)7. Here ® denotes the 
Kronecker matrix product. Thus, the vector p(y) consists of 
products of bit-estimates, bk(y„), for all users at all different times. 
We name our decoder the Soft Multi-User Decoder (SMUD). The 
SMUD performs, as noted above, combined MSE-optimal user 
decorrelation and VQ decoding. Note that, in the decoder 
expression, only the vector p(y) depends on the received signal y. 
Furthermore, note that the expectations in the expressions for Rhh 

and mh are taken over the statistics of the VQ indices. Thus, the a- 
priori index information is confined to these quantities. Since the 
SMUD is MSE-optimal it shows how to utilize the a-priori 
information in an optimal fashion where Rhh and mh are used to 
modify the statistic p(y) to account for the source statistics. This is 
in contrast to systems where VQ decoding is based on an ML- 
decision, not taking the source statistics into account. Note also 
that, since the Hadamard transform is a fast transform, the 
calculation of h(y) from the received signal, y, can be carried out 
using an order of KL-2KL operations [6]. 

IV. NUMERICAL SIMULATIONS 

We have compared the SMUD to the Maximum Likelihood Multi- 
User Decoder (ML-MUD) [1] in combination with table-look-up 
VQ decoding on a CDMA system with 2 users having the same 
transmission energy (w\ = w\). The cross-correlation between the 
users is 0.7. A VQ trained for a first order Gauss-Markov source 
with correlation p = 0.9 was utilized for both users, and we used 
the sample vector dimension 6 and the block length L=6 bits. The 
performance measure is the signal-to-noise ratio (SNR) at the 
output of the decoder at a given Channel-SNR (CSNR), w2

k/o
2. 

The performance of the decoders is shown in the table below. As 
seen the SMUD outperforms the ML-MUD with more than 3 dB at 
low CSNRs. We have also observed that the performance gain 
increases with increasing cross-correlation between users, lower 
CSNRs, and lower VQ output entropies. Furthermore near-far 
resistance for the SMUD has been concluded from simulations. 

CSNR (dB) -1 3 7 11 15 
SMUD (dB) 
ML-MUD (dB) 

3.10 
-0.32 

4.78 
1.32 

6.53 
3.43 

8.34 
6.33 

10.32 
9.94 

hh=£[h3h5-/(3)]   and 
where     /(3) = exp(-(2cr2r1Xl|RWb„||2). 
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Abstract — We consider Code-division multiple- 
access (CDMA) systems with continuous phase mod- 
ulation (CPM). In particular, two multiuser detec- 
tion algorithms with linear computational complexity 
are proposed for a synchronous system. We demon- 
strate that the choice of an appropriate set of deci- 
sion statistics is crucial for detection and we derive 
an efficient representation. The analysis is performed 
for two signal formats which exhibit different spec- 
tral and error rate characteristics. We determine the 
code design that maximizes the minimum Euclidean 
distance and show that the resulting CPM/CDMA 
signals ca" achieve significant performance improve- 
ments ox ar conventional CDMA signals. 

I. SIGNAL MODEL 
CPM/CDMA signals axe an attractive choice for communica- 
tions over predominantly bandwidth and power limited chan- 
nels since they combine the merits of both techniques. In 
particular, CDMA offers a series of desirable properties that 
include increased capacity, inherent diversity against multi- 
path fading and the ability to coexist with narrowband inter- 
ference. CPM provides signals with compact spectral char- 
acteristics that maintain a constant envelope and hence are 
immune to nonlinear distortions and easily amplified [1]. 

We consider a CPM/CDMA system with K active users. 
The kth transmitted signal is given as 

Sk(t,bk) = V^cos (2Trfct + 9(t,bk, ck,h) + 9k,o)      (1) 

where bfc = (..., bk(—l),6fc(0), fcfc(l),...) is the transmitted 
data sequence with bk(m) € {—1,1}, c* = (c/;(l),... ,ck(Nc)) 
is the spreading code of length Nc with Ck(n) € {—1,1}, and 
h is the modulation index [1]. The signal power is wk, the 
carrier frequency is fc and 9k,o is an arbitrary constant initial 
phase. The phase function 0(t,bk,ck,h) contains all the in- 
formation and its construction defines the signal format. The 
first format examined in this paper is similar to conventional 
CDMA in the sense that only one code is assigned to each 
user. Under that scenario however, only modest gains can be 
achieved in the error rate performance relative to conventional 
CDMA [2]. Another format introduced in [2] for a memoryless 
CPM/CDMA system, considers the case where each user has 
available a distinct pair of codes. The code that is used is de- 
termined by the transmitted information bit and the objective 
is to minimize the error probability. We discuss how to con- 
struct such codes, depending on the CPM parameterization, 
and provide the lower bound for the error rate. 

II. MULTIUSER DETECTION 
We assume that all users employ the same type of CPM [1], 
and that the signals are transmitted in a synchronous, addi- 
tive white Gaussian noise channel.  Similarly to conventional 

1This work is supported by the Advanced Technology Program 
of the Texas Higher Education Coordinating Board under Grant 
003604-018 

CDMA, the complexity of the optimum detector increases ex- 
ponentially with the number of users and the number of trellis 
states. Clearly, the implementation of the optimum detector 
is impractical and this motivates the need to develop linear 
multiuser detectors. To achieve linear complexity and near- 
optimum performance, a suboptimum detector must decou- 
ple the multiuser detection problem and subsequently perform 
single-user detection by individually recovering the metrics of 
each user. The optimal single-user detector can then be recur- 
sively implemented using the Viterbi algorithm. For single- 
user detection, each path metric becomes equivalent to the 
correlation between the received signal and the corresponding 
estimated transmitted signal. Denoting by 9i(m) the i' trellis 
state during the mth bit interval, the branch metric of the kth 

user that is associated with the transmission of bk(m) = dbl 
from the 9i(m) state is given as 

K 

Lk(h{m),9i{m)) = ^2Lk,j(h(m),el{m)) + n(m)       (2) 

where Lk,k{bk{m),9i(m)) is the metric of the desired signal, 
Lk,j{bk(rn.),9i(m)), j ^ k, are the interference metric com- 
ponents and n (m) is zero-mean Gaussian noise. Naturally, 
the objective of the multiuser detector is to remove the in- 
terference component from the metrics of the desired user. 
However, an attempt to directly evaluate the effects of the 
interference on the metrics of each user leads to prohibitively 
complex expressions for the decision statistics and an alterna- 
tive approach is necessary. We prove that the decision statis- 
tics can be considerably simplified if they are expressed in 
terms of the difference and the sum of the two branch met- 
rics that emanate from a common trellis state. That linear 
transformation reduces the complexity of the multiuser detec- 
tor while preserving the metric information required by the 
Viterbi algorithm. 

We propose two linear multiuser detection algorithms that 
are based on properties of the decision statistics and uti- 
lize concepts applied in multiuser detection of conventional 
CDMA signals. Both algorithms achieve near-optimum per- 
formance and can be employed for either signal format. We 
derive the conditions that maximize the minimum Euclidean 
distance and evaluate the optimum performance which can 
exhibit a gain that approaches 3 dB over binary antipodal 
signaling. The strict dependence between spectral and error 
probability performance that exists in typical CPM signals is 
largely decoupled and CPM/CDMA signals allow considerable 
flexibility in selecting a parameterization that satisfies certain 
spectral, error rate and complexity constraints. 
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Abstract — In this paper a near ideal noise whiten- 
ing filter for a time-varying CDMA system is consid- 
ered. The structure of the ideal noise whitening filter 
is studied and the metric function for tree search de- 
tection is derived. The ideal noise whitening filter for 
a time-varying CDMA system depends on unknown, 
future system parameters and is therefore difficult to 
realize. A near ideal, realizable noise whitening filter 
is proposed as a solution. 

I. Introduction 
Recently joint multiuser detection, in which the multiuser in- 

terference is treated as a part of the information rather than 
noise, has attracted much attention. The work of Verdü [1] 
has shown that optimum near-far resistance and a significant 
performance improvement over the conventional detector is 
achieved by an optimum maximum likelihood multiuser de- 
tector. The substantial improvements, however, are obtained 

at the expense of a dramatic increase in computational com- 
plexity. The complexity grows exponentially with the number 
of users. Thus, when the number of users is large, the op- 
timum detector becomes infeasible. It is therefore desirable 

to use a near optimum, low complexity detector for CDMA 
systems with a large number of users. Many low complex- 

ity multiuser detectors have been proposed (see references in 

[2]). Sub-optimal tree search algorithms such as sequential 
detection and the M-algorithm are especially promising. The 
IDDFD detector suggested by Wei and Schlegel [3] is essen- 
tially the M-algorithm applied over all users in a given time 
slot. 

II. M-Algorithm Detection 
Wei et al. [2] have shown that, in contrast to the case of the 
optimum multiuser detector, the choice of the receiver filter 
severely influences the performance of sub-optimum multiuser 
detectors. Detectors based on the M- or the T-algorithms and 
a noise whitening receiver filter generally perform better than 
similar detectors using only the matched filter. The M- and 

T-algorithm detectors based on noise whitening filter outputs 
can achieve near optimum performance at a very low complex- 
ity compared to the optimum detector. The M-algorithm can 
easily be applied to a time-invariant, asynchronous CDMA 
system, assuming that the noise whitening filter exists. In a 
practical system the noise whitening filter is related to time- 
varying system parameters. Time variations such as arrival 
and departure of users, random signature waveforms, and mul- 
tipath effects make it necessary to derive the noise whiten- 
ing filter following each system change.   Wijayasuriya et al. 

This work was supported in parts by Telecom Australia under 
Contract No. 7368 and by the Commonwealth of Australia under 
International S & T Grant No. 56. The results of this work form 
parts of Australian Provisional Patent Application No. PM9548/94. 

[4] have suggested the sliding window decorrelating receiver 
in. However, the derivation of adaptive filters is not easily 

accommodated using this technique. In the control theory 
area, a factorization method has been suggested by Youla and 
Kazanjian [5]. An alternative method has been suggested by 

Alexander and Rasmussen to factorize the CDMA multiuser 
channel [6]. 

III. Near ideal filter 
In this paper, we show that the method of Youla and Kazan- 
jian can be generalized to derive a near ideal noise whitening 

filter for a time-varying asynchronous CDMA system. The 
structure of the ideal noise whitening filter is studied and 
the metric function for the M-algorithm based on the ideal 

noise whitening filter is derived. A near ideal, realizable noise 
whitening filter is then introduced. The convergence of the 
factorization method for a time-varying CDMA system is con- 
sidered. The truncation of the number of taps of the ideal 
noise whitening filter is studied and the metric function for 
the M-algorithm based on the near ideal noise whitening fil- 
ter is formulated. Simulation results are obtained for 5, 7 
and 10-user time-varying CDMA systems with binary ran- 
dom signature sequences of length 10 and a rectangular chip 
waveform. The results show that the near ideal noise whiten- 
ing filter can accurately approximate the ideal noise whitening 

filter at a low complexity level. The performance degradation 
of a time-varying, asynchronous CDMA system using a typi- 
cal near ideal noise whitening filter is minimal compared to a 
system using the ideal noise whitening filter. 
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SUMMARY: Over the past few years research into multi- 
user receivers for code-division multiple-access (CDMA) 
networks has become increasingly more popular. Multi- 
user detectors treat the interference from other users in 
the same frequency band as an information bearing part 
of the signal, rather than as noise. 

It is known that optimal near-far resistance and sig- 
nificant performance improvements can be achieved by 
an optimal multi-user detector [1]. These improvements, 
however, are achieved at the expense of a dramatic in- 
crease in computational complexity, which grows expo- 
nentially with the number of users, making the optimum 
detector an unachievable theoretical concept. It becomes 
desirable to use near-optimum, low complexity detectors 
instead, and a number of sub-optimal approaches to the 
detection problem have been studied in detail. Surpris- 
ingly, near-optimal performance for uncoded CDMA can 
be achieved with a non-linear tree-search detector, whose 
complexity increases only linearly in the number of users 
[2]. 

While all these studies were undertaken for uncoded 
systems, the application of forward error control coding 
(FEC) to improve performance and system capacity re- 
mains a largely open area of future research. In this 
paper we study a very promising detector structure for 
coded CDMA, termed projection receiver (PR), whose 
structure is built on the decorrelating detector [3]. In 
the PR the effect of the interfering users is accounted for 
by metric adjustments, upon which the error control de- 
coder operates. The actual interference resolution has a 
complexity which is proportional to the number of users, 
and all that is required are single user error control de- 
coders. 

The simple addition of an FEC system to an un- 
coded multi-user receiver may not lead to the best per- 
formance. This is evidenced in the performance plots 
shown in Figure 1, where three systems are compared for 
synchronous CDMA using length N = 31 random signa- 
ture sequences and 64-state convolutional error control 
codes. Application of FEC to the conventional detector 
(correlation detector) leads to the poorest performance. 
FEC and decorrelation works better, but the PR per- 
forms best. It virtually achieves the single user bound, 
which is the theoretical performance limit for multi-user 
CMDA, for an arbitrary number of users up to a fully 

loaded system.   That is, the PR effectively eliminates 
multi-user interference. 
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Figure 1: Performance of coded CDMA multi-user 
systems as a function of system load. 

The projection receiver linearly projects the effects 
of the interfering users onto the complement of the sub- 
space spanned by those users. In effect the PR decorre- 
lates the unwanted users. From this an adjusted metric 
results, which has the form of a diversity metric, and 
is used in the FEC decoder of the desired user. As 
evidenced by Figure 1, this approach achieves single- 
user performance on an additive white Gaussian noise 
(AWGN) channel. In this presentation we will present 
the theory of the PR, performance results and discuss 
adaptive implementations of the detector which are suit- 
able for VLSI implementations. 
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Abstract — For transmission of speech or multime- 
dia information in a time varying mobile channel fixed 
rate codes are normally used designed for average or 
worst channel conditions. However, fixed rate codes 
fail to explore the time varying nature of the mobile 
channel. In this report we propose an adaptive multi- 
level coding scheme for Code Division Multiple Access 
(CDMA) which is associated with co-channel interfer- 
ence (CCI) cancellation to explore the time varying 
nature of the radio link. 

I. INTRODUCTION 

For efficient usage of available .spectrum and to explore 
the time varying nature of the mobile radio link, adap- 
tive coding/modulation (codulation) scheme may be em- 
ployed [1] [2]. In this paper, which is essentially the ex- 
tension of our previous work [3], we took into account CSI 
and propose an adaptive multilevel coding scheme associ- 
ated with multi user interference cancellation for CDMA, 
which yields significant performance improvement. 

II. SYSTEM MODEL 

The information stream of each user is stored in a buffer 
prior to transmission from where informations are sent 
adaptively according to the channel condition. Adapta- 
tion can be done symbol by symbol or block by block 
according to CSI. We assume both transmitter and re- 
ceiver can sense any change in channel condition at dis- 
crete instants of symbol transmission. For adaptation we 
changed the number of encoded levels according to CSI 
with modulation format held fixed. The transmitter de- 
cides what overall rate should be transmitted according 
to a set of thresholds chosen to keep the BER. below a 
certain level. All the transmitters first look at the im- 
mediate values of fading multiplicative distortions. For a 
three level 8PSK if 0 < Max(a\) < m all the three level 
coding is done. The overall transmission rate is low in this 
case for worst channel conditions. If/ii < Max(a\) < //,2, 
first two rows are encoded. Otherwise only one level is 
encoded with much higher rate. The receiver of any ar- 
bitrary fcth user correlates the complex signal with each 
of the possible signal points of the partitioned signal con- 
stellation after despreading. Using the channel history, 
corresponding decoding scheme is chosen and the first 
component code is decoded. From all such precise de- 
coded information of all users, CCI is estimated and is 
subtracted subsequently from the delayed version of the 
received signal to have more accurate estimate of the re- 
ceived signal. This process is carried on till all the com- 
ponent codes are decoded. 

III. RESULT AND CONCLUSION 
For good channel condition we used one level coding using 
rate 1/2, M=4 convolutional code with dfrec = 7.   As 
the channel condition deteriorates we use 2nd and 3rd 
level codes which are rate 2/3 convolutional code with M 
— 4 and dfre(. = 4.   The BER and throughput graphs 
are shown in Fig.   1 for a total 10 users.   Fig.   2 shows 
the performance of in terms of throughput.   We found 
that about lOdB gain can be achieved by using adaptive 
scheme compared to fixed rate scheme at a BER of 10~3. 

Fig. 1 BER and throughput curve of the proposed scheme 
in R.aylcigh fading 
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Fig. 2 Throughput comparison with fixed rate scheme 
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Abstract — A linear decorrelator detector is con- 
sidered for use in a quasi-synchronous code-division 
multiple access (QS-CDMA) system. For long code 
lengths, the evaluation of bit-error rate can be com- 
putationally expensive, due to the need for exhaustive 
search to determine the worst case relative delays. 
An upper bound on the error rate based on eigen- 
value bounds is presented for the linear decorrelator 
detector, and which can be computed solely in terms 
of the maximum cross-correlation between codes and 
the number of users. 

I. INTRODUCTION 

A QS-CDMA communication system is considered in which 
decorrelators are employed for multiuser detection at the base 
station. In contrast to the decorrelator-based receiver in [1], 
the delays are assumed unknown a-priori, although confined to 
a subinterval of the bit duration due to the quasi-synchronous 
assumption. The worst-case bit-error rate (BER) of the decor- 
relator detector can be evaluated [2] by exhaustive search 
over the relative times-of-arrival (code delays) of the users. 
However, for long code lengths, such an approach may be 
extremely time-consuming, due to the computational burden 
of evaluating repeated correlations. Thus, we seek an upper 
bound on BER that can be used for long PN codes, and that 
does not require determination of the worst-case code delays. 

The signal model for the QS-CDMA system is first de- 
scribed. Let s„(t) represent the direct-sequence signal trans- 
mitted by the n-th user. The received Nyquist samples, where 
the sampling interval is Tc sec, are given by 

r(kTc) = 2__, anS„(kTc - T„) + n(kTc), (1) 

where a„ £ C is the complex amplitude associated with the ra- 
th user, and Tn is the ra-th delay. The additive noise sequence 
n(kTc) € C is discrete-time white Gaussian. Due to the quasi- 
synchronous assumption, T„ £ [—MTC,MTC], where MTC << 
T, with T the bit duration. It will be convenient to work with 
the following vector model of the received signal during the 
fc-th bit duration. 

r(fc) = ai<*i(fc)si(Ti) + J2 anSn{Tn) + n(*), (2) 

where the elements of sn(Tn) € CL are the Nyquist samples 
snyk±c     in). 

'This work was sponsored in part by Rockwell International Co. 
and the UC MICRO program. 

II. DESCRIPTION OF THE DECORRELATOR DETECTOR 

AND UPPER BOUND 
An approximate maximum-likelihood receiver for the signal 
model (2) has been previously derived [2], and is described 
by the following decision variable, where it is assumed that 
Si(Ti) is the desired signal. 

U = Re{r(k)H[l - Ps;]Sl {Tx)etarga>}, (3) 

where [I — Ps'] is an orthogonal projection matrix which re- 
jects the undesired users. The projection matrix P5/ corre- 
sponds to the subspace spanned by the signals sn(mTc). As 
shown in [2], undesired vectors with delays Tn falling between 
the discretized values mTc are nearly rejected, since they fall 
approximately in the subspace spanned by the columns of Sj. 

A bound is obtained for an SNR loss factor, defined in 
terms of SNR = E{U}/y/2Var{U}. Then the loss factor is 
given by LF — SNR/\yEb/No. Hence, if no loss in SNR when 
compared with ideal BPSK occurs, LF = 1. A lower bound on 
the SNR is found in terms of the following quantities 71 and 72 
derived in [3], where ima.x denotes the maximum normalized 
cross-correlation between codes. 

' ax(2M + 1)(N - 1) 
71 = 1 - 

72 = tmax + E 

(2M + 1)(N - l)t„ 

t2max(2M + l)(N ■ 1) 

The term £„ 
1 - ((2M + 1)(N - 1) - 1)*„ 

is given by 

(4) 

(5) 

L-M-m-l 

y — t-imax — sup 
{m:—M<m<M},€,     ,, —     — K — M — m+1 n= —00 

> y      sinc(k + nL — e/Tc). 

(6) 
The final expression for the loss factor is then 

J   72 LF = Sn-Zj± (7) 

Note that when the actual delays T„ equal the dicretized val- 
ues mTc, the term 72 = 0. Specfic results for the loss factor 
are evaluated for varying Gold code lengths and SNRs in [3]. 
In general, the bound is useful for long PN codes, where ex- 
haustive search to find the worst-case relative delays is com- 
putationally prohibitive. 
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Abstract — A non-orthogonal synchronous direct 
sequence code division multiple access (DS-CDMA) 
system with additive white Gaussian noise channel 
(AWGN) is presented where the suboptimal succes- 
sive cancellation detector performs optimal. 

I. INTRODUCTION 

Due to recent advances in cellular technology [1], DS-CDMA 
has been considered as multiple access method. It is well- 
known that joint detection of the users improves system ca- 
pacity considerably [2]. The maximum likelihood (ML) deci- 
sion rule over all active users is optimal in the sense of the 
estimation error rate, but in general too complex due to the 
exponential dependence on the number of users. The com- 
pexity (in terms of operations per bit decision) of successive 
cancellation is linear in the number of users. 

II. SYSTEM DESCRIPTION 

Fig. 1 shows the considered synchronous DS-CDMA system 
modell with AWGN-channel. On account of the synchronism 
and the memoryless channel, each bit period can be consid- 
ered independently. All vectors denote column vectors. The 
users 1... K transmit bits b\, 62, • • •, 6jf € {—1,1} by modu- 
lating them onto user-specific spreading-vectors ci, c2,..., c/<- 
of length N. The components of the spreading vectors are 
considered to be real numbers and the Euclidean norm.of the 
vectors is equal for all vectors 

Cfc 
T 

CfcCfc 

The superscript ()T denotes the transpose. The noise vector 
n is assumed to be Gaussian with covariance matrix <r£l (I is 
the identity matrix). With b the transmitted bit vector and 
C the spreading code matrix, the received vector r can be 
written as 

r = Cb + n,    bA(6162...6K)T,     cA (Cl|c2| • • • \cK). (2) 

The receiver's task is to estimate the bits 61,... ,bx from 
the observation of r. The optimal decision rule for equiproba- 
ble input bits is the ML rule, which minimizes the Euclidean 
distance between r and Cb where b is the estimate of b. 

Definition 1  ML rule: Choose the estimated bit vector b 
such that the Euclidean distance e ist minimized with 

e2A|cbML (Cb ML r)T(CbML-r).      (3) 

A suboptimal decision rule called "successive interference 
cancellation" (SC rule) uses first a bank of matched filters 
MF1.. .MFK to produce decision variable di, cfe,..., djc (see 
Fig. 1). The decision variable vector d can be written as 

&&{did2---dK)T = CTr- CTCb+CTn : 

Transmitter 

6 

Receiver 

MF 1 

MF k dk 

MMFiT^ 

Multi- 
User 

Detector 

]K 

fe 

Figure 1: System modell (DS-CDMA, AWGN-channel) 

Definition 2 SC rule: Let the reliability of a decision vari- 
able rel(dfc) be defined by the absolute value: rel(djt) = \dk\- 
Let r^ = r and Ss = {fci, fc2,..., ks-i}, where Ss is the set 
of indices for which a decision has been taken in steps 1 up 
to step s — 1. Initially Si = {}. Then successive cancellation 
chooses the estimates Sfc in K steps as follows: 
At step s compute d from r's' and choose the decision vari- 
able dk with highest reliability taking into consideration only 
indices k £ Ss. Decide on bit bfc using the sign function 

bk    : : sgn(dfc), 

(1)     form the set <Ss+i = Ss U {k} and compute r(      ' as 

„(s+5) » lsc„ ■ 0k    Cfc. 

Theorem:    SC and ML rules are equivalent if the 
correlation R —CTC satisfies for a constant q with \q\ 

R*,: {! else 

(5) 

(6) 

cross- 

<1 

(7) 

Rb+C  n. (4) 

Proof. The proof has two steps, of which the first shows that 
for the first decision in successive cancellation the resulting bit 
estimate is equal to the maximum likelihood estimate. The 
second step shows that after subtracting the influence of the 
estimated bit the problem is principally the same, only the 
dimension has decreased by 1. 
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An Inequality on Guessing and Its Application to Sequential 
Decoding 
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II. APPLICATION TO SEQUENTIAL DECODING 
To relate sequential decoding to guessing, let X denote the 
set of nodes in a tree code at some level N channel symbols 
into the tree from the tree origin. Let X be a random vari- 
able uniformly distributed on X, indicating the node in X 
which lies on the transmitted path. Let Y denote the received 
channel output sequence when X is transmitted. Let G(x\y) 
denote the rank order in which node x G X is hypothesized 
(for the first time) by a sequential decoder when X = x and 
Y = y. Moments of G(X\Y) serve as measures of complexity 
for sequential decoding. 

Let M be the size of X, and R = (l/N)lnM denote the 
code rate. By Theorem 1 and the fact that Px(x) = 1/M for 
x g X, for p > 0, 

E[G(X\Y)»} > (1 + NR)-pexp[pNR- E0(p,Px)] 

Abstract — Let (X, Y) be a pair of discrete random 
variables with X taking values from a finite set. Sup- 
pose the value of X is to be determined, given the 
value of Y, by asking questions of the form 'Is X equal 
to xV until the answer is 'Yes.' Let G(x\y) denote 
the number of guesses in any such guessing scheme 
when X = x, Y = y. The main result is a tight lower 
bound on nonnegative moments of G(X\Y). As an 
application, lower bounds are given on the moments 
of computation in sequential decoding. In particu- 
lar, a simple derivation of the cutoff rate bound for 
single-user channels is obtained, and the previously 
unknown cutoff rate region of multi-access channels 
is determined. 

I. THE INEQUALITY 

Theorem 1  For   arbitrary  guessing functions  G(X)   and    where 
G(X\Y), and any p > 0, ^^ v—. ,    , , 

Eo(p,Px) = -\nY^lY/Px(x)PYlx(y\x)T^Y+'>. 

E[G(X)p]>{l+lnM)-p[J2Px(x)^Y+p (1) »     * 
Gallager [1, p. 149] shows that for discrete memoryless chan- 
nels 

_j_ Eo(p,Px)<NE0(p) 

E[G{X\Y)P] > (1 + In M)-p J^C PX,Y{*> v)r^]1+P   (2)     where E0(p) equals the maximum of E0(p, Q) over all single- 
j/eJ> x£X letter distributions Q on the channel input alphabet. Thus, at 

where PX,Y, Px are the probability distributions of(X, Y) and ratf * ^"H1"' ^ P*J """"^ of comPutation Performed 
X, respectively, the summations are over all possible values of at XT  N °f the, ^ C°de must S° t0 lnfimty exponentially 
X, Y, and M is the number of possible values ofX. ™ N 1S mcreas<;d-  The mfimum of all real numbers R  such 

1 that, at rates R > R', E[G(X\Y)P] must go to infinity as N 

This result is a simple consequence of the following variant     is increased is ca"ed the cutoff rate (for the pth moment) and 
of Holder's inequality. denoted by ÄCuto//(p). We have thus obtained the following 

bound. 
Lemma 1  Let a,, pi be nonnegative numbers indexed over a     Theorem 2 For any discrete memoryless channel with a fi- 
finite set 1 < i < M. For any 0 < A < 1, nite input alphabet, 

xex 

and 

M r M   > i 
l-A 

r M   l 
y ] aiPi > 
t=l 

Rcutoff(p) < Eo(p)/p,    p > 0. (3) 

This result was proved earlier (for p = 1 only) in [2]; the 
present proof is much simpler.   Moreover, the above method 

_A extends to the case of multiaccess channels, yielding their pre- 
Pioof.    Put Ai  = a{   ,^Bi  = Oil»,-, in Holder's inequality     viously unknown cutoff rate region [3]. 

j2-AiBi<(T.A^)    (y.B>)\ 
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Abstract — Coding methods for piecewise memo- 
ryless sources have recently been studied by Merhav 

[2]. While Merhav mainly concentrated on the single- 

transition case, we describe and analyse here coding 
techniques that allow multiple transitions. 

I. INTRODUCTION 

A binary memoryless source generates the sequence x\ ■ ■ ■ XT 

with probability 

Pa(xi ---XT) = Ilt = l,TPa(xt). 

The source parameter is piecewise constant. Suppose that the 

instants before which transitions appear are ti, t-2, ■ ■ ■, tc, i.e. 

Pa{Xt  = 1) if tc < t < ic+i, 

with c = 0,1,---,C, and to = 1 and tc+i = T + 1. We 
describe a method for compressing the sequences generated 

by this source based on arithmetic coding techniques (see [1]). 
It was our objective to construct a coding distribution Pc{-) 
such that the maximal individual redundancy 

,     Pa(xi---xT) 
max log — -. 

xi---xT rc\x\ ■ ■ ■ XT) 

is as small as possible. The base of the log is 2. Information 

quantities are expressed in bits. 

II. CODING METHOD 

We assume that the source moves in a graph (see below) from 
state to state.    It starts in state (1,0,1) and generates the 

symbol xi according to parameter do- When the source is in 

state (t,c,tc) it first generates symbol xt according to param- 
eter 9C. After this, its parameter may change to 0c+i, in that 
case the source moves to state (t + 1, c + 1, tc+i = t + 1), or it 
may not change, then the source moves to state (t + l,c, tc). 
When the source is in state {t,tc) we assume that 

Pc(Xt = l\(t,C,tc)) = HXtr.   ' ■Xt-1 + 1/2 

t-tc  + 1 

where b(xta ■ • ■ xt-i) is the number of ones in xtc ■ ■ ■ xt-i, and 

PtT((t + l,c+l,t + l)\(t,c,tc)) = c + 1/2. 

JOn leave from the University of Bologna, Italy. 

The source output xt and next state (t + l,p, q), where (p, q) = 

(c,tc) or (c + 1, t + 1) are assumed to be independent of each 
other given the current state (t,c, tc). 

Under these assumptions the coding probability for se- 
quence x\ ■ ■ ■ xt is the probability that the source moves along 

a certain path to a state at depth t and generates x\ ■ ■ -xt, 

summed over all paths and states. 
Two remarks can be made about this coding distribution. 

The first is that the coding distribution can easily be up- 
dated sequentially using the graph structure. The second re- 
mark is that the coding distribution can be regarded as a 
weighting (see [3]) over all coding distributions corresponding 

to fixed transition patterns. The weighting coefficient of a 
pattern is determined by the Krichevsky-Trofimov estimator. 
This makes it easy to study the redundancy behavior of our 

method. 

III. PERFORMANCE ANALYSIS 

If the actual source made C transitions (pattern T), our 
method yields 

log 
Pa(xi 

< 

Pc(xi ■ ■ -XT 

C + l 

XT)
 <log   Pa{X1 ■xT) 

log 
C + l 

PC(X! ■ ■ ■ XT\T) 

+ C + 1 

+ log 
Ptr(T) 

+Clog 
(T _lh+llog(T_1) + 1. 

Parameter redundancy is as usual (i.e. roughly | log T per 
parameter), the transition redundancy is roughly logT per 
transition, plus a bias term of |logT. Apart from this bias 
term our method achieves the Merhav [2] lower bound. The 
bias term however is a consequence of the fact that the number 
of transitions is assumed to be unknown. 

IV. COMPLEXITY 

The storage complexity of this method grows quadratically in 
the sequence length T. The computational complexity is cubic 

inT. 
There exists a simplified version of the method described 

here which has storage behavior linear in T and for which the 
number of computations is quadratical in T. For this method 
the redundancy is roughly |logT per transition however. 
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with coutably infinite alphabets 
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Abstract —   We briefly describe the results in [4]. 

I. INTRODUCTION AND THE MAIN RESULT 

Let us consider an information source S with probability 
distribution P = {p(0}£o on the infinite source alphabet 
X = {0,1, 2,...}, where we assume throughout the positivity: 
p(i) > 0 for all i € X as well as the monotonicity: 

min     p{i) > p(k0) > p(k0 + 1) > p(k0 + 2) > 
0<i<k0-l 

(1) 

for some fc0 € X. 
We shall consider prefix codings for the distribution P us- 

ing the D-ary code alphabet T> = {0,1,..., D — 1} where D is 
an integer such that D > 2. Our concern is how to construct 
an optimal D-ary prefix code given a probability distribution 
P on X, where "optimal" means a code with the minimum 
expected codeword length over all the possible prefix codes 
for the P. Although the Huffman coding algorithm with finite 
source alphabet is known to achieve the optimal code, it is not 
applicable in general to the case with infinite source alphabet. 
However, some specific properties of the given distribution P 
are enough to ensure the applicability of Huffman-type cod- 
ing algorithms as well also to the infinite alphabet case: for 
instance, see Gallager and Van Voorhis[2], Humblet[3], and 
Abrahams[l]. The sufficient conditions shown in these papers 
are all written in terms of inequalities that must hold for all 
m E X larger than some integer. 

In [4] we provide a new type of sufficient condition that 
merely includes inequalities for infinitely many m's in X, 
which is stated as 
Condition 1.   There exist infinitely many m's in X (m > fco) 
such that 

m = -1    (mod D - 1) (2) 

and 

P(™) >  2J p^- (3) 

Remark 1.  It is evident that, in the binary case (D = 2), 
condition (2) holds for all m £ X. 

j = 1,2, •••, let us define a partition of X by A) = {A^}™^1 

where 

i(*) J  {k} 
\  {i I «' 

for     0 < k < mj, 
> k}    for     k = rrij + 1. 

For each j = 1, 2, ■ • • define the information source Sj with 
the finite alphabet 

Ä- d- A°\A° AA{k)\mj+1 

=     {{mj-i + 1}, {mj-i + 2}, ■ ■ •, {mj}, {i \ i > mj + 1}} 

and the probability distribution P3   =  {pj(A-   )}™_!m.    +1 

such that 

p,(4fc)) 
p(4fc)) 

(rrij-i + 1 < k < raj + 1), 

where p(B) = ^2ipBp(i) f°r a subset B C X and we have set 

mo = -1 (At = {X}) and ä3 =f E^_1+1 P^f). 
Now we are in the place to describe the coding algorithm 

to construct the code C   . 

Coding algorithm 
Step 0  Set j := 1 and C(*) := A (null string). 

Step 1  Construct a D-ary Huffman code Of for the infor- 
mation source Sj. 

Step 2  If {i} £ Aj then define the codeword for i € X by 

CH(z) := C(*) • Cf({i}), 

where "•" denotes the concatenation of strings. 

Step 3 Set C(*) := C(*) • Öf (^mj'+1)). 

Step 4  Set j := j + 1 and go to Step 1. 

Remark 2.  For each j > 1, just after Step 3 the resulting 
code (the codewords are C   (i) for i (0 < i < mj), and C(*) for 
i = mj +1 ) is a Huffman code for the source S^a (with finite 

i 

alphabet A3
0  and probability distribution PAa   =  {p(Aj   )}). 

Generalizing this property, we get a new definition of an op- 
timal D-ary prefix code which is meaningful even for the case 
where H(P) = oo. See [4] for details. 

Our main result is 

Theorem 1. If the probability distribution P on X satisfies 
Condition 1, then there exists an algorithm to recursively con- 
struct an optimal D-ary prefix code C   . 

II. CODING ALGORITHM UNDER CONDITION 1 

To describe how to construct the code C , let us first intro- 
duce some notations. Let mi < mi < • • • be those integers m 
that satisfy conditions (2) and (3) where m\ > fco. For each 

REFERENCES 
[1]  J. Abrahams:  Huffman-type codes for infinite source distribu- 

tions, Journal of the Flanklin Institute, to appear. 
[2]   R. A. Gallager and D. C. Van Voorhis: Optimal source coding 

for geometrically distributed integer alphabets,  IEEE Trans. 
Inform. Theory, vol. 21, no. 2, pp. 228-230 (1975). 

[3]  P. A. Humblet:   Optimal source coding for a class of integer 
alphabets, IEEE Trans. Inform.  Theory, vol. 24, no. 1, pp. 
110-112(1978). 

[4]   A.  Kato, T. S. Han, and H. Nagaoka:   Huffman coding with 
infinite alphabet, submitted to IEEE Trans. Inform. Theory. 

324 



Data Expansion with Huffman Codes 
Jung-Pu Cheng, Sam Dolinar1, MichelleEffros2, Robert McEliece 

Electrical Engineering Department and Jet Propulsion Laboratory 
California Institute of Technology 

Abstract — "In-place" Huffman coding of a file can 
cause the file to temporarily expand. In this paper 
we investigate this phenomenon, 

I. INTRODUCTION 
Huffman codes are widely used for data compression. In 

a typical application, a file consisting of N m-bit symbols is 
compressed by an adaptive version of Huffman's algorithm, 
in which the required symbol probabilities are determined by 
the relative frequencies of the symbols in the file. Each m- 
bit symbol in the file is then replaced by the corresponding 
Huffman codeword. It is clear that if such a strategy is used, 
the file cannot expand, since the "worst case" is when all the 
Huffman codewords have length m bits, and in all other cases 
the file will indeed be strictly compressed. 

However, if the compression is done sequentially and "in 
place," that is, if the first symbol in the file is encoded, then 
the second, etc., the file may temporarily expand if many low- 
probability symbols occur at or near the beginning of the file. 
In space-critical implementations of Huffman's algorithm, it 
will then be important to know the amount of extra storage 
space that must be allocated to allow for this temporary ex- 
pansion. 

The general problem we address in this paper, then, is this. 
For a file consisting of N letters from a source alphabet of 2m 

symbols, what is the maximum possible "temporary expan- 
sion" possible for a Huffman code, in units of bits per file 
symbol! We denote this quantity by 6{m). 

II. EXAMPLE 
Consider an 8-letter symbol alphabet {A, B, C,D,E, F, G,H}, 

and a file consisting of the following 16 symbols from the al- 
phabet. 

HGFEDCBBBBAAAAAA. 

If each symbol in the alphabet is given a 3-bit representation, 
the file length is 48 bits. The relative frequencies, and a set 
of appropriate Huffman codewords, for this file is given in the 
following table. 

rel. freq. codeword le 

3/8 0 1 
1/4 10 2 
1/16 1100 4 
1/16 1101 4 
1/16 11100 5 
1/16 11101 5 
1/16 11110 5 
1/16 11111 5 

length symbol 

A 
B 
C 
D 
E 
F 
G 
H 

After each of the 16 symbols in the file has been replaced by 
its Huffman codeword, a simple calculation shows that the 

1Work done at JPL under contract with the National Aeronau- 
tics and Space Administration. 

2Work done with partial support from the National Science 
Foundation 

fully compressed file is only 42 bits long. However, since the 
low-frequency symbols C, D, E, F, G, H all occur at the be- 
ginning of the file, after these six symbols have been Huffman 
encoded, the file's length will be 58 bits, which represents an 
expansion of 5/8 bits per source symbol. In fact, it follows 
from our results that for an eight-letter source alphabet this 
is the worst case, so that 6(3) = 5/8. (It is easy to see that 
6(1) = 0 and 5(2) = 2/5.) 

III. ALTERNATIVE DEFINITION OF 6(m) 
There is a alternative definition of 6(m) that makes the 

problem easier to deal with. 

Definition. For m = 1,2,3,..., define 

6(m) — max < N   Pj(rij — m)-\ 
K )=1 ) 

where the maximum is taken over all pairs of lists (pi > P2 > 
• • • > p2m), ("a < «2 < • • • < «2™), where pj 's are an ordered 
list of probabilities, and the rij 's are the lengths of a corre- 
sponding Huffman code for the pj 's. (The symbol "(x)+" is 
shorthand for max(x, 0).) 

IV. STATEMENT OF RESULTS 
Theorem 1. There is a universal constant A such that 
6(m) < A for all m. 

The proof of Theorem 1 relies on a recent result of Schack 
[3]. We conjecture that A = 4/5 (incidentally, for "Shannon" 
codes it is quite easy to show that the corresponding quantity 
is Ashannon = 1), but so far we have only been able to prove 
that 4/5 < A < 4. The upper bound comes from a careful 
examination of the proof of Theorem 1. The lower bound 
comes from an explicit construction of a family of Huffman 
trees, using techniques similar to those developed in [1] and 
[2], for which the quantity 6 equals (4 • 2m - 12)/(5 • 2m - 8), 
for m > 3. The probabilities in the tree are proportional 
to (2m - 2,2™-1,1,..., 1), and the corresponding Huffman 
lengths are (1,2, m + l,m + l,m+2,... ,m + 2). Furthermore, 
we believe that this construction gives the largest possible 
value of <5, so we have the following conjecture. 

Conjecture 1. 6(m) f 4/5, as m —► oo. 
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I. INTRODUCTION 
Varn [8] introduced the problem of finding the prefix condition variable 

length source code which minimizes average cost when the code symbols are 
of unequal cost and the source symbols are equiprobable. Other authors have 
also addressed this problem from the algorithmic point of view [3,4,7]. There 
are two versions of this problem, exhaustive in which the r-ary code tree is 
constrained to be a full tree and nonexhaustive in which that constraint is not 
imposed. Recently the author [1] was able to show, based on previous work 
by Horibe [5] and Chang [2], for the exhaustive case that for integer code 
symbol costs there exists a very close relationship between a subsequence of 
the sequence of Varn code trees indexed by the number of leaves in the tree 
and a recursively generated sequence of trees called generalized Fibonacci 
trees. In particular the kth tree in the recursively generated sequence of trees 
has as its ith leftmost subtree, i=l,...,r, the tree previously generated in the 
sequence with index k-c(i) where the code symbol costs are c(i) ordered 
monotonically nondecreasing in i and the associated code symbols are 
associated with the code tree branches from left to right. The initialization is 
that the first c(r) trees are all single root nodes. Then, when the number of 
leaves in the exhaustive Varn code tree is the same as the number of leaves 
in the generalized Fibonacci tree for the same code symbol costs, they are the 
same tree. The recursive construction is nice in that it reveals an elegant 
structure underlying the sequence of Varn code trees and also because 
recurrence relations derived from the recursive construction permit the 
evaluation of the resulting minimum average cost codes without actually 
constructing the tree. 

The problem addressed in this abstract is to identify a similar recursive 
construction for the nonexhaustive case. It turns out that it is possible to do 
this not for Varn's original problem, but for a close variant of it. While Varn 
looks for optimum codes in the minimum average codeword cost sense, the 
problem of interest here will be to look for optimum codes in the sense of 
minimizing the maximum codeword cost. It is not hard to see that in the 
exhaustive case, Varn's algorithm finds optimum code trees in both senses, 
that is, the minimum average codeword cost tree is also the minimax tree. But 
this is not the case for nonexhaustive codes. Perl et al. [7] give a simple 
algorithm for the minimax problem as a "remark" in their paper otherwise 
concerned with the minimum average codeword cost case. So, as we'll see, it 
is the minimax version of Varn's problem which has the Fibonacci-like 
structure. It will also turn out that under certain conditions on the code 
symbol costs, minimax and minimum average codeword cost trees are 
identical. One nonexhaustive special case for which this is true, c(i)=i, 
i=l,2,..., was treated previously in the literature by Patt [6] motivated by a 
computer file search problem. 

II. CONSTRUCTING NONEXHAUSTIVE TREES 
RECURSIVELY 

As in the exhaustive case, the kth tree in our sequence, T(k), will have 
T(k-c(i)) as its ith leftmost subtree. However now the initialization will be 
T(l)=...=T(c(2)) each consisting of a single root node. One example is given 
in this abstract. The costs are c(l)=2, c(2)=c(3)=3, c(4)=5. The trees are 
described by labeling leaf nodes with their costs, listing them in left to right 
order with sibling nodes separated by + signs, and using parentheses to 
indicate depth in the tree from the root T(l)=T(2)=T(3)=0,T(4)=(2+3+3), 
T(5)=(2+3+3),T(6)=((4+5+5)+3+3+5),T(7)=((4+5+5)+(5+6+6)+(5+6+6)+ 
5),.... It is not hard to give recurrence expressions for the number of leaves in 
the kth tree and for its unnormalized cost. These can be solved by the method 
of generating functions. 

III. PROOF OF MINIMAX OPTIMALITY 
The idea of the proof that the trees constructed in the previous section are 

Varn minimax trees is outlined here. First it is shown that the nonexhaustive 

generalized Fibonacci trees are the same as the exhaustive generalized 
Fibonacci trees with a certain number of highest cost leaves removed. This 
can be done by induction. Then we make use of an argument, like Varn's for 
the minimum average cost case, that optimal minimax nonexhaustive code 
trees are obtained by deleting highest cost leaves from a particular "correct" 
optimal exhaustive tree while maintaining the same number of interior nodes. 
The hard part is to show that the exhaustive generalized Fibonacci tree in its 
sequence beginning with T(c(r)+1) is the "correct" tree for the corresponding 
nonexhaustive generalized Fibonacci tree in its sequence beginning with 
T(c(2)+1). To do this we need to show that if we started with any other 
optimal exhaustive tree and deleted the appropriate number of highest cost 
leaves, we would either get a more costly tree in the minimax sense or would 
have to remove leaves in such a way as to leave what was an interior node 
childless. The details of this demonstration are omitted in this abstract for 
conciseness. 

IV. WHEN ARE MINIMAX CODE TREES MINIMUM 
AVERAGE COST? 

The algorithm of Perl et al. [7] for minimum average cost trees involves two 
stages, extension and mending, and their algorithm for minimax trees is a 
variant of the extension stage. They also give sufficient conditions on the 
code symbol costs for the mending stage to be unnecessary in the minimum 
average cost problem. Thus, whenever any of these sufficient conditions is 
satisfied by the costs, and the costs are such that the variant of the extension 
algorithm for minimax codes and the original extension algorithm for 
minimum average cost codes both yield the same tree, minimax and minimum 
average cost code trees are the same and the minimum average cost tree 
sequence shares the nice recursive structure of the minimax tree sequence. 
Patt's [6] costs are one such example, and his paper includes the recursive tree 
sequence structure. 

V. CONCLUSION 
The highly structured recursively constructed subsequence of optimal 

exhaustive code trees has been extended to the nonexhausive case by 
focusing on the minimax optimality criterion instead of Varn's original 
minimum average codeword cost criterion. When these two criteria give the 
same sequence of code trees, as they do under certain conditions on 
the costs, omitted here for conciseness, the recursive structure 
applies to Varn's original problem as well. 
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Abstract — Given a programmable finite-state in- 
put/output device, what program(s) maximally re- 
duces the "diversity" of the possible output sequences 
of the device? This question is made precise, and 
a method is developed to determine this minimum 
achievable diversity. 

I. INTRODUCTION 

In this paper, a (time-invariant) finite-state entropy- 
reduction algorithm, or briefly, an algorithm, is a synchronous 
finite-state input/output device (see e.g. [1]); such a device 
takes inputs from a given source alphabet B, and, depending 
on the input symbol and its internal state, produces an output 
symbol in an output alphabet F and moves to a new internal 
state. 

In the context of channel codes (modulation codes), such 
a device is usually referred to as a (synchronous) finite-state 
encoder [1] and is used to translate or encode arbitrary se- 
quences of source symbols into sequences that have certain 
desirable properties. In that context, it is of course required 
that decoding is possible. 

Here, we think of such devices as performing some sort of 
data compression on sequences, and we are interested in al- 
gorithms that have a "small" output space. A natural measure 
of the efficiency of an algorithm is thus the topological entropy 
of the output space, which measures the growth rate of the 
number of output sequences of a given length. (In the context 
of channel codes, the entropy is usually called the (Shannon) 
capacity [1].) We allow the case where the input sequences are 
restricted to a given constrained system over B. 

The use of the term "data compression" may cause con- 
fusion, since we do not consider the reconstruction problem. 
Instead, it might be better to speak of entropy-reduction: the 
algorithm transforms data sequences and the efficiency of the 
entropy-reduction is measured by the number of distinct out- 
put sequences that can be produced by the algorithm. 

Now let T be a finite collection of algorithms, all having the 
same source alphabet and sharing a common set of internal 
states. A time-varying (entropy-reduction) algorithm over T 
is a sequence 

f = /l,/2,/3,-" 

of algorithms ft 6 J-. We think of such a sequence f as an 
algorithm whose action at time t is directed by algorithm ft. 
So at time t, t = 1, 2,..., the algorithm f takes an input 
from the source alphabet and, depending on this input and 
its internal state, produces an output and moves to another 
internal state according to algorithm ft. The collection of all 
entropy-reduction algorithms over T (all sequences over F) 
will be denoted by F°°. 

Interestingly, it may happen that some time-varying al- 
gorithm in T°° performs better than the best algorithm in 
T. (This will be shown by some examples.) So the question 
now arises how to produce lower bounds for the efficiency of 

algorithms in J-°° and how to find the best time-varying al- 
gorithm in JF°°. We will refer to this problem as the optimal 
entropy-reduction problem for T. 

The motivation to investigate time-varying entropy- 
reduction stems from a problem in [2] and [3] on ordering in 
sequence spaces, a subject introduced in [4] to study certain 
types of organization processes. We will outline these order- 
ing problems, and we will show that they may be considered 
as special instances of the optimal entropy-reduction problem 
considered here. 

We show how the optimal entropy-reduction problem can 
be transformed into a problem for a related finitely-generated 
semigroup of non-negative matrices. Briefly stated, we will 
show that with each algorithm / in T we may associate a non- 
negative matrix Df such that the efficiency of an algorithm 
f = /i, /2,... in J-°° is measured by the number 

H{f) = Um sup X(Dh Dh--- Dh )v*, 
t—*oo 

where X(D) denotes the largest real (Perron-Probenius) eigen- 
value of a non-negative matrix D. The number 

u(J-) = liminf «(f), 

which can be thought of as the minimum growth rate of matrix 
products in the semigroup generated by the matrices Df, f E 
T, then provides the solution to the optimal entropy-reduction 
problem. 

We then investigate this semigroup problem. We present 
a method to obtain lower bounds for the optimal efficiency 
p(T). In fact, we conjecture that in many cases our method 
will be able to determine the exact value of fx(T). Our results 
generalise (part of) Perron-Frobenius theory for non-negative 
matrices to semigroups of such matrices. 

Later, we return to the ordering problem. We will use 
our method to determine T2(0,2,1), the optimal efficiency 
of a time-varying binary ordering algorithm in the class 
(0, 2,1, T+, 0~) [4]. We will show that r2(0, 2,1) = |2log(2 + 
V3), as conjectured in [2]. Our approach suggests that (at 
least in principle) other values of Tq(n, ß, rj>) may be computed 
similarly. 

Finally, we discuss our results. 
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Abstract — For Markov sources, we consider a gen- 
eralization of variable-to-flxed length codes and find 
the optimal code and its performance as the dictio- 
nary size approaches infinity. 

I. INTRODUCTION 

A variable-to-fixed length coder can be decomposed into a 
parser and a string encoder. The parser segments the source 
output into a concatenation of variable-length strings, each 
of which belongs to a dictionary with M entries. The string 
encoder maps each dictionary entry into a fixed-length code- 
word. Variable-to-fixed length codes can take advantage of 
the memory of the source when the dictionary entries are 
roughly equiprobable. Furthermore, the Lempel-Ziv codes can 
be viewed as universal variable-to-fixed length codes. 

II. PROBLEM FORMULATION 

A Markov source with finite alphabet {0,...,K — 1} and set 
of states {0,..., R - 1} is defined by specifying, for each state 
s and letter j, 

1. the probability ps,j that the source emits j from state s 

2. the next state S[s,j] after j is issued from state s. 

Given any initial state so, these rules inductively specify both 
the probability P(a\s0) that any given source string a is emit- 
ted and the resulting state S[s0, a] after a is output; they also 
determine H, the entropy of the source in natural units, H(s), 
the entropy in natural units of the next source symbol emitted 
from state s, and 7r5, the long-run proportion of time that the 
source is in state s. 

The dictionaries that we consider are uniquely parsable; i.e., 
every source sequence has exactly one prefix in the dictionary. 
This condition implies that M - a(K - 1) + 1 for some in- 
teger a; here, a is the number of intermediate nodes in the 
dictionary tree, including the root. 

The best variable-to-fixed length code has a dictionary that 
maximizes the steady-state expected number, E[L], of source 
letters per dictionary entry. For the special case of a discrete, 
memoryless source, E[L] is the sum of the probabilities as- 
sociated with each intermediate node in the tree, including 
the root. For more general Markov sources, it is consider- 
ably harder to evaluate E[L] since the probability of a dictio- 
nary entry, starting at a parsing point, depends on the state 
probabilities at parsing points, which in turn depend on the 
dictionary itself. 

To gain insights into codes for Markov sources, we will con- 
sider a broader class of codes in which there is a uniquely 
parsable dictionary Vs of size M associated with each state 
s. For these codes, the parser determines the source state 
s after each parsing point and then uses V, to find the 
next parsed string. We would like to find a good way 
to design the dictionaries Vs. Let Cs represent the ex- 
pected length of a dictionary entry for Vs; then, for all s, 

^"s Z-dntermediate nodes cr for B„      \   I   /■ 
In [1], Vs was chosen to maximize Cs for each state s.  This 

code, called the generalized Tunstall code, maximizes the ex- 
pected number of source symbols per parse for each state, but 
does not necessarily lead to good parsing probabilities. 

III. NEW CONTRIBUTIONS 
There is another way to address the problem of selecting 
the dictionaries {Vs}.  Let Hs denote the entropy of the en- 
tries in T>s and let H represent the steady-state average self- 
information between successive parsing points. We have 
Theorem 1 H = H ■ E[L]. 

For memoryless sources, this "conservation of entropy" the- 
orem was established for codes with one uniquely parsable 
dictionary in [2]; our proof indicates that it applies for a much 
larger set of codes than the ones we discuss here. Theorem 1 
suggests that we may get good dictionaries by maximizing Hs 

for each s. The "leaf entropy" theorem of [3] implies that 

Hs= ]T P(a\s)H(S[s,a]),0<s<R-l; 

intermediate nodes a for £>.„ 

the expressions for Cs and Hs suggest that we should consider 
dictionaries that maximize 

X(s)  = 53 P(°\s)xs[s,*] 
intermediate nodes o- for T>„ 

for some choice of x = {x0,..., xR-i}. Xi is called the weight 
of state i and P{a\s)xS[s^\ is the state s return of string a. 
A desirable feature of the generalized Tunstall code is that it 
can be constructed in a greedy manner; i.e., for each state s 
and string a, the state s return of a is at most the state s 
return of any proper prefix of cr, so the nodes with the largest 
state s return can be selected one by one starting with the 
null string. A necessary and sufficient condition for a greedy 
construction is that the weight vector x is in the set 

Q  -  {x - (XO,---,XR-I) :  x > 0, Pi,jXS[i,j]  < Xi,yi,j}. 

We have the following results. 

Theorem 2 Let /(x) = J2?Jo ^WMEr *rXT/xi) and 

C = Hln((K-l)/H) - EL1 EfJo1 ^PiA-^Pij)2/2. The 
weight vector x* = (xj, ■ ■ ■ ,X*R-I) of the asymptotically best 
greedy code is given by x* = arg minxes /(x*)/ "*e asymptotic 
compression achieved by this code satisfies 

<MO •(!£-" C + /(x"). 

Corollary 1 Ifpi,jH(S[i,j]) < H{i) for all i and j, then the 
greedy code with weight vector (H.(0),..., H(R-l)) is asymp- 
totically the best generalized variable-to-fixed length code. 
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Abstract —    The entropy H(X) of a discrete ran- defined on the convex region Km. Since d
d{^) = j- > 0 for 

dorn variable X  of alphabet  size m is always non- I < i < m, f(x) is & strictly convex U function on Km.  We 
negative and upper-bounded by log m.  In this paper, can show f(x) < 0, which implies our theorem: 
we present a theorem which gives a non-trivial lower Theorem.   For any discrete random variable X with range 
bound for H(X).   We will show that for any discrete R = [XQ, ... ,xm-i}, if Pi = Pr{X = xt} and po  > Pi  > 
random variable X with range R — {xo, ■ ■ ■ ,£m-i}> if .. .pm-i, i.e., p; are in a non-increasing order, then 
Pi = PriX = x,i} and po > Pi > • • -Pm-i, then 

m— 1 

21ogm£ (1) ™-l£ 
m — 1  t-^ 

l~ with equality iff 
with equality iff (i) X is uniformly distributed, i.e., Pi = ^ for all i, or 
(i) X is uniformly distributed, i.e., p; = ^ for all i, or (ii) Po = 1, and p, = 0 for 1 < i < m - 1. 
trivially 
(ii) po = 1, and pi = 0 for 1 < i < m - 1. HI. EXAMPLES 

We can compute lower bounds for two specific examples using 
I. INTRODUCTION the above theorem. 

_ .. j ■ ui      v-       -j-v. „„    r? (1) Geometrical Distribution: For   a   discrete   random   variable   A    with   range   H    = v ' 
{xo,---,xm-i} with pi = Pr{X = xt} for 0 < i < m - 1, 
the entropy of the random variable is defined as [1] 

ff(X) = -J3 p,-log pi. (2) 

The upper bound, H{X) < log m, with equality iff the ran- 
dom variable X is uniformly distributed, is well known. In 
this paper, we will prove a theorem that gives a useful lower 
bound on entropy for finitely valued discrete random variables. 
In [2], an upper bound for a constrained entropy of infinitely 
valued discrete random varibles is shown under certain condi- 
tion. Our theorem provides a lower bound for the constrained 
entropy. 

II. THE THEOREM 

Let us define a convex region Km and a set A: 

Km = {(xi,...,xm) :l>Xi>Xj>0,i <j,J2T=iXi = *}' 
1 1 

A= {öi,...,om}, a,i = (-,..., -r,0, ...,0), 1 < i < m. 

Clearly, A C Km- The following lemmas can be shown: 
Lemma 1. Km is the convex hull of A. 
Lemma 2. If f{x) is convex U on Km, then 

f(x) < max{/(äi),..., /(öm)}. 

(2) Binomial Distribution: 

( m"2 ^ 
H(X) >logm-(- 

2 log m 
m — 1 

+ o(l).       (6) 

2m-3 m-1 

IV. REMARK 

8 logm 
77 ^fm 

+ o(l). (7) 

Let us define 

H(m,a) = {-^^Pilogpi : ^3' ' P' = Q'W ^Pt>J ^ fe}- 
j=i j=i 

(8) 
Q = Y^m

=i i'Pi can ^e viewed as the average number of guesses 
with an optimum strategy needed to guess the value of a 
random variable X [2]. Let HL(m,a) = minH{m,a) and 
Hu(m,a) = maxH(m,a). Clearly, Hu(m,a) is a monotoni- 
cally increasing function of m. An upper bound on H(m, a) 
is [2] 

Hu(m,a)<   lim Hv(m,a) <log(a-l) + l,        (9) 

when a > 2. From our theorem, we can provide a lower bound 
on H(m,a): 

(3) HL{m,a)>2-^(a-l). 
TO — 1 

(10) 

If/(x) is strictly convex, then equality holds iff x = en for some 
i such that /(a,) is the maximum among all /(äi), • • ■, /(äm). 
Consider the function 

/(x) = /(a;i,...,xm) = 53(loga;i + -^37-logm):E'>   W 
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Abstract — Two entropy-based divergence classes 

are compared using the associated quadratic differen- 
tial metrics, mean values and projections. 

I. TWO CLASSES OF DIVERGENCES 

The design concepts of divergences are of interest because 

of the key role they play in statistical inference and signal 

processing. Most of the existing divergences D between two 
probability distributions may be associated with an integral 

or non integral entropy functional HJ/(/i) with respect to some 

reference measure v. We distinguish two different classes 
of divergences built on entropies. The first one is the well 

known class of /-divergences 1/ [4] which are based on the 

likelihood ratio and are formally identical to the above en- 

tropies I(ß,v) = —Hi/(/i). In the integral case, this yields the 
relative entropy class, which includes Kullback information as 
its most prominent member [4]. The most important instance 
of non integral /-divergences is Renyi information [13]. 

The second class of divergences builds upon the concavity 
of an entropy functional, which entails that, for 0 < a < 1, 

j£V, v) = H((l - a)ii + av) - (1 - a)U(ß) - orH(i/) is pos- 

itive. One can then construct CH{H,V) = max« J#" (ß, v), a 

Jensen difference 3s(ß, v) = 3^H' '(ß, v), and a Bregman dis- 

tance Dn(/i,i') = lima-*o <*~1Jfl" (^i ")• Bregman distances 
enjoy an Euclidian-like property, similar to the Pythagorean 
theorem [9, 7], when involved in projections onto exponen- 
tial or mixture families. This may be further generalized to 
projections onto 'a-families' as shown in [2] where families of 

distributions are dealt with as differential manifolds. Still in 
this geometrical vein, the interplay between CJJ,JH and DJJ 

can be understood via Thales theorem. 
A local quadratic differential metric is associated with 

any divergence measure [12, 2]. Based on the fact that /- 
divergences are locally equivalent to the Riemannian metric 

defined by the Fisher information matrix, we characterize the 
intersection of the two above divergence classes. In particular, 
it is easily found that the only Bregman distance DH which 

is a /-divergence is Kullback information [9, 7]. Similarly, it 
is found that the only /-divergences which can be written as 
a Jensen difference 3^' are those introduced in [11, 10]. 

II. ASSOCIATED MEAN VALUES AND PROJECTIONS 

Mean values can be associated with entropy-based di- 

vergences in two different ways. The first way [13, 1] 
consists in writing explicitly the generalized mean values 

<j>_1 (52™=i ßi 4>(pi)) underlying integral and non integral /- 
divergences. Here the ß's are normalized positive weights. 
For Renyi information, <f>(u) = ua, and this results in ct-mean 

values (527=i ßiPi)    "■ 
The second way [3] consists in defining mean values by 

arg min« 527=i ß* d{v,Ui), namely as projections, in the sense 

'The authors are also with GDR CNRS no 134 'Traitement du 
Signal et Images'. 

of distance d, onto the half-line «i =... = «„> 0 [7]. When 

d is an integral /-divergence d(v,ui) = Uify-^j, this gives 

the entropic means [3], which are characterized implicitly by 

527=i ß' f' (tf~) = ®> an<^ necessarily homogeneous (scale in- 
variant). The class of entropic means includes all available in- 
tegral means and, when applied to a random variable, contains 

most of centrality measures (moments, quantiles). When d is 

a Bregman distance dh{u, v) = h(u) — h(v) — (u — v)h'(v), the 
corresponding mean values are exactly the above generalized 

mean values (for 4> = h'), which are generally not homoge- 

neous. 
The only generalized mean value which is also an en- 

tropic mean, and thus both an /-divergence-projection and a 

Bregman-projection, is the above a-mean value, correspond- 
ing to Renyi information [3]. This agrees with invariant prop- 

erties of means [8] and the axiomatic of inference in [5]. 
Finally, we mention that mutual information (viewed both 

as relative entropy and Jensen difference) and the related con- 
cepts of channel capacity [6] and information radius [14], can 
be seen as another manner of investigating the intersection of 
the above two divergence classes. 
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Proposition 1:    Let ip{y\ß) denote the conditional den- 
sity of y given that the sequence ß was transmitted (here 

Abstract—We reconsider the minimum/optimal bit-error 
probability receiver (OBER) for intersymbol interference 
channels with Gaussian noise and the reception of finite 
blocks of bits. We view the OBER as a function with 
two inputs: the received sequence and an expected signal- 
to-noise ratio; and one output: the estimated block of 
bits. Assuming that all sequences are equally probable to 
be transmitted we prove two results about the behaviour 
of the OBER. We show that the OBER coincides with 
the maximum likelihood sequence detector when designed 
for high signal-to-noise ratios and that it collapses to a 
matched filter followed by a hard-limiting device for low 
expected signal-to-noise ratios. 

I. A BLOCK TRANSMISSION SYSTEM MODEL 

After the introduction of the Viterbi detector as a Max- 
imum Likelihood Sequence Detector (MLSD) [3], the opti- 
mal, or minimum, bit-error probability receiver (OBER) 
[1], [2], [4] for intersymbol interference (ISI) channels has 
not been given much attention as a practical receiver. 
We reconsider the OBER for block transmission systems, 
to gain insight to its properties and its relation to the 
MLSD. 

Consider the transmission of blocks of binary data 
through a channel with known ISI and additive Gaus- 
sian noise at the receiver. Let the vector b G {—1, +1}^ 
denote the block of independent bits to be transmitted. 
We represent the transmission system in matrix notation 
as: 

y = Hb + n, (1) 

where H is a deterministic and known matrix repre- 
senting the ISI, the noise n G N (0, CT^I) and y is the 
(N + L) x 1 stochastic vector observed by the receiver. 
Further, let rj denote the outcome of y. 

II. THE OPTIMAL BIT-ERROR PROBABILITY 

RECEIVER 

Let us consider the detection of (b)bit k. A geometric 
interpretation of this binary hypothesis testing is that of 
choosing the correct halfcube: 

HQ: bGC+, tfi :   beC k > (2) 
where C£ and Ck are the halfcubes with (b)bit k = +1 
and (b)bit fc = -1, respectively. The Bayes decision rule 
minimizing the probability of detection error is given by 
[1]. P], [4] 

/y|gl (ylHi)    £    Pr{ff0} 

fy\H0(v\Ho)    £    Pr{#i}' [ö) Afc(y) 

where Prf/fJ = 1 - Pi{H0} is the a priori probability 
that Hi is true, and fy\H0(-) and /yi^O) designate the 
probability density functions for y given H0 and Hi, re- 
spectively. 

multi-dimensional Gaussian). Furthermore, let 

boBER(y)   * r(y,<Tn)   * sign]  £ u>(y,/3)/3]    (4) 

and w(y,ß) = V(y|/3)Pr{b = ß} - ^(y| -/3)Pr{b = 
-ß}, where Pr{b = ß} is the probability for the sequence 
ß eC being transmitted. Then bOBER (y) is the detector 
of the transmitted bits that minimizes the bit-error prob- 
ability. ■ 
Note that (4) represents a parallel block processor struc- 
ture, simultaneously detecting all the individual bits. 

As indicated by (4), we find it instructive to view the 
OBER as a function T(y, a) with two inputs, y and a. 
The parameter a2 is the variance the OBER is designed 
for, and controls the decision regions in JR^"1"1, where y 
takes its values. Thus, the OBER depends on the ex- 
pected SNR and is only optimal when the expected vari- 
ance a2 and the true variance er^ agree. 

III. THE BEHAVIOUR OF THE OBER 
We will discuss asymptotical properties of the OBER 

by studying the function r(-, ■) as defined in (4). Assum- 
ing that all sequences are equally probable to be trans- 
mitted we show that 

Hm T(x, a) = bMLSD (x),    for all x G MN+L,       (5) 
a-+0 

and that 
lim r(x, a) = sign(HTx), for all x G JRN+L.     (6) 

Equation (5) means that the OBER designed for a high 
SNR becomes the MLSD. It is because of this is that 
the MLSD will achieve the minimum attainable bit-error 
probability when used in systems with a high SNR, cf. [3]. 
In equation (6) we find a similar comparison for low SNR 
between the OBER and the matched filter with hard deci- 
sions. If the true SNR is low, the best possible receiver is 
actually the matched filter receiver as comes to the BER. 
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Abstract—Building on Forney's concept of the genie [4], 
[5], and introducing the idea of an explicit statistical descrip- 
tion of the side information provided to the genie-aided 
detector, we develop a generic tool for derivation of lower 
bounds on the bit-error rate of any actual receiver [3]. 
With this approach, the side information statistics become 
design parameters, which may be chosen to give the result- 
ing bound a desired structure. To illustrate this, we choose 
statistics in order to obtain a special case: the lower bound 
derived by Mazo [6]. The statistical description of the side 
information makes the lower bounding a transparent ap- 
plication of Bayesian theory. 

I. INTRODUCTION 

The idea of a good genie with a corresponding genie- 
aided detector (GAD) has, in particular, often been used 
to determine a lower performance bound for the proba- 
bility of bit-error [1], [2], [3], [4], [5]. The GAD has access 
to more information than any actual detector: it has ac- 
cess to the side information supplied by the genie and 
is expected to handle all information optimally. Because 
of this, it is argued, it cannot have a worse performance 
than any detector working without the side information. 
However, in order that optimal processing of the side in- 
formation be well-defined in the sense of Bayesian de- 
tection theory, an explicit (statistical) description of the 
side information is required. This paper introduces such a 
representation of the genie, augmenting the foundational 
ideas of Forney's work in [4], [5]. Our aim is to introduce 
the side information supplied by the genie as the output 
of a "side information channel" parallel to the original 
channel and governed by a probabilistic rule with free pa- 
rameters. 

II. THE SIDE INFORMATION CHANNEL 

Consider a transmission system where binary data is 
sent through a discrete-time, additive Gaussian channel 
with intersymbol interference, and where additional side 
information is carried to the detector through a parallel 
channel (representing the genie). 

We discuss the detection of bit number k in the impor- 
tant special case when the side information consists of a 
pair of sequences and one of the sequences is equal to the 
transmitted sequence, cf. [4], [5]. Define C% andC^ as the 
sets of sequences with the bit in position k as +1 and -1, 
respectively, and denote the side information with z and 
its outcome with (. Let C consist of pairs in C~£ x C^ of 
the form Ci,j £ (ßf,ßj), for 1 < i,j < 2N~K With the 
transmitted sequence being ß, let the additional sequence 
be chosen at random among the sequences differing from 
ß in bit k, according to the known, probabilistic transition 

e: 
f POIO if ß = ßf e C+ 

Pr{z = C«|b = /3} = Q(i\j) if ß = ßj G Cfc 
0 otherwise. 

Hence, the properties of the genie, or equivalently, the 
properties of the output of the side information channel, 
are defined by the statistics (or transition probabilities) 
p(J\i) and q(i\j). 

III. THE GENIE-AIDED DETECTOR 

With the complete statistical description of the trans- 
mission system, including a set of transition probabilities, 
the GAD with minimum bit-error probability is derived 
in terms of a binary Bayesian hypothesis test. By evalu- 
ating the performance of this GAD, a lower bound on the 
probability of bit-error of any detector, with or without 
access to the side information, is obtained as 

ln^9(i|j)Pr{b = /3j} + 

\p(j\i)Px{b = ßf}, 

where dij is the Euclidian distance between ßf and ßj, 

q(i\j)Px{h = ßj} 

BER.fc > 

IhJ p(j\i)Px{b = ßf} 

andQ(x) A (l/V^)/+00e-*V2dt. 
The transition probabilities {p{j\i), q(i,j)} are free pa- 

rameters which can be chosen to optimize the perfor- 
mance of the GAD. They might for example be chosen to 
make the corresponding bound tight, or to give the bound 
a simple structure. We choose several sets of transition 
probabilities as examples in order to discuss the proper- 
ties of their respective performance bounds. In this, we 
also discuss the relation of the attainable performance 
bounds to the works by Forney [4], [5] and Mazo [6]. 
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Abstract - A new family of nonlinear decision delay- 
constrained receivers minimizing the symbol-decoding-error 
probability of QAM- or PSK-moduIated digital information 
sequences transmitted over time-dispersive time-varying noisy 
waveform channels is presented. New (generally) time-varying 
Bhattacharyya-type upper bounds for the performance 
evaluation of the proposed receivers are also presented. 

SUMMARY 

In this work a novel solution for the optimal synthesis of nonlinear 
receivers for the detection of digitally modulated (QAM or PSK) 
information sequences transmitted over generally time-varying channels 
impaired by known ISI and additive noise is presented for the case when the 
decoding-decision-delay A is limited and finite. Receivers which minimize 
the symbol error probability (i.e., symbol-by-symbol MAP decoders) are 
considered. 

The known solution presented in [1] for a similar problem holds for the 
case of data transmission systems with time-invarying waveform channels 
and unquantized soft-decision demodulation. Moreover, the algorithm in [1] 
has been obtained by means of a direct application of Bayes' rule so that the 
resulting receiver complexity grows exponentially with the decision-delay 
A; as a consequence, the implementation of such receivers for multilevel 
digital signalling seems to be unattractive even for small values of A [4, 
Sect.6.6]. 

In this work a M-level quantizer is assumed present at the output of the 
noisy waveform channel so that the finite word-length effects of digital 
receivers can be suitably taken into account. Moreover, the approach 
followed to synthesize the MAP decoder is completely different from that in 
[1] and is based on the modeling of the ISI channel as a sequential Moore- 
type finite-state-machine. This allows to adopt the recursive Kalman-like 
algorithms of [2] for the computation of the sequence {jc(k I k+A), k > 1} 
of the A Posteriori Probabilities (APPs) of the so-called "channel state" 
Markov chain {x(k) e 11 = {ui, U2, ... , UN}, k > 0} (defined as in 
[3,Sect.irj) for every assigned decision-delay A. The main advantage of this 
approach is that the implementation of the resulting MAP decoders exhibits 
a complexity which grows only linearly with the value assumed by the 
decision-delay A. In fact, the following expression for the computation of 
the APP sequence (recursive with respect to the k-index) holds: 

k+A 

ic(k I k + A) = A Jt(k-1 I k+A-1) + X ß(k;i m)0(m). (1) 

In (1) the matrix A is the probability transition matrix of the Markov 
chain {x(k)} and the sequences {ß(k;m)} and {0(m)} can be recursively 
calculated as in [2]. Starting from the above APPs sequence, the 
corresponding MAP estimate sequence {aMAP(klk+A)e %. } of the 
transmitted S-ary information sequence {a(k)e A = {ai, a2 as}, k £ 
0} can be easily computed following quite standard procedures (see, for 
example, [3,Sect.rV]). 

As far as the performance evaluation of the mentioned nonlinear MAP 
decoders is concerned we observe that, from the authors' knowledge, no 
explicit analytical expressions are known in literature (see [4, Sect.6.6]). 
Starting from Eq.(l), new (generally) time-varying Bhattacharyya-type 
upper bounds for the performance evaluation of the proposed MAP 
decoders have been derived as follows: 

P(äMAP<klk+A)*a(k))£ 
. s    s   CM"*4*1   1 
12 £      S  VP(Yo+A =yS+A(m)la(k) = ar)p(Y^ =y^(m)la(k) = aj) , (2) 

j=l   r=l   I   m=l I 

where y'+A(m) is the m-th determination assumed by the ordered random 
sequence Yj+A, constituted by the quantized noisy data received at the 

channel output from step 0 to step k+A. Simulation results proved that the 
upper bounds of Eq.(2) are quite tight for error probabilities below 10-2. 

The performance of the proposed symbol-by-symbol MAP receivers 
have been compared to that pertaining to the conventional sequence 
Maximum Likelihood (ML) receivers (based on the classic Viterbi 
Algorithm with optimized branch metric). Computer simulations showed 
that the performance of the presented receivers overcomes that of the ML 
sequence receivers when the transmission channel is largely time-dispersive 
and the signal-to-noise ratio (SNR) at the receiver site is quite low, so that 
the proposed decoders could be attractive, in particular, for HF channel 
equalization. Moreover, for the MAP decoders at hand a decision-delay A of 
the order of the length L of the channel impulse response (measured as 
multiples of the signalling period T) results in a negligible performance loss 
with respect to the ideal case A = °°, while a delay A of 5-6 times the length 
L is in general required for the corresponding ML decoders. 

As illustrative example, in Table I the bit-error-rate (BER) for the case 
of a BPSK-modulated binary message sequence crossing the discrete-time 
baseband ISI channel of [4], Tab.6.7.1, of length L=6 are reported. Hard- 
decision demodulation and AWGN are assumed; the signal-to-noise ratio is 
evaluated at the input of the receiver' quantizer. In Tab.II the corresponding 
steady-state values of the Bhattacharyya-like bound (2) are reported. In [5] 
the symbol-by-symbol MAP decoders described in this work are employed 
for decoding Trellis-encoded data sequences. It is finally observed that if the 
transmitted sequences are equiprobable, the proposed MAP receivers 
coincide with the corresponding symbol-by-symbol ML receivers. 
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Channel of 

length Z=6 

Sequence detectors(VA) Proposed detectors 

A = 0 A=£rl A — °° A = 0 A=jCrl A=£fl 

SNR = 7 0.2822 0.2587 0.249 0.2488 0.2239 0.223 

SNR =15 0.0459 0.0255 0.0122 0.0428 0.0229 0.0153 

Tab.I 

Upper bounds A = 0 A = i>l A=I+1 

SNR = 7 0.4935 0.4718 0.3910 
SNR =15 0.0995 0.0502 0.0314 

Tab.II 
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Abstract — Decision-feedback suffers from the prob- 
lem that wrong decisions deteriorate further deci- 
sions by increasing the interference in the observa- 
tion. MMSE-optimal feedback minimizes this resid- 
ual interference power. Applications include decision- 
feedback equalization and delay estimation in code- 
division multiple-access (CDMA) systems. 

I. INTRODUCTION 
In many applications, one observation (e.g., a sequence) can 
give rise to decisions on many random variables. For opti- 
mal results in the maximum-likelihood (ML) sense, all ran- 
dom variables have to be estimated jointly. Decision-feedback 
can be used as a less complex but suboptimal method. The 
estimate of each random variable in turn is fed back to the 
observation with the aim of reducing the influence of this ran- 
dom variable on further decisions. One application is decision- 
feedback equalization: data estimates are appropriately fil- 
tered and fed bapk to cancel out the interference from the cor- 
responding data symbol on future decisions. However, wrong 
decisions can increase the influence of a previously decided 
symbol instead of diminishing it. E.g., a wrong decision on 
a binary antipodal symbol increases the interference power of 
that symbol in the observation by a factor of four. The prob- 
lem arises from the implicit assumption of decision-feedback 
equalization that all decisions are correct. 

II. MMSE-OPTIMAL FEEDBACK STRATEGY 
Our purpose is to mitigate the detrimental effects of decision- 
feedback by an improved feedback scheme. We will treat the 
case where an observation Y (e.g., an infinite-length sequence 
Y[-\) can be expressed as a sum of two real-valued terms, one 
of which is independent of the random variable X (e.g., a data 
symbol X[n]) to detect. The observation can be written as 

Y = Y0 + f(X), (1) 

where /(•) denotes an arbitrary function. Every feedback 
scheme subtracts some function r(Y) from the observation 
Y, and hence the latter becomes 

Y' = Yo + f(X)-r(Y). (2) 

Being interested in minimizing the impact of X on the ob- 
servation Y, a reasonable criterion of goodness is the average 
residual power due to X after cancellation. Therefore, one is 
interested in finding 

ro(Y) = arg{min£[||/(X) - r{Y)f | Y = y]},       (3) 
r(-) 

where || • ||2 denotes the squared Euclidean norm. 
The problem raised by (3) is an instance of the well- 

understood Bayesian (nonlinear) minimum mean-squared er- 
ror (MMSE) estimation problem (see, e.g., [1, Section 7-5]). 
It follows that the MMSE-optimal feedback function is 

ro(Y) = E\f(X) | Y = i/], all y. (4) 

III. MMSE-OPTIMAL FEEDBACK EQUALIZATION 

In a decision-feedback scheme, the observation Y corresponds 
to the received sequence Y[-\ = EÜ=o9Wxhm] + z['i Af- 
ter deciding on a transmitted symbol X[k], a decision-feedback 
scheme subtracts the sequence 

r<k)[-]=g[.-k]X[k]. (5) 

On the other hand, the MMSE-optimal scheme subtracts [3] 

rik)[-]=g\.-k}-E[X[k]\Y[-]=y[-}}. (6) 

IV. DELAY ESTIMATION IN CDMA 
MMSE-optimal feedback can also be applied to estimate the 
relative transmission delays of the users of an asynchronous 
code-division multiple-access (A-CDMA) system. A possible 
scheme can be derived from successive cancellation [2]: the 
users' delays are estimated in turn and appropriately sub- 
tracted from the observation to improve subsequent estimates. 
Again, better performance for this general feedback scheme is 
achieved by using MMSE-optimal feedback. Figure 1 illus- 
trates the gain for a specific A-CDMA system with randomly 
chosen, repeatedly emitted synchronization sequences. 

Other promising multi-user applications include MMSE- 
optimal multi-user decision-feedback and interference cancel- 
lation in CDMA data detection (cf. [4] for a related approach). 
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Abstract — This paper compares the Coded Orthog- 
onal Frequency Division Multiplexing (COFDM) sys- 
tem and a single-carrier system using decision feed- 
back equalization (DFE) in a Rayleigh-fading environ- 
ment assuming perfect knowledge of the channel and 
ignoring error propagation in the DFE. Analytic tech- 
niques are introduced to bound the average probabil- 
ity of error of a single-carrier system using decision- 
feedback equalization and the average probability of 
error of a COFDM system in a two-path fading chan- 
nel. 

I. INTRODUCTION 

We compare a single-carrier broadcast system using decision 
feedback equalization (DFE) to COFDM in a slowly Rayleigh- 
fading environment. Analytic techniques are introduced for 
bounding probability of error for systems using DFE and 
COFDM. Diversity is a well-known technique to reduce the 
average probability of error in a fading channel [1], [2]. This 
paper shows how the inherent diversity of a single-carrier sys- 
tem using a DFE is equivalent to the inherent diversity of 
a COFDM system in a two-path fading channel with proper 
coding and interleaving. 

II. DIVERSITY CALCULATIONS FOR A DFE IN A 

TWO-TAP FADING CHANNEL 

We consider the performance of a DFE when the received 
channel pulse, after any receiver filtering and symbol-spaced 
sampling, is a two-tap channel. To upper-bound the probabil- 
ity of error of the DFE, we consider the zero-forcing DFE, be- 
cause a zero-forcing DFE will have a higher probability of error 
than a DFE [2]. The zero-forcing DFE will convert the chan- 
nel pulse response to one that is causal, monic and minimum- 
phase. It will then subtract the precursor ISI. Consider a two- 
tap channel pulse response, h(D) - h0 + h\D. If \h0\ > \hi\, 
the feedforward section of the equalizer (including matched 
filtering) will be simply ±- and the feedback section will be 

j^D. Without loss of generality, assume £[x2]/<r2 = 1. The 
resulting instantaneous SNR will be |A0|

2- Now suppose that 
IM > |Äo|. In this case, the D-transform of the feedforward 

section of the equalizer will be WZF-DFE(D) =    /'o + /l?g"' 
"■      ' /i*(h1+h0£

>_1) 

and the feedback section will be y^-D. In this case, the result- 

ing SNR will be |/»i|2. Therefore, the zero-forcing DFE in the 
two-tap channel case selects the larger of the two paths. This 
is equivalent to selection diversity for a two-antenna channel. 
Therefore, selection diversity provides an upper-bound to the 
probability of error for a DFE in a Rayleigh-fading channel. 

^his work was supported by NSF grant. 2DPL133 
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Stanford University 
Stanford, California 94305-4055 

On the other hand, the matched-filter-bound for a two-tap 
fading channel can be used to lower-bound the probability of 
error for a DFE [3]. Both the upper and lower bounds for 
a DFE in a fading two-path fading channel exhibit two-path 
diversity. Therefore a DFE exhibits two-path diversity in a 
fading channel. 

III. DIVERSITY CALCULATIONS FOR A COFDM 
SYSTEM 

Given a COFDM system with convolutional coding and in- 
terleaving across frequency tones, we can find the probability 
that a codeword is mistaken for its nearest neighbor by rec- 
ognizing that the coded SNR is a quadratic sum of complex 
Gaussian random variables. This will give a conservative ap- 
proximation to the amount of diversity inherent in a COFDM 
system. Given two paths in the channel separated by time r, 
we can write the SNR at tone i by 

w,     =     |Aor + |Äi|2 + fcofciVUir + fcSfcie--''u" (1) 

Zp- and j; is the width of each tone in the OFDM where u>; 
symbol. 

Now the coded SNR can be written as: 

2Rea.l(^2aih0k'1e
:iw'r), (2) 

where 7 is a set that indexes the differing tones between 
nearest-neighbor codewords and a; adjusts the SNR to reflect 
the distance between coded symbols on a given branch of the 
trellis. Equation (2) has the same form as the instantaneous 
SNR of the matched filter bound for a two-tap fading channel 
found in [3]. We can use this to show that the diversity of the 
system is at most 2 for a two-path channel, regardless of the 
number of diversity branches of the code. 

IV. CONCLUSIONS 
This paper introduces analytic techniques to bound the prob- 
ability of error for both a single-carrier system using a DFE 
and a COFDM system. It shows analytically that in a two- 
path channel, both a single-carrier system using a DFE and 
a COFDM system with interleaving across the tones exhibit 
two-path diversity in the average probability of error. 
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Due to its low complexity and robust performance, the deci- 
sion feedback equalizer (DFE) [1] continues to play an impor- 
tant role in high data rate and/or low cost systems, e.g., digi- 
tal subscriber lines, magnetic recording and (possibly) mobile 
radio. Here we examine the possibility of recursive equalizers 

which perform soft-decisioning with complexity comparable to 
the DFE. The approach taken here involves initially making 

decisions like a DFE, followed by post filtering of these deci- 

sions using a recursive (conditionally) linear filter structure; 
we call this a decision feedback filter (DFF). Significantly, the 
DFF can be set-up to provably retain the performance capa- 

bility of the DFE at high SNR, and empirically has improved 

performance over a wide range of SNR. 

The DFF is derived assuming the usual AWGN FIR equiv- 
alent baseband model (it is possible to modify the DFF to 
take into account correlated noise as would arise from us- 
ing a mean-square whitened matched filter in the front end). 
Starting with the fixed-lag Kaiman filter (KF) [2], the cur- 
rent symbol estimate and error variance are isolated from the 
previous symbol estimates and error covariance. Then the 
current symbol (linear) estimate is replaced by a (nonlinear) 
MAP estimate (based on the approximation that the current 
observation is conditionally Gaussian, conditioned on the cur- 

rent symbol and past data), and the error variance is adjusted 

accordingly. The current symbol estimate is thus filtered and 
fed back, and eventually (after a fixed number of additional 

observations) thresholded to obtain the final estimate. Some 
simulation results demonstrate the improved BER of the DFF 

compared with the DFE. 

A rigorous analysis of the DFF is performed. It turns out 
that the stability and performance of the DFF is related to 
the magnitude of the (computed) conditional error variance 
Pk of the current symbol estimate. We identify two critical 
constants a,ß(ß < a) with the following properties: 

(i)  If sup pk   <   a then the DFF  state is mean square 
k 

bounded, uniformly as SNR —* oo (this is true even 
for nonminimum phase channels, in contrast to the KF 

which tends toward instability as SNR —> oo [3]). 

(ii)  If sup pk   < ß then the DFF BER is asymptotically 
h 

upper bounded by the DFE BER as SNR -» oo. 

Since pk is random in the DFF (since the current symbol es- 
timate is nonlinear) these conditions would generally have to 
be imposed in order to guarantee one or both of the above 
properties, i.e.,ph would be replaced by max (pit, 7) for some 
7 < a . These results are proved using variations on compar- 

ison techniques familiar in the analysis of recursive stochastic 
algorithms, and some basic results on DFEs [4]. The novely 
in the analysis lies in the fact that the continuous-state DFF 
can be effectively compared to the discrete-state DFE. 
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Abstract — We present a novel scheme that com- 
bines decision feedback equalization (DFE) with high- 
rate error-detection coding in an efficient manner. 
The proposed scheme is evaluated both analytically 
and by means of comprehensive computer simula- 
tions. In our analysis, we introduce an approximate 
mathematical model taking into account the error 
propagation phenomenon. Both evaluation methods 
show that power savings of 2.5 dB to 3 dB over the 
conventional DFE can be achieved at the expense of 
a moderate complexity increase. 

I. INTRODUCTION 

Motivated by the desire to transmit the maximum possi- 
ble data rate through a band-limited additive-noise channel 
with intersymbol interference (ISI), a considerable research 
effort has been devoted to equalization techniques for such 
channels. Various approaches to the equalization problem 
can be roughly divided into three classes: linear equaliza- 
tion, decision-feedback equalization (DFE), and maximum- 
likelihood sequence estimation (MLSE). DFE can significantly 
outperform the linear equalizer on channels with severe fre- 
quency attenuation. A major problem with the DFE, however, 
is the error-propagation. On the other hand, while MLSE 
is the most powerful technique, it is also the most complex 
to implement. Recently, a number of schemes — generally 
known as reduced-state sequence estimation (RSSE) — were 
proposed [1, 2, 3] in an attempt to approach the performance 
of the MLSE at reduced complexity. Both [1] and [2, 3] are 
based on the idea of pruning the MLSE trellis, namely con- 
structing only a small subset of all the paths in the trellis, and 
then selecting the most likely of these paths as the estimated 
sequence. The proposed scheme would be a further step in 
this direction, with the following two major differences. First, 
the path generation mechanism of RSSE schemes is controlled 
by some a priori determined rule. In contrast, we propose to 
generate the subset of paths in the trellis in accordance with 
the actual noise samples in the channel. Since with this ap- 
proach, additional complexity is introduced only where it is 
needed, one would have to consider, on the average, very few 
paths. Second, we propose to significantly improve upon the 
performance of both RSSE and MLSE by integrating a simple 
high-rate error-detection code into the receiver structure. 

II. THE PROPOSED SCHEME 

The following is a simplified overview of the general ideas un- 
derlying the proposed scheme. The source data stream is par- 
titioned into blocks of k symbols, which are subsequently en- 
coded into the codewords of a cyclic code of length n. Let 
at denote the transmitted symbols, vt the noise samples, and 
J/t = X^i=o Ot-ihi + vt the output sequence of an ideal zero- 
forcing feed-forward equalizer (FFE), where {ht}tio stands 

for the (postcursor) channel impulse response. Then the con- 
ventional DFE operates as follows: 

Zt = at + ^2(at-i-at-i)hi + vt, (1) 

where zt is the signal at the slicer input, and at denotes the 
estimated symbol. We shall refer to the sequence {at} as the 
standard path. Note that at each time instance the channel 
noise may be estimated as Vt = zt — at. The basic idea is to 
diverge from the standard path, i.e. open a new path in the 
trellis, only when the estimated noise value Vt is large. The 
same principle may then be employed for branching from each 
of the paths that are already followed. 

Once all the paths have been generated as described above, 
they are processed in some fixed order and the first one that 
happens to be in the code is selected as the estimated se- 
quence. Note that the total number of paths to be considered 
could still be quite large. However, we employ the structure 
of cyclic codes to implement the selection process with very 
low computational effort. 

III. PERFORMANCE ANALYSIS 

In order to analyze the performance, we introduce an approxi- 
mate mathematical model, which takes into account the error 
propagation using a Gilbert-Elliot channel model. That is, 
we assume that the signal zt in (1) can be described by a 
two-state Markov process, where one of the states is error- 
free while the other is the error-propagation state. Based on 
this model upper and lower bounds on the overall probabil- 
ity of error are derived. These show that with the proposed 
method, the probability of error can be made several orders 
of magnitude lower than that obtained with the conventional 
DFE. In addition, comprehensive computer simulations have 
been performed. The simulations concur with the theoretical 
analysis, indicating a significant improvement over the conven- 
tional DFE. More specifically, simulation results for the HDSL 
channel test-loop #4, which is considered to be a difficult test 
channel with a considerable amount of ISI, show a reduction of 
three to four orders of magnitude in the overall system BER, 
which converts into savings of some 2.5 dB. For other HDSL 
channels, power savings of up to 3 dB were achieved. 
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Abstract — This work aims at providing near- 
optimal and sub-optimal receiver designs for digi- 
tal communications in the presence of Non- Gaussian 
noise and intersymbol interference (ISI). Potential ap- 
plications include wireless indoor (office or factory 
floor) communications (e.g., [1]) which are charac- 
terized by ISI due to multipath fading and limited 
channel bandwidth and by non-Gaussian background 
noise. 

In our problem the received signal, corrupted by ISI and ad- 
ditive non-Gaussian noise is given as r(t) = '%2n^_00 amh(t — 
mT) + n(t) where am = ±1 (binary signaling) and h(t) repre- 
sents the impulse response of the channel. We have to deter- 

mine a 2J bit sequence of transmitted bits a-j ... aj-i from 
the received wave-form over the observation interval.    The 

problem of sequence estimation is posed as a M-ary hypothe- 
sis testing problem: Vi, 1 < i < M = 22J ,Hi corresponds to 

the fact that the sequence Ai was sent, i.e.: 

Hi : r(t) =   ^2 °m M* ~ mT) + n(t) = x(At, t) + n(t) 
m=—J 

r(t) is sampled with the sampling rate ^7 = j; where L de- 

notes the number of samples over a single bit interval. Thus, 
we have: tk = kT';r(tk) = x(tk) +n(tk) = xk+nh with xk = 
^2 amh(tk — mT). Then, we can form a discrete representa- 

tion of the form: Rk = Xk+Nk, where Rk = [n, rz,..., rp]T, 
Xk — [xi, ...,xP]T, Nk = [nlt...nP]T. P is chosen such 
that all the bits creating ISI for the sequence considered are 
observed. If we assume that the impulse response h(t) be- 
comes zero for t > NT and t < -NT, that is the ISI is 
assumed only over K = 2N + 1 adjacent bit sequences, then 
we have: P = 2(J + N)L We consider sufficiently long se- 
quences that P » N. The decision rule which minimizes 
the probability of error is: Choose the sequence Ai = {a^} if 

Pr/Hi(R/Hi) > Pr/Hj(R/Hj) Vt # j. 
Under very low SNR and i.i.d conditions, it can be shown 

that 

p 

Pr/Hi(R/Hi) = [Y^9(rk)xk(Ai)]PT/Ho(R/Ho) 

where  Ho r(t) n(t),   g(rk)   =   ^-lnP(rk/Ho) 

jL \nPn{rk), and xk(Ai) = Y,mJ-j a™h(tk - mT). Thus, a 

sufficient statistic for detection is Ai = $2fc=1 g(rk)xk{Ai). It 
should be emphasized that the problem treated here is that 
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of coherent reception and that the knowledge of the impulse 
response of the channel is required to compute Aj. 

In case of correlated noise samples, the maximization of 
Pr/Hi(R/Hi) can be replaced by a M-ary classification prob- 
lem involving binary hypothesis testing and pairwise likeli- 
hood ratios. For Lij = pffiffi), the decision process is 

( -  compute Lij   i ^ j     i, j = 1, 2,... M 
1 -  decide Hi if Vj ^ i   Lij > r\ij ■ 

Since the computation of Lij is intractable in a non- 
Gaussian environment, suitable approximations have to be 
employed. Indeed, two approaches are followed: (i) The Gen- 
eralized Correlator (GC), as in the iid case. Here we extend 
the work of [2]; low SNR conditions and large sample sizes are 
assumed. And (ii) the Linear Quadratic Detector (LQD) of 
[3], which can be designed to match Lij under any SNR con- 
ditions and without having to resort to large noise samples. 
The generalized likelihood ratio is used here rather than the 
deflection. Only the knowledge of Is' to 4th order statistics of 
the observations, under both hypotheses, is required. 

We derive the appropriate GC to fit Lij. Each likelihood 
ratio is then approximated by a statistic of the form: 

p P 
THi = J^foM - **(A;))0i/j(r*) = J2skß)9i/j(rk) 

fc=i Jb=i 

and the discrimination test between Hi and Hj becomes: 
Ti/j ><* T)i/j. This memoryless discriminator is character- 

ized by the non-linearity giß and the threshold T/J/J . When all 
the non-linearities gi/j are given, the corresponding thresholds 
can be determined so that the different tests form an appro- 
priate partition of the observation space. Each nonlinearity 
is selected by maximizing the appropraite efficacy functional 
and solving the resulting integral equation numerically. How- 
ever, we also need here an estimate of the impulse response 
of the multipath channel. Actually for Ti/j we need the sam- 
ple power and sample autocorrelation functions of the signal 
components under the sequences i and j and the marginal and 
bivariate pdfs of the background noise. The latter noise distri- 
butions can be obtained via histograms or Kernel estimation; 
noise estimation can be done on-line as long as the signal level 
remains of sufficiently low SNR. On the other hand, the chan- 
nel impulse response can be estimated by filtering out the 
background noise during the training stage. 
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[2] S. Prasad and S.S. Pathak "Optimum data receivers for low 
SNR data signals in non-Gaussian noise and intersymbol inter- 
ference," IEE Proc. Pt F, no 5, Oct.88. 

[3] B. Picinbono and P. Duvaut, "Optimal linear-quadratic systems 
for detection and estimation," IEEE Trans. Inform. Theory, 
vol. IT-34, no. 2, p 304-311, Mar. 1988. 
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Incoherent diversity detection of fading signals 
in correlated non-Gaussian noise 
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Abstract — The paper deals with the synthesis of 
an asymptotically optimum diversity detector for the 
incoherent detection of a bandpass signal subject to 
slow and nonselective fading and embedded in corre- 
lated spherically invariant noise. 

SUMMARY 

The detection problem under consideration can be repre- 

sented by the hypothesis test 

•Ho :       *V    —    "pi 

7 
p = 1,2, ...,£, 

Hu ^Ape3e,,v + np, 
(1) 

where fp and np are N-dimensional row vectors whose com- 
ponents are samples drawn from the complex envelopes of the 
received signal and the noise (respectively) on the pth diver- 
sity branch. The vector v represents the vector of the samples 
drawn from the complex envelope of the bandpass signal to 
be detected. The random variable (RV) AP, which assumes 
nonnegative real values, accounts for the presence of a slow 
amplitude fading on the pth channel. The RV 9P is assumed 
to be uniformly distributed over a 2ir interval (incoherent de- 
tection). The RV's Ap and 6P, and the noise vector iip are mu- 

tually independent on each channel. Furthermore, amplitude 
fadings, phases, and noises on the different diversity channels 
are mutually independent. Finally, the signal amplitude is as- 
sumed to decrease as -y/y/N (with 7 a positive constant) so 
that the signal-to-noise ratio (SNR) is finite and not zero for 

any value of N. 
The assumed spherically invariant (SI) noise model allows 

one [1,2] to write np = apgp, where ap is a nonnegative RV 

independent of g , which is a zero-mean complex Gaussian 

vector characterized by a 2N x 2N correlation matrix cr2pKp 

with <J\P the common variance of the inphase and quadrature 

components. 
The matrices Kp (p = 1,2,...,L) admit the Cholesky de- 

composition Kp = CPCP, where T denotes transpose opera- 
tion and CP are 2N x 2N invertible lower triangular matrices. 
Therefore, the theorem of reversibility and the closure prop- 

erty of the SI vectors under deterministic linear transforma- 

tions [1] assure that the detector synthesized on the basis of 

the hypothesis test 

Ho 

Hi 

p = 1,2, ...,£, 

=     -^=Ape'">sP + wp 

(2) 

retains the optimality properties of the detector synthesized 

starting from (1). In (2), wp — wpc+jwpt is a white SI vector 

with modulating RV ap, which is obtained by the transforma- 

tion (wpc,wps) = (npc,np,)(C~1)T. Moreover, (xpe,xp,) = 

(rpc,rp,)(Cp
1)T and {spc,sp,) = (vc,v,)(Cp

1f. 

The asymptotically optimum (AO) detector can be synthe- 
sized starting from an asymptotic expression of the likelihood 
ratio on the pth channel conditioned to Ap and 9P, which can 
be derived following an approach similar to that considered in 

[3]. The resulting decision statistic for the AO detector is 

•Jo SpXp )]}• (3) 

where 2?.A,,[-] denotes the statistical expectation with respect 

to Ap, Pp A || sp ||2 /N provides a measure of the signal 
power on the pth channel, || • || denotes Euclidean norm, Jo(-) 
is the modified Bessel function of the first kind and zero order, 

and * denotes complex conjugation. 
If one assumes that the fading RV's Ap are Rayleigh dis- 

tributed, it results that 

lRay (*) = £■ 
~,2EAT(A2

P)N S
P
X

P I 

P=i a, II2 [II *P II2 WEAT(A\)NPV) 

-E In 

p=i 

1 + 
7

2EAp(A2
p)NPp 

(4) 

The main advantage of the proposed AO detector is that its 
structure does not depend on the univariate probability den- 
sity functions (PDF's) of the noises on the diversity channels. 
The synthesis of the detection structure, however, requires 
a priori knowledge of the noise correlation matrices and the 
fading PDF's. Then, its complexity is just that of the fully op- 

timum detector for a correlated Gaussian noise environment. 

The detection probability and the false-alarm rate of the 

proposed AO detector in white SI noise depend on the signal 
to be detected only through the mean (over fading) SNR's on 
the diversity branches, resulting so unaffected by the signal 
shape. Consequently, the closure property of the SI vectors 
under deterministic linear transformations assures that the 
performance in correlated noise can be easily assessed by ex- 

ploiting the relationship between the mean SNR's at the input 

and the output of the whitening filters. 
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Abstract — New upper and lower bounds to the 
mean recovery time of decision feedback equalization 
(DFE) are derived. The recovery time is denned 
as the time it takes the decision feedback equalizer 
(DFEQ) to reach the error free state after an error 
has corrupted an error free DFEQ. The derivations 
of the bounds assume a causal channel response, in- 
dependent data symbols, and independent noise sam- 
ples. The bounds are found to be tighter, especially 
at large SNR, than previous bounds in a numerical 
example. 

Intersymbol interference (ISI) in a communication system 
has a deleterious effect on system performance. The ISI arises 
because insufficient channel bandwidth causes the pulses to 
spread into adjacent pulse intervals at the receiver end. This 
spreading may increase or decrease the noise margin of the re- 
ceived signal depending on the relative polarities of the pulses. 
On the average, however, ISI increases the bit error probabil- 
ity. 

One of the methods often used to combat the effects of ISI 
is to use DFE. A DFEQ operates by reconstructing the por- 
tion of the ISI due to previously transmitted symbols and then 
subtracting out this portion from the received signal. The re- 
construction is based on estimating the previously transmitted 
symbols and the channel characteristics. 

Assuming that the past decisions are correct, a DFEQ (with 
perfect channel identification) can eliminate ISI due to previ- 
ously transmitted symbols in the span of the feedback filter 
completely. However, decision errors will result in residual ISI 
which may increase the probability of decision error in the fu- 
ture detected symbols. This leads to error propagation in the 
DFEQ. Analysis of a DFEQ is difficult because little is known 
about the distribution of the past decision errors. 

It is important to know how fast a DFEQ can recover from 
an error; that is, how many symbol intervals it takes to clear 
up an initial error introduced into the feedback filter. Then 
one knows how many future decisions will be affected by the 
error. When the DFEQ has a finite number of taps in the 
feedback filter and the system response has a finite time dura- 
tion, the communications system can be modelled as a finite 
state Markov chain as shown by Monsen [1] and Austin [2]. 
Austin, in [2], showed how to obtain the mean recovery time 
exactly through quasi-simulations and discussed bounding the 
mean recovery time. However, both of Austin's approaches re- 
quire computational efforts that grow exponentially with the 
length of the DFEQ. The mean recovery time of a DFEQ with 
error state transition probabilities of 1/2 was also computed 
in [2]. Cantoni and Butler [3] derived an upper bound for 
the mean number of symbols required to reach the zero error 
state, starting from an arbitrary initial state and subject to 
noise. The bound depends only on the number of taps in the 
DFE feedback filter and the number of signal levels. Kennedy 
and Anderson [4] extended, generalized, and clarified the con- 
tributions in [3], and gave a class of channels for which the 

upper bound in [3] is exactly the mean recovery time. 
Duttweiler, Mazo and Messerschmitt in [5] developed an 

aggregated states model of a DFEQ which was used to upper 
bound the average error probability. Beaulieu [6] modified the 
model in [5] to compute upper and lower bounds for the mean 
recovery time by writing difference equations for conditional, 
state dependent, mean recovery times. He also provided an- 
alytical proofs of some known results that previously were 
justified with intuitive arguments. Altekar and Beaulieu de- 
veloped models in [7] that lead to tighter upper bounds on the 
average probability of error of a DFEQ than those of [5]. 

In this paper, new, tighter bounds on the recovery times of 
DFE are derived by modifying the models of [7] used for error 
probability upper bounds. The channel is modelled as a linear, 
shift-invariant, discrete-time filter. Using appropriate choices 
for defining states, a number of aggregated states models of 
the DFEQ can be constructed. Good choices for state models 
lead to improved bounds on recovery time statistics. Three 
models are constructed here, each of which leads to new and 
tighter bounds. A single errors model, a double consecutive 
errors model and an arbitrary double errors model are defined 
and used to derive bounds on recovery time statistics. 

For the numerical example considered, the arbitrary double 
errors model gives the tightest bounds for the mean recovery 
time. At small SNR values, the new bounds from the three 
models and previous bounds coincide. At large SNR values, 
the new bounds are much tighter than previous ones. In par- 
ticular, the new bounds from the three models all approach 
N, the length of the DFEQ, at large SNR. 
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Abstract — A new lower bound on the undetected 
error probability of block codes is presented and codes 
that meet this lower bound are characterized. 

I. INTRODUCTION 

Let C be an (n, M)q code, i.e., C is a g-ary code of length n 

and size M. We assume that each codeword is transmitted 
with probability 1/M and that each letter is equally likely 
to suffer from an error that changes it into any one of the 
other q — 1 letters with probability e/(g — 1) independently of 
other letters. We assume in the following that e < (g — l)/g, 

i.e., the probability that a letter is received correctly is at 
least equal to the probability that it is received as any given 
erroneous letter. For w = 0,1,..., n, let Aw(c) be the number 
of codewords at distance w from the codeword c and AW(C) = 
^2c€C Aw(c)/M. The undetected error probability of the code 
C is given by 

UJ=1 ^ ' 

In this paper, we derive a lower bound on the undetected error 
probability for linear and nonlinear block codes and present 
codes that meet this lower bound. In particular, these codes 

are optimal for error detection. 

II. LOWER BOUND 

The following theorem gives a lower bound on Pua (C, c) for 
any (n, M)q code C. 
Theorem 1 Let C be an (n, M)q code and 0 < e < (g — l)/q. 
Then, the undetected error probability of the code C satisfies 
the bound 

Pm{C,t)    > 
M^> \w) 

X ( 2M - q 

M 
w ) 

n—w M > 

g n — w 
/ 

1 
1- 

g-1 

Wolf, Michelson, and Levesque derived a lower bound on 
Pud(C, e) for any binary linear code C of length n and dimen- 
sion k [2]. This bound has been recently generalized by Klove 
[1] to linear codes over arbitrary finite fields of size q. The 
new bound described in this paper is not only more general 
than the Klove-Wolf-Michelson-Levesque (KWML) bound, in 
the sense that it holds for linear and nonlinear codes while the 

KWML bound holds only for linear codes, but it is also tighter. 
In fact, the new lower bound equals the KWML bound only 
if k — n — 1, k = n, t = 0, or e = (q — l)/q. In all other cases, 
the new lower bound is larger than the KWML bound. 

1This work was supported in part by NSF under grant NCR 
91-15423. 

III. STRICTLY OPTIMAL CODES 

We say that a code C is strictly optimal if its undetected error 
probability equals the lower bound stated in Theorem 1 for all 

0 £■ e 5; (? — I)/?- The following result gives a combinatorial 
characterization of strictly optimal codes. 

Theorem 2 An (n, M)q code C is strictly optimal if and only 
if C contains at least [M/q3J and at most [M/gs] codewords 
that agree on any given s indices, where s = 1,..., n. 

Hence, a necessary condition for a code to be strictly optimal is 
that its Hamming distance is n — flog M] + 1. The following 
result shows that this condition is also sufficient if M is an 
integer power of q. In this case, an (n, M)q code C is called 

maximum distance separable (MDS) if its Hamming distance 
equals n — log   M + 1. 

Theorem 3 If M is an integer power of q, then an (n, M)q 

code is strictly optimal if and only if it is MDS. In particular, 
an (n, M)q linear code is strictly optimal if and only if it is 
MDS. 

If M is not an integer power of q, then an (n, M)q code of 
Hamming distance n — [log? M] + 1 may not be strictly opti- 
mal. The following result determines necessary and sufficient 
conditions for the existence of strictly optimal binary codes. 

Theorem 4 A strictly optimal (n, M)2 code, where n and M 
are positive integers and M < 2n, exists if and only if one of 
the following conditions holds: 

• n e {1,2,3}. 

• n = 4 and M £ {3,4,12,13}. 

• n >5 is odd and M € {1,2, (2"-2)/3, (2n + l)/3, 2n_1 - 
1, 2"_1, 2n_1 +1, (2n+1 - l)/3, (2n+1 + 2)/3, 2" - 2, 2" - 
1,2"}. 

• n > 6 is even and M £ {l,2,(2n - l)/3, (2n + 
2)/3, 2n_1 -2, 2"-1 -1, 2n_1, 2"-1 +1, 2n_1 +2, (2n+1 - 
2)/3, (2n+1 + l)/3, 2" - 2, 2" - 1, 2"}. 

As an application in which M is not an integer power of q, we 
consider binary-coded-decimal codes where q = 2 and M = 
10. It is interesting to note that the widely known 2-out- 

of-5 code, consisting of the ten binary sequences of length 
n = 5 with exactly two ones is not strictly optimal. On the 
other hand, Theorem 4 indicates the existence of a (5,10)2 
strictly optimal code. Indeed, the code consisting of all binary 
sequences with exactly one or four ones is strictly optimal. 
This l-or-4-out-of-5 code has undetected error probability of 
4e2 — 8e3 +4e4 + e6, while the undetected error probability of 
the 2-out-of-5 code is 6e2 - 18c3 + 21e4 - 9e5. 
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Abstract — The worst-case probability of undetected We consider a couple of particular classes of codes. 
error for a linear [n, k; q] code used on a local binomial The first class of codes we consider is the binary simplex 
channel is studied. For the two most important cases     codes.   For each ra > 1 there is a binary simplex code Sm 

it is determined in terms of the weight hierarchy of    with parameters n = 2 
the code.   The worst-case probability of undetected     1 < r < m. 
error for simplex codes is determined explicitly.    A 
conjecture about Hamming codes is given. 

1, k = m, dr = 2m - 2" for 

I. BACKGROUND 
The local binomial channel was defined implicitly by Ko- 

rzhik and Fink [2, page 193] and explicitly by Korzhik and 
Dzubanov [1]. It is a channel which is a g-ary symmetric chan- 
nel for each transmitted symbol, but the symbol error proba- 
bility may vary from one transmitted symbol to the next. 

Let Pne(C,p) = Pue(C,pi,p2, ■ ■ ■ ,pn) denote the probabil- 
ity of undetected error when a codeword from a linear [n, k; q] 
code C is transmitted over a local binomial channel with sym- 
bol error probability p, for i'th transmitted symbol. Let the    for vo(m) <v<l. 
worst-case error probability be defined by 

Theorem 4 For ra > 3, let 

vo(m) = l-(2m-l)-1'Vm~1-1' 

Then 

P^(Sm,v) = (2m-l)v2m~1(l-vf 

for 0 < v < vo(m) and 

Pv,c(Sm,v) = v2 

Pwc{C,v) = max|pue(C,p) | 0 < pt < v for 1 < i < n\. 

The support of a vector c is given by 

X(c) = {i | Ci ? 0}. 

For   a   vector   c    =    (ci,C2,... ,c„)   and   a   set   X    = 
{ti,»2,...,*r}, where 1 < ii < i2 < • • • < ir < n, we let 

CX — (Cjj ,Cj2, . . . ,Cir). 

For an [n, k; q] code C and a set X as above, we define 

Cx ={cx\ceC and x(c) C X}. 

We use the notation P^e(C,p) = Pue(C,p,p, ...,p) for the 
probability of undetected error when C is used on a g-ary     for 0 < v < v   _     and 
symmetric channel with error probability p. ~~    "~ 

A similar theorem is true for the first order Reed-Muller codes. 

The binary Hamming codes Hm, where m > 1, have pa- 
rameters n = 2m — 1, k = 2m — 1 — m, d = 3. We conjecture 
that the following result is true for all m (it is true for m < 4). 

Conjecture 1  Define gr (v) for r>2 by 

9r(v) = ± (l + (2r - 1)(1 - 2vf~1) - (1 - vf'\ 

Let «i = l, and for r > 2 let vr be the root of the equation 
gr(v) — gr+i(v) in the interval (0,1). 
Then vi > V2 > vs > v$ > ■ • ■, 

Pv,c(Hm,0,v) — gm(v) 

II. NEW RESULTS 

Theorem 1 Let C be an [n, k; q] code.  Then 

Pv,c(C,v) = max|Pue(CA:,w) XC{1,2,.. 
•>}■ 

Theorem 2 Let C be an [n, k, d; q] code.  Then 

pwc(c,i)=(g_l)d_1. 

Theorem 3 Let C be an [n, k, d; q] code. Let 

s = max-j r    1 < r < k and dr = di + (r — 1) L 

where di,d2, ■ ■. ,dk is the weight hierarchy of C.  Then 

Pv,c(Hm,0,v) = gr(v) 

for vr < v < Vr-i and r = 2,3,4,... ,m — 1. 
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Abstract — A q-n&ry (n,k) linear code is said to be let 
proper if, as an error-detection code, the probabil- 
ity of undetectable error, Pud, satisfies Pud < g_(n_ ' 
for completely symmetric channels. In this paper, we 
show that a proper code, as an error-correction code, 
satisfies the expurgated bound on the decoding error 
probability for a class of channels with the associated 
Bhattacharyya distance begin completely symmetric. 
Known results on the undetectable error probability 
then immediately imply that the expurgated expo- 
nent is satisfied by many codes which are regarded as 
good codes. 

I. INTRODUCTION 

Random coding arguments tell that the most of codes satisfy 
the random coding bound and that the most of expurgated 
codes satisfy the expurgated bound asymptotically, but the 
most of time we can not tell if a specific code satisfies such 
bound. However, we can show that proper codes or asymp- 
totically proper code satisfy or asymptotically satisfy the ex- 
purgated bound. 

Before the works of Leung-Yan-Cheong et al.[l, 2], it had 
bee believed that the probability of undetectable error was 
upper bounded by q~^n~k' whenever a q-nary (n,k) linear code 
was used for error detection over a q-nary symmetric channel. 
They showed some examples of codes which do not satisfy 
this bound, and called a code which satisfies q~^n~ ' bound 
a proper code. Subsequent works suggest that proper codes 
are also good as error-correction codes. In fact, it is shown 
that proper codes satisfy the asymptotic Gilbert-Varshamov 
bound on the minimu distance[3]. In this paper, we show that 
proper codes satisfy the expurgated bound. 

II. ERROR PROBABILITIES 

If we use c as an error-detection code for a DMC Q, then the 
undetectable error probability when X; € c is sent is written 
as 

Pud{xi) = 2jexp < ra^J Vi,j{a,a')logQ{a'\a) > ,       (1) 

where Vi,j(a,a) is the joint type of (a,a) in (x,,Xj). 
On the other hand, if we use c as an error-correction code 

for another DMC P, then, from known arguments for the proof 
of the expurgated bound, we have a bound 

i^3 V      o,«' 

J2 y/P(b\a)P(b\a') ,   (2) 

P{d\a) = 
E6 y/P{b\a)P(b\a') 

E.» »■(<»")   E* s/P{h\a)P{b\a") 

be the channel induced from P, then we have 

Pe
s(xi)     <    exp{-nsEx(l/s,r) + nlogq} x 

" ') log P(a'|a) 1,(3) x^exp 
I      a,a' 

where the expurgated exponent is 

where s is any non-negative number. 
If we compare bounds (l)and (2), then we can notice some 

similarity. In fact, for a probability mass function r(a), if we 

ECX(R) — ^> max Ex (p, p) — pR 

and the optimal p is used for r. Now, the relationship between 
(1) and (3) is obvious. 

We can show the following theorem: 
Theorem 1  For a given DMC P,  suppose that P is com- 
pletely symmetric.  Then, the expurgated bound 

Pe < exp{-nEex{R)} 

holds for all proper linear codes. 

III. CONCLUDING REMARK 

Up to now, many codes are shown to be proper, and the above 
theorem then implies that those codes satisfy the expuraged 
bound. Unfortunately, the expurgated bound is greater than 
the known error bound for some codes such as the simplex 
code. Thus, our result does not necessarily solve all the pro- 
belm. However, if we note that the error bound is not known 
for the most of practical codes, our result gives an usefull tool 
to obtain the first approximation on the error probability. 
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Abstract — We estimate the range where the dis- 
tance distribution of a code can be approximated by 
the binomial distribution. EN > 

I. INTRODUCTION 2~-2\C\ (      [(       nJI,\(JI    
n 

i=0 

max< I   d, d>+1   I I   d, d,+1. {(,         . »„„„ .   .     »       ^ [Z1Ü1 /  \ \Z2.] _|_ 
The binomial distribution is a well known approximation to V >. \   2 2     /   \  2        12 

the distance spectra of many classes of codes. For example, it f n \ ( n 

is known to be tight for the weights of BCH codes with fixed ( r^izii _ f£l] ) \ frazil + A] _i_ i 
minimal distance and of growing length. In general the range 2222 
where the distance distribution is close to the binomial de- For constant t this estimate turns out to be asymptotically 

pends essentially on the dual distance. In the talk we present tight for BCH codes with distance d = 2t + 1 < yfn. 
new bounds [1, 2, 3, 4] for this range for codes with the dual Another bound is a corollary of the Parseval identity. 

distance about half of the length n of the code, and for codes Theorem S 
with the dual distance growing linearly in n. 

II. BCH CODES 

n      „2 1^12     d2      D(2 
Eli- = ]£L Y^ ±LL 

(n\ 2"      Z-/    (n) ' 
i=0   \iJ i=d'.    \i' 

Let   the   distance   distribution   of   a   code   C   be   B_   = 

(B0,..., Bn), and B[ = (B'0, ...,B'n) stand for the the dual 
spectrum, that is B' is determined by the MacWilliams trans- IIL CODES WITH LINEARLY GROWING DUAL DISTANCE 
£ Using an approach similar to linear programming we get 

Theorem 1  In the extended BCH code of lenqth n = 2m and ° ', ,   , .      ,—;  
minimum distance 2t + 2< 2^1/2 + 2j Theorem 4  For   j/n     €     (1/2   -   1/2^(2 - 6% 1/2  + 

l/2y/6'(2-6')), 

B{ = 0 for i odd, 

Bi = I  .1 n~ (1 + Ei) for i even, 

(1) B> = °[n0\ 
Theorem 5  For  even   codes,   and  2j/n   £    ("   ™ '  , 1 — 

■ „■^ wt(n/a)U/a) d-M')») 

Using the theorem we can analyze some particular cases. 

logS2j=logj^-+0(logn). 

Let C be self-dual. In this case for d asymptotically greater 

Corollary 1 If t = o(y^), and i grows linearly with n, i = than 0.146447... n (if such codes exist!) we can guarantee a 
an   then wider interval of binomiality. 

— log, \Ean\ < Hier) + o(l). Theorem 6  // there exists a self-dual code of length n with 
n 2 ' d > (1/2-V2/A)n(l+o(l)) then 

Corollary 2  If t = o(n*), i = o(y/n), then Aj   /2n(n - j)(n - 2j) Q}) 1 
B2j <  n\J n W\{ (n)]' 

\E\ < y/2ii/2e2{t-1)2-i/2n-i/2 (l + o(l)) 
1   *'-V21     6 U (1 + 0(1,)' for(l/4-V3/12)n<j<(l/4 + V3/12)n,j?n/2. 

Now we show that the binomial approximation can not be 
too tight. Define REFERENCES 

[1]  I.Krasikov and S.Litsyn, "On spectra of BCH codes", IEEE IT, 

\C\ (n\ *° aPPear' 
ri = Hi —     (1 + (—1) Bn). [2]   I.Krasikov and S.Litsyn, "On the accuracy of binomial approx- 

imation to the distance distribution of codes",  IEEE IT, to 

This is evidently the deviation of the i-th spectrum element appear. 
from the "expected" value given by the binomial distribution.      [3]  I.Krasikov and S.Litsyn," Bounds on spectra of codes with 

known dual distance ", submitted. 

Theorem 2  Let B\ = 0, for i £ [1, d[ - 1] U [d'2 + 1, n - ll.      M  I.Krasikov and S.Litsyn," Estimates for the range of binomiality 
rpi in codes' spectra ", submitted. 
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One of the first results one meets in coding theory is that a binary linear 

[n,k,d]-code, whose minimum weight is odd, can be extended to an 

[n+l,k,d+\]-code. 

This is one of the few elementary results about binary codes which does not 

obviously generalize to q-ary codes. Although one can readily extend a q-ary 

code, by adding a further check digit, it is not clear under what circumstances 

such an extension will increase the minimum distance. The aim of this paper is 

to give a simple sufficient condition for a g-ary [n,k,d]-code to be extendable 

to an [n+l,k,d+l]-code. The result is indeed a generalization of the above 

result for binary codes. It also generalizes a result for ternary codes due to van 

Eupen and Lisonek [2], whose proof made use of quadratic forms. Our 

generalization has an elementary proof. 

Theorem 1. Let C be an [n,k,d]-code over GF(q) with gcd{d,q)=l and with 

all weights congruent to 0 or d (modulo q). Then C can be extended to an 

[»+l,M+l]-code, all of whose weights are congruent to 0 or d+1 (modulo q). 

Proof. Suppose xandj> are two linearly independent vectors of length n over 

GF(q) and suppose there are exactly z coordinate positions in which x and y_ 

both have a zero entry. Considering the (g+1) x n matrix whose rows are the 

vectors in the set {y, x+a^ : a e GF(q)}, and counting the number of non- 

zero entries via rows and via columns, gives 

w(y)+   T,   M>(x + ay) = q(n-z) = 0(modq). (1) 
— ae3F(q) — 

Let C0={xe C: w(x) = 0 (mod q)}. If x,y_ e C0 then (1) implies that 

X    w(x + ay) = O(modg). 
aeSF(g)\{0) — 

generates an [n+l,k,d+l]-code with the required property. D 

Theorem 1 can be useful in classifying codes with given parameters or in 

showing non-existence. Examples for ternary codes are given in [1] and [2], 

We give here two other examples. 

Example I.   We will prove the uniqueness of \q ,4,0  -q -lj-codes over 

GF(q). 

It is known that there exists an optimal \q  + \,4,q  -gl-code over 

GF(q) which meets the Griesmer bound. The code is unique because the 

columns of a generator matrix form a (q +1) -cap inPG(i,q) and hence must 

be an elliptic quadric [4]. Let C be a Ig ,4,q -g-ll-code. The residual 

code of C with respect to a codeword of weight q -1 (2 < t < q-Y) is a 

[f,3,M]-code which cannot exist by the Griesmer bound. So the only possible 

weights of C are q - <j -1, q - q, q -1 and q . By Theorem 1, C can 

be extended to a \q +1,4,q -en-code. Finally the uniqueness of the 

punctured I q2,4,q2 -g-ll-code follows from the fact that an elliptic 

quadric admits a transitive automorphism group. 

Remark. Example 1 provides a simple alternative proof of the well known 

fact that every q -cap in PG(3,q) is contained in a (q +1) -cap, a result 

where geometric proof is fairly long (see e.g. [4]). 

By the hypothesis of the theorem, the only possibility is that wQc+an) = 0 
(mod q) for all a. Hence C0 is a linear subcode of C. 

Furthermore, C0 has dimension k-\. For otherwise there exists a two- 

dimensional subcode D of C all of whose non-zero codewords have weight 

congruent to d (mod q). But then, if x,y_ are linearly independent codewords 

in D, we have 

WO0+   Z    w(x+ay)=(q+l)d=d*0(modq), 
—        cceGFfa) — 

contradicting (1). 

Let G be a generator matrix ofC of the form 

where G0 generates C0. Then the matrix 

Example 2. It was shown in [3] that there does not exist a [28,5,19]-code over 

GF(4). The proof can be simplified by using Theorem 1. It is straightforward 

to show that such a code has no codewords of weight 21,22,25 or 26 and 

hence can be extended to a [29,5,20]-code which had already been shown not 

to exist. 
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Abstract — Tabu search is a stochastic method for 
combinatorial optimization. It is shown how this 
method can be used to construct various record- 
breaking codes. 

I. INTRODUCTION 

The problem of designing good codes can be seen as an op- 
timization problem. Unfortunately, many instances of this 
problem are so hard that methods that provably find best 
possible codes with respect to given criteria cannot be used 
in practice. During the last decade, a lot of interest has been 
focused on stochastic methods for finding optimal and near- 
optimal solutions of difficult optimization problems. Simu- 
lated annealing has turned out to be a very promising such 
method. In 1987, El Gamal et al. [1] showed that simulated 
annealing can be used in the construction of several types 
of codes: constant weight codes, source codes, and spherical 
codes. Since then, simulated annealing and other stochastic 
methods have successfully been used in many papers to con- 
struct codes. For a survey of these results, see [3]. 

II. TABU SEARCH 

Tabu search [2] is a combinatorial optimization method which 
in many recent studies has turned out to outperform other 
stochastic methods, including simulated annealing. One char- 
acteristic of tabu search is that it finds good near-optimal 
solutions early in the optimization run. Tabu search follows 
the steepest descent heuristic, but has additional features to 
avoid getting stuck in local optima. 

At each step in the optimization process, a set of solutions 
that slightly differ from the current solution is evaluated. The 
solutions in this set are said to be neighbors of the current 
solution. In the neighborhood, a new solution that is best with 
respect to the cost function used is chosen. However, some of 
the neighbors must not be chosen, namely those obtained by 
inverses of one of the L most recent moves. The list of these 
forbidden moves, which has length L, is called the tabu list. 

III. CONSTRUCTING CODES USING TABU SEARCH 

Tabu search can be applied to several construction problems in 
coding theory. In the search for a code with given parameters, 
the number of codewords is fixed and the problem is formu- 
lated as an optimization problem. For example, in the search 
for coverings, the cost function can be taken as the number of 
uncovered words in the space; a covering code has then cost 
value zero. The cost function of error-correcting codes can 
similarly be taken as the number of words that are covered 
more than once by Hamming spheres around the codewords; 
another approach is to consider the mutual distances between 
the codewords. 

A direct search for a large code does not work very well. 
However, such a code can be found by imposing a structure on 

it. This can be done by searching for a code that is a union of 
cosets of a linear code or that has a nontrivial automorphism 
group. 

Said and Palazzo [5] were—to our knowledge—the first to 
apply tabu search to problems in coding theory. They used the 
method to construct linear error-correcting codes. Recently, 
östergärd [4] successfully applied tabu search to the construc- 
tion of covering codes. We present recent results on the ap- 
plication of tabu search to code constructions. We discuss 
covering, error-correcting, and spherical codes, and present 
new codes found by this approach. 
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Abstract.- This contribution presents the results of applying 
two generic algorithms for reducing the complexity of the trellis 
of a number of binary linear block codes. 

I. INTRODUCTION. 

The type of trellis considered was originally defined by Bahl, et al 
[1] (the BCJR trellis). Later, both Wolf [2] and Massey [3] showed 
that this type of trellis is useful because it enables Viterbi 
Algorithm decoding of linear block codes, which in turn means that 
soft-decision techniques can be simply applied to improve decoding 
performance. More recently it has been shown that the BCJR trellis 
is uniquely "minimal" in a number of ways [4,5]. It is most 
convenient to construct this minimal trellis from the "trellis 
oriented" form of the code generator matrix, as originally presented 
by Forney [6], and later developed by McEliece [4,5], who called it 
the minimal span generator matrix (MSGM). The span of a row of 
the generator matrix is the number of symbols in the row enclosed 
between the leftmost non-zero symbol and the rightmost non-zero 
symbol. The total span of the generator matrix is the sum of the 
span of the rows of the matrix. Any generator matrix can be 
reduced to MSGM form by means of elementary row operations 
(linear combinations and permutations of row). The span of the 
MSGM is a useful measure of the complexity of the code trellis. 

II. COMPLEXITY REDUCTION. 

In determining the MSGM of a given code, column permutations 
are not allowed. It is easily observed however, that column 
permutation can lead to a lower total span matrix, corresponding to 
an equivalent linear block code [3,7,8]. To date there is no known 
algorithm which guarantees that the "globally minimal" MSGM 
will be found, we would not even know when we have reached it, 
so we can just give comparative records. It is, however, possible to 
determine a lower bound on its span, given by: 

£(*-/»-/-o 
where n and k are the block length and dimension of the code 
respectively, p, is the dimension (or a bound) on the dimension of 
the best "past" code at depth i in the trellis (i.e., the optimum code 
with block length i and the same distance as the whole code) and 
fj_, is the dimension of the best future code at depth i-1 (i.e., the 
optimum code with block length n-i+1 and the same distance as the 
whole code) [4,5,8]. The third column of Table 1 gives this lower 
bound span, together with lower bounds on the numbers of edges 
and vertices in the code trellis. 
The fourth column in Table 1 gives the parameters of the trellises 
obtained from the MSGM before column permutations. The 
MSGM is in turn derived from the standard systematic generator 
matrix of the code by applying a greedy row operation algorithm. 
The first algorithm for reducing the total span of the code MSGM 
by column permutation is based in one devised by Wei Lin [7,9]. 
The steps of the algorithm are described in [8], and the results 
obtained are given in the fifth column of table 1. The second 
algorithm for column permutation is also described in [8], and the 
results appear in the sixth column of Table 1. This second 
algorithm is a modified and extended form of Wei Lin's algorithm, 
based on a simulated annealing technique, which enables improved 
results to be obtained even for quite large codes. The details of both 
algorithms will be outlined during presentation of the paper, 
together with further results. 

III. CONCLUSIONS. 

Table 1 indicates the significant reduction in the total span, as well 
as in the other parameters, which can be obtained by means of the 
two algorithms. In many cases the total span is quite close to the 
lower bound. For the (32,16) extended BCH and (24,12) extended 
Golay codes the bound is achieved. This last one coincides with 
Forney's generator matrix for the code from the cubing construction 
[6]. It must be considered that the calculated bounds can not be 
reached sometimes, as McEliece proves [5]. The relation between 
span and complexity of the trellis is not direct; we conjecture that 
despite reaching the bound on the span value does not mean 
reaching it for the elements of the trellis, in the other way round the 
relation does apply; i.e., the minimum number of elements in the 
trellis will only be given for a globally minimal span generator 
matrix. 
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Code Feature. Lower Greedy Wei Lin Simul. 
Bound Algo. Algo. Anneal 

(23,12) Edges 1,790 12,284 4,220 3,452 
Golay Vertices 1,214 8,190 3,134 2,558 
Code Span 124 144 133 129 

(24,12) Edges 2,696 16,380 4,348 3,580 
Extend. Vertices 1,790 12,286 3,262 2,686 
Golay Span 136 156 140 136 

(31.16) Edges 3,198 196,604 42,108 6,268 
BCH Vertices 2,174 131,070 31,550 4,670 
Code Span 186 256 231 195 

(32,16) Edges 4,789 262,140 22,780 6,396 
Extend. Vertices 3,198 196,606 17,086 4,798 

BCH Span 202 272 228 202 

Table 1: Trellis features for a few codes 
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A linear block code C of length n is called quasi-cyclic (QC) 

if it is invariant under a cyclic shift of L positions, T , where 
L < n. Any cyclic code can be represented by a unique gen- 
erator polynomial. In this paper we associate with QC-codes 

a polynomial generator set which is a natural generalization 

of the generator polynomial of a cyclic code. A canonical gen- 
erator matrix of a QC-code which is invariant under TL is 

introduced which shows the symmetric structure of the n/L- 

section minimal trellis diagram (MTD) [1, 2, 3]. The state 
space dimension is nondecreasing on the left half of this trel- 

lis. The canonical generator matrix is important because it 
provides cc isiderable information about the trellis complex- 
ity of QC codes as well as the relation between these codes 

and convolutional codes. 
For a linear block code of length n, the interval [i,j], 1 < 

i < j < n, is said to be the support interval of a codeword 

c = (ci,---,c„) if acj ^ 0, and c; = 0 if I < i or j < I. 
j — i + 1 is defined as the support length of c, and c is said to 
start at time index i and end at time index j. c is also said to 

be active in the interval [i,j — 1]. 
A generator matrix of a linear block code is called a trel- 

lis oriented generator matrix (TOGM) if no two rows of the 
matrix either start or end in the same position [1, 3]. Let M 
be the TOGM of a linear block code C. Denoting the number 
of rows of M active at time index i by s;, we define the state 

complexity of C to be s = max{so, si, • • •, s„}. 
Let M be a generator matrix for an (Lm, k) QC-code in- 

variant under TL. Define the k x iL, 1 < i < m, matrices Mi 
such that the jth, 1 < j < iL, column of Mi is the same as 

that of M. Denote the rank of Mi by pi. 

Definition 1 (Cyclic Form Code) An (n,k) linear block 
code C is called a cyclic form code if in M (the TOGM of 
C) for any i, 1 < ii < k, precisely one row of M has support 
interval [i, n — k + i]. In this case n — k + 1 is defined as the 
effective length of C. 

Definition 2 (Smallest Regular Trellis Diagram) A 

trellis diagram G of a linear block code C is called a small- 
est regular trellis diagram (SRTD) of C if: 1) it has the same 
state complexity as the MTD of C; 2) the number of vertices 
of G at time indices i and j are equal, 1 < i,j < n; 3) G has 
the maximum number of identical parallel sub-trellises among 

all trellises of G which satisfy conditions 1 and 2. 

The following theorem is used to determine the SRTD of a 

QC-code. 

Theorem 1 ([4]) The smallest regular trellis diagram of an 

(n, k) linear cyclic form block code C consists o/max{l, 2 s-} 
structurally identical parallel sub-trellises, where s is the state 
complexity of the code.O 

1This research was supported in part by the Natural Sciences 
and Engineering Research Council of Canada and the Telecommu- 
nications Research Institute of Ontario. 

The main result of our work is contained in the following the- 

orem. 

Theorem 2 (Canonical Generator Matrix)   Let C be an 

(n,k) QC-code invariant under TL, and n = Lm.  If M is a 

TOGM of C, then 

©Ci' (1) 

where Ci is a cyclic form code (if it is considered to be a code 
of length m with codeword components in F    [3]), and C has 

TOGM 
Mic1) 
M(c2) 

M' = (2) 

M(cPl) J 
where M(c') is a TOGM of the cyclic form code Ci with lead- 
ing codeword denoted by c'. The Ci 's are called the canonical 
components of C. The number of canonical components of C 
of dimension w, denoted by xw, is 2pw — (pw-i +Pw+i)-0 

The set of polynomials representing the cyclic form canonical 
components of C is defined as the polynomial generator set of 

C. 

Corollary 1 The m-section MTD of C consists of 22pi~P2 

identical parallel sub-trellises. 

Decomposing C into cyclic form sub-codes using Theorems 1 
and 2, the SRTD of a QC-code C is given in the following 
corollary. 

Corollary 2   The m-section SRTD of C consists of 2 
structurally identical parallel sub-trellises, with 

(  m — mi + 1 if    mi>[ 

ai = < 

£* 

rm+3 ] 
2    J 

max{0, 3(m< - 1) - m}     if    m, < t22^] 
(3) 

where mi, 1 < i < p\, is the effective length of the i-th canon- 

ical component of C. 

This provides a decomposition of a QC-code C into its cyclic 
form sub-codes which can be used to analyze the trellis struc- 

ture of the QC-code. 
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Abstract — We are able to define minimum weight 
codewords of some alternant codes in terms of solu- 
tions to algebraic equations. Particular attention is 
given to the case of the classical Goppa codes. Grob- 
ner bases are used to solve the system of algebraic 
equations. 

I. WORDS OF LENGTH n 

We consider words of length n over GF(q), n being prime to 
q. A primitive root a is fixed. The word c = (co,..., cn_i) is 
identified with the polynomial co + ciX + .. . + c„-iXn~1 mod 
Xn — 1. The Fourier Transform of c € GF(q')n, denoted 4>(c), 
is A = (A0,Ai,... ,An-i), Ai = a(a'), i = 0 ...n - 1. 

Let  c   =   (c0,...,cn_i)   €   GF(q')n.     The  locators of 
{Xlt...,Xw}  =  {c , a'"},  where i'i,... ,iv 

the indices of non zero coordinates of c. The elementary 
symmetric functions of c, denoted by eri,... ,aw, are <r;  = 

{-l)tY,i<h<...<ji<w
Xh---X3i> * = !■•■«>. The general- 

ized Newton's identities hold: Vi > 0, ^4;+™ + (TiA+tu-i + 
... + <r,„yli = 0. 

We introduce the definition of a spectrally defined code: 

Definition 1 Let C be a code in GF(q')n (or GF(q)n). If 
there exists I polynomials in n variables P\,... ,Pi, such that, 
for all c € GF{q')" (or GF(q)n), c belongs to C if and only 
if P(A0,...,A„-1) = ... = Pi{A0,...,An-i) = 0, where A = 
<t>(c), then the code has a spectral definition. The polynomials 
P\,...,Pi are the code spectral equations. 

Our result, which is a generalization of a case of a cyclic 
code [1], is the following theorem: 

Theoreme 1 Let C be a code defined by the spectral equations 
Pi,..., Pi. Let Sc(w) be the following system of equations: 

Pl{Ao, . . .,An-l) = ■■■= Pl{A0, . . .,An-l) = 0 
Ai+W + aiAi+w-i + ... + awAi = 0,     i = 0..n — 1 

with indeterminates o\,..., aw, Ao,. ■. ,An-i- Let A = 
(Ao,..., An-i) be a solution to Sc(w) (i.e. there exists 
o\,..., aw such that (cri,... ,<rw,A) is a solution), then A is 
the Fourier Transform of a codeword of weight < w. 

II. "SPECTRAL DEFINITION" OF SOME ALTERNANT 

CODES 

Let a — (ao, • • •, «n-i) G GF(q')n be distinct elements in 
GF(q'), and let v = (vo,. ■., v„-i) be nonzero elements in 
GF(q'). The generalized Reed Solomon code, GRSh(a,v), is 
the code whose codewords are (tio-f(ao), ■ ■ ■ ,"n-if («n-i)), 
for all F € GF(q')[X], deg F < k. 

The alternant code Ak(a,v) is the Gir,(g)-subfield sub- 
code of GRSk(a,v). Let a = (a0,..., a„-i) € GF{q')n 

be distinct elements in GF(q'), and let v = (vo, ■ ■ ■ ,i>n-i) 
be   nonzero   elements   in   GF(q').      The   generalized   Reed 

Solomon code, GRSk(a,v), is the code whose codewords are 
(v0F(a0),..., t»„_if(a„_i)), for all F € GF(q')[X], deg F < 
k. The alternant code Ak(a, v) is the G.F(g)-subfield sub-code 
of GRSk (a, v). 

We consider a partial class of alternant codes, the alternant 
codes T(L, G) where L = {1, a,..., an_1}, the set of all n-th 
roots of unity. We denote these codes T(a,v). We get that 
the code spectral equations of Ak(a,v) are 

f   F.L    ,      A   AiHj =0, t = 0...n-fc-l )     £—*t+j = t moan      *     J ' 

Ai q modn AJ 0. 

where H is the Fourier Transform of h defining the dual of the 
GRSk(v). 

III. A SHORT GOPPA  CODE 

Since classical Goppa codes with support L = {a', i = 
0 ... n — 1} are alternant codes, we are also able to construct 
spectral equations for these codes. As an example we study 
the Goppa code of length 32, with defining polynomial g(x) = 
x +1 + 1. We index codewords c in the following way: c = 
(coo, Co,..., C30), where the defining set of the Goppa code is 
L — {0,1, a,..., a30}. Since our result works for a support 
of length n prime to 2, we first consider the sub-code C31 of 
C which is the shortened code with respect to the coordinate 
Coo- This code is also a Goppa code with support L31 = 
{1, a,... ,a30} and defining polynomial g(X). Thus writing 
the system 5c31(7), we get equations for codewords such that 
Coo = 0. Computing a Gröbner basis of the system, we get 105 
solutions. Next, we want to study minimum weight codewords 
such that Coo 7^ 0. The parity check matrix for C is 

1      gio0)-1 

0       a0^«0)-1 

0    (a0)2^«0)-1 

st*30)-1 

a^V«30)-1 

We search for words Co,..., C30 of weight 6, of length 31 such 
that G1 cl = (1, 0,..., 0)'. where G' is the parity check matrix 
for C31. Thus the spectral equations for these codewords are: 

Zji+j=0 mod31 A-iilj 

JZi+j=t mod31 AiHj = 0, t = 1,2 
A2 Ai, 0...30 

These equations, plus the Newton's identities for the weight 6, 
gives equations for codewords of C of weight 7 whose support 
is not included in [0, 30]. The Gröbner basis gives 23 solutions, 
thus 128 codewords of weight 7 for the whole code C, as in 
the table of [2, p344]. 

REFERENCES 
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Abstract — The single sender single receiver authen- 
tication model was extended by Desmedt and Prankel 
[1] to the case where certain groups of persons are able 
to sign a message. The problem is further developed 
and discussed in [2]. The unconditionally secure group 
authentication problem was formulated and investi- 
gated using the generalized vector space construction 
in [3]. We give information theoretic bounds on the 
security of a group authentication scheme and pro- 
pose a construction based on the Shamir secret shar- 
ing scheme and maximum rank distance codes (MRD- 
codes). 

I. SUMMARY 
Let a secret key K be shared among a set of participants 

P such that certain subsets of participants are able to com- 
pute the authentication tag Z — F(M, K) of the message M 
, where F is the authentication function. Denote by M, the 
set of messages and by /C the set of secret keys. The receiver 
is also assumed to be the dealer of the secret key. To share 
a secret key K € tC he uses a secret sharing scheme to give 
each participant the share Ki. Denote by T a monotone ac- 
cess structure, i.e., the set of qualified groups with monotonic 
properties. To authenticate a message each participant i in a 
qualified group, X € T first calculates 

F,x(M,Ki) 

and sends this to a (not necessarily trustable) combiner who 
evaluates Z = CX{F-C{M, Ki); i € X, which equals F(M, K). 
The output Z of the combiner is the authentication tag, which 
together with the message, is sent to the receiver, who can 
check the correctness of a message by calculating F(M, K) 
directly. 

As in ordinary single authentication schemes we measure 
the security of a scheme by the probabilities of successful im- 
personation and substitution. Denote by Pi the worst case 
probability of finding a correct authentication tag given the 
knowledge of the shares of any non-qualified group. The prob- 
ability of successful substitution attack is denoted by Ps and 
is defined as the worst case probability of finding a correct 
authentication tag given the knowledge of the shares from a 
non-qualified group. 

As in ordinary secret sharing we call a scheme perfect if 
Y g T, H(K\Y) = H(K).   Using results on secret sharing 
schemes [4] we are able to prove the following theorem on Pi 
and Ps- 
Theorem 1  Let Y 0 T and KiliY € V. For a prefect scheme 

Pi    >    m^2-'^z^H^YK\ 
~      KitY 

Ps    >     max 2     v   "     '. 
Ki.Y 

(1) 

(2) 

We especially consider the situation where the combiner just 
adds the partial authentication tags and where the authenti- 
cation function F is linear. Let the message M be represented 
as an r x n matrix over H^ and let the secret key fc be a vector 
of length n over lf^. Thus, 

F(M,k) = Mk. 

Furthermore, assume that the dealer uses the Shamir scheme 
[5] to give each participant a share ki € 1^« • The secret key 
k may then be calculated as a linear combination 

k = ^2ßiki 

of t shares from a qualified group X, i.e., at least t participants. 
By restricting the message matrix to matrices of the form 
[IrM], where Ir is the r XT identity matrix and thus is M an 
rx(n — r) matrix we translate our scheme to one equivalent to 
an authentication function in the well-known form fco+<7M(fci), 
where fco is the vector consisting of the r first elements and k\ 
a vector consisting of the n — r last elements of fc. Furthermore, 
9M Wqn-r H-> H^r belongs to a set of linear functions. For this 

1This work was supported by the TFR Grant 94-457 

situation we are able to prove the following theorem: 

Theorem 2 Denote by A the set of matrices 

A = {M -M;M £M,M y£ M eM}. 

Then for the group authentication scheme described above 

Pi    =    g~T, (3) 

Ps    =    q~d, (4) 

where d = min^g^ rank^4. 

This relates the problem to codes for the rank metric [6] and 
construction for A2-codes made by Johansson [7]. The above 
result can also be obtained with the general technique in [3]. 

REFERENCES 
[1] Y. Desmedt and Y. Frankel, "Shared generation of authentica- 

tion signatures", Proceedings of Crypto '91, 1991, pp. 457-469. 

[2] Y. Desmedt, "Threshold Cryptography", European Trans, on 
Telecommunication, Vol. 5, 1994, pp. 449-457. 

[3] M. van Dijk, C. Gehrmann and B. Smeets, "Unconditionally 
Secure Group Authentication", submitted to Eurocrypt '95. 

[4] R. M. Capocelli, A. De Santis, L. Gargano and Vaccaro U, 
"On the size of Shares for Secret Sharing Schemes". Journal of 
Cryptology, 6:157-167, 1993. 

[5] A. Shamir, "How to share a secret", Commun. ACM, Vol. 22, 
1979, pp. 612-613. 

[6] E. M. Gabidulin, "Theory of Codes with Maximum Rank Dis- 
tance", Problems of Information Transmission, Vol. 21, no. 1, 
pp. 1-12, July 1985, (Russian Original, January-March, 1985). 

[7] T. Johansson, Contributions to Unconditionally Secure Authen- 
tication, PhD thesis, Lund Dec. 1994. 

350 



Spectral Properties and Information 
Leakage of Multi-Output Boolean Functions 

A. M. Youssef and S. E. Tavares 
Department Of Electrical and Computer Engineering 

Queen's University 

Kingston, Ontario, Canada, K7L 3N6 

Abstract — In this paper, we extend the concept of in- 
formation leakage in [1], [2] to the case of multi-output 
boolean functions. A spectral characterization of multi- 
output boolean function is given. This result is used to 
express different forms of information leakage of multi- 
output boolean function in terms of the Walsh transform of 
every linear combination of its output coordinates. Condi- 
tions on the Walsh transform of the multi-output boolean 
function are given, which imply that the function satisfies 
certain cryptographic properties of interest such as balance, 
correlation immunity, Strict Avalanche Criterion (SAC) , 
higher order SAC, Propagation Criterion (PC), higher order 
PC, and Perfect non-linearity. 

Definitions: 

Throughout this paper, let Y be the output of a boolean 
function f(X)   : 7% -> ZJ1, then 

• The Walsh transform of the linear combination of its 
output coordinates c.f(X) is defined as1 

w = A E (-ir'w-x. 
xez" 

• The static information leakage of Y, given input subvector 
Xk, is defined by: 

SL{Y;Xk) = m-H(Y\Xk). 

Similarly the dynamic information leakage of AY, given 
the input change vector AX is defined by: 

DL(AY; AX) = m - H(AY\ AX) 

where AY = Y(X)0 Y(X© AX). 

• The self static/dynamic information leakage of Y is de- 
fined as: 

SSL(Y) = m- H(Y) 

SDL(Y) = m - H(AY) . 

Results: 
Let    Y    be    the    output    of    a    boolean    function 
f(X)     then    for    Ny       =       #{X G Z5|/(X) = y}, 

xy #{X G Z% | Xk = x, Y = y}  and NAxAy 

#{XGZ£ |/(X®Az)©/(X) = At/},       x    €    Z*. 

To be precise, this is the Walsh Transform of the function (—l)c^'   ' 

Aa; G Z£,   y G Z™  ,Ay£Zf  , then one can prove that: 

Ny=2n/2-m   £   Fc(0) (-l)Cy, 
c6ZJ* 

Niy = 2n/2-m-k  E Fc(w°)(-lfi+cy, 

cgz™ 

N^y 4E  F?(W)(-1)**^
C

, 
cgZ™ 

where w° denotes the n-dimensional vector obtained by 
completing the fc-dimensional subvector w with zeros. For 
example if n   =   6   ,   x   =   {xo,x2,x5}  then w°   = 
{wo, 0, u>2,0,0, ws}. Using the above results we get: 
Theorem 1: 
Let Y be the output of a boolean function f(X) then 
the different forms of information leakage of Y can be 
expressed as: 

SSL(Y) = m-  £  ^loJT 

vezj N, 

SL(Y;Xk) = m-2-k   £   ^ogj2 

Niy 

DL{AY;AX) = m-2-*    £    (%^)w2(^£ 
Ay 

Aj/ez" 

where Ny, Nxy,NAxAy are given by the equations above. 

Let criterion "C" be any of the following : balance, corre- 
lation immunity , Strict Avalanche Criterion (SAC), higher 
order SAC , Propagation Criterion (PC), higher order PC , 
or perfect nonlinearity. 
Theorem 2: 
If Y is the output of a multi-output boolean function then 
Y satisfies criterion C if and only if every non zero linear 
combination of its output coordinates satisfies criterion C. 
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This talk studies the application of 
structures based on error correcting codes 
to systems where the major requirement is 
not error control but secrecy. In many 
cases the same code can achieve both error 
control and secrecy. The first section of 
the talk describes an optimal construction 
for combining multiple semi-secure 
channels, e.g., a bundle of fiber-optic 
cables or wires running through individual 
conduits, into a single channel with much 
higher security. Usually the security of a 
communications channel cannot be 
guaranteed, only promised with a high 
degree of probability. The first section 
shows how to combine semi-secure 
channels in such a way that any 
predetermined number may be 
compromised before information is 
revealed. 

Semi-secure channels can take on 
many forms. Any conventional or public 
key cryptosystem used over a public 
channel is only semi-secure, since there is 
currently no method of proving that any 
particular system purporting to have 
computational security is genuinely hard 
to break. Other examples of semi-secure 
channels are copper wires running through 
separate conduits pressurized with gas to 
make tampering easy to detect and fiber 
optic cables, which are intrinsically fairly 
difficult to tap. 

Clearly, the maximum possible secure 
capacity of a set of semi-secure channels is 
just the sum of the capacities of those 
channels that are in fact secure. The first 
theorem in this talk states that this bound 
on total secure capacity is, in fact, 
achievable. 

Theorem 1: Given a set of N channels, 
each with capacity C, any K of which can be 
intercepted by the enemy, it is possible to 
form a composite channel of capacity (N- 
K)C which is completely secure, even if 

neither the sender nor the receiver knows 
which channels have been intercepted. 

The very simple constructive proof uses 
an (N,K) maximum distance separable 
(MDS) code which can, by definition, 
correct N-K erasures. The K inputs to the 
encoder come from a source of perfect 
randomness, e.g., a thermal noise source 
followed by a hard limiter. The symbols 
sent over the first K channels are the first K 
symbols produced by the encoder. If the 
encoder is systematic, then these may be just 
the random input symbols themselves. The 
symbols sent over the remaining N-K 
channels are formed by adding one symbol 
of information to be transmitted to each of 
the remaining symbols in the encoder output 
and then sending each of these sums over 
one of the remaining channels. 

The concept of a mixing function was 
introduced in Reference 1 to improve the 
security against ciphertext-only attack of a 
single cryptosystem operating over a single 
channel by destroying the local statistics 
which are essential to assaults based on 
letter or word frequency. The idea is to 
create a function which mixes text so that 
small groups of letters appear totally 
random, i.e., have maximum entropy. The 
talk proceeds to show how mixing and 
scrambling functions formed from error 
correcting codes can be used to enhance the 
security of trunked communications circuits 
and conventional cryptographic systems 
which depend, for their security, on 
unproved assertions about computational 
difficulty. 

The last segment of the talk presents a 
concept for applying information theoretic 
security to spread spectrum communications 
and ranging systems so that even an 
intended recipient of the message will not be 
able to jam the signal. Airplane instrument 
landing systems and other navigation signals 
are an obvious potential application of this 
idea. 

1) C.E. Shannon, "Communication 
Theory of Secrecy Systems" Bell System 
Technical Journal, vol. 28 October 1949 
pp.711-715 
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Abstract - In order to solve the problem that the DES 
may be attacked by the differential cryptanalysis, this 
paper aims to design the Extended-DES, first by 
breaking a block that is composed of 96 bits into 3 
sub-blocks, then performing different f functions on 
each of the 3 sub-blocks, and finally increasing the Si-S» 
of the S-box to S1-S16 which makes it less vulnerable to 
attack by differential cryptanalysis. 

I. SUMMARY 
In order to increase the cryptographic security of the DES, 

this paper offers some suggestions as follows. 
The 128 key bits that are inputed to increase the key from 

56 bits to 112 bits, are each divided into 64 bits, Ki,K2. 
According to the key schedule of the DES, there are 64 bits 
in Ki on the left, and then after removing 8 parity bits, 
through the Permuted Choice 1(PC-1), 56 bits are outputed. 
The 56 bits are then divided into 28 bits on the left and on 
the right. Then the sub-key is shifted, according to the 
number of times of the left shift of the key schedule in each 
round. They produce the Ki,i-Ki,i6 that are the sub-keys of 48 
bits through the Permuted Choic 2(PC-2). K2, the 64 bit on 
the right, and K2.1-K2.i6, the sub-keys of 48 bits, are also 
produced by the key schedule. As a result, when applying Kij 
and K2,i to the f functions on the left and the right, the 
following encryption and decryption formula is derived: 
Encryption : AJ=BM 

Bi=Ci.ief(Bi.i,K2j) 
Ci=An®f(Bi-i,Ki.i) 

Decryption : Ai.i=Ci©f(Ai,K2,i) 
Bi.i=Ai 
Ci.i=Biffif(Ai,Ki,i) 

As in the figure, the A16 and B16 of the last round during 
the encryption process should be interchanged while the 
decryption process remains the same, except that Ai and Bi 
should be exchanged and inputed into the sub-block. The key 
has to be inputed in the reverse order of Ki.i6,Ki.i5,Ki.i4,....,Ki.i 
with K1.1 on the left and K2.1 on the right. Si-Se on the left 
and S9-S16 on the right should also be interchanged. Against 
an attack by differential cryptanalysis, the iteration number of 
the f function performed in each sub-block during 16 rounds 
should be different, which creates a decreased probability of 
having the feature of N round. During the DES, the f function 
performed in the sub-block is repeated 8 times; in the 
Extended-DES, it is repeated 11 times during the performance 
of Ao to B16, 10 times during from Bo to A16, and 11 times 
during Co to B16. Additionally, it is known that the f function 
is repeated differently according to each of the sub-blocks. 
Therefore, as the DES has the same iteration number of f 
functions according to each sub-block, it can easily be attacked 
by the differential cryptanalysis; but because the 
Extended-DES has a different iteration number of f functions 
in each sub-block, it can be said that it resists differential 
cryptanalysis. Also, in the Extended-DES, the Si-Ss of the 
S-box is enlarged to S1-S16 and the S-box is chosen when each 
entry   is   suitable   both   for   the   SAC,   and   the   correlation 

coefficient condition. 

left block S-box right block S-box 

{B,j} (Cu) 
(Ao) [Co] 

'This work was supported by a Chosun University Grant. 

Fig.   Algorithm of the Extended-DES 

To improve the cryptographic security in the Extended-DES 
design, each entry in the S-box is arranged randomly, so that 
S-box, which agrees with the condition as well as the 
correlation coefficient is increased to S1-S16. The condition that 
the probability of the output bit, j , being changed is Pij=Xj/2n 

when the input bit of i is complemented. The nearer Pij 
approaches to 0.5, the closer the S-box is to the condition of 
SAC. The result of the simulation shows that the 
Extended-DES agrees with the condition of SAC better than 
the DES in that the Py of the S-box in the Extended-DES 
approaches nearer to 0.5. Then, the correlation coefficient 
between each bit of the S-box output must be independent, 
and is considered to be the better design when the correlation 
coefficient(-l <; I py(k) I gl) approaches zero. In this paper, the 
pij of the S-box in the Extended-DES approaches zero nearer 
than the py of the DES. Consequently, it is known that when 
designing the S-box, SAC and the correlation coefficient, the 
S-box of the Extended-DES is better than the DES's. 
Therefore, the Extended-DES developed in this paper has been 
implemented into software and it has been verified that it's 
cryptographic security is superior to that of the DES. 
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Abstract — Constructions of asymmetric authenti- 
cation systems based on families of mappings with the 
vector space property are considered. 

I. INTRODUCTION 
Simmons [1] introduced asymmetric authentication systems 
when he extended conventional authentication codes to codes 
with arbitration, called A2-codes. It is now the notion for any 
authentication system where the participants possess differ- 
ent keys which, in some way, are dependent. Several different 
systems of this kind have been considered [2], [3], [4]. 

II. A2-CODES AND VECTOR SPACES OF MAPPINGS 
Let J7 = {fi} be a set of functions fi : S -t R, where R is a 
ring. Let T have the vector space property, i.e., cifi+C2fj 6 T 
for any ci,c2 € R and any /;,/,• ef, i/ j. We randomly 
choose /, /i, J2 6 F and z € R in such a way that / = f\ +zf2. 
The jl2-code is now given as follows. The transmitter has 
as his key ET the pair (/i,/2) and the receiver has as his 
key ER the pair (/, z). To send the source state s g S the 
transmitter generates the message m = (s, fi(s),f2{s)). The 
receiver receives m = (s, m,2,7713) and checks that f(s) = ni2 + 
zm%. In a correct transmission, m^ = /i(s),m3 = /2(s), and 
thus/(s) = /i(s) + z/2(s). 

III. BROADCAST AUTHENTICATION SYSTEMS 
The idea of broadcast authentication systems was first intro- 
duced by Desmedt and Yung [2]. We generalize their ideas to 
include any specified attack. The set of participants V con- 
sists of a transmitter T, a set of receivers It = {Ri}, and 
possibly a set of other participants Ö = {O,}. The transmit- 
ter T will generate a message m, and it can be addressed to 
any Ri € H, ox to some specified subset of TZ. The address 
is contained in the source state s, and changing it implies a 
substitution attack. We also specify: how disputes are to be 
solved; collaboration sets C = {Cx} (which collusions of cheat- 
ing participants exist against participant a;); verification sets 
14 (which participants must be able to verify messages to a 
certain receiver a;); 

We describe the existing attacks. There are two classes of 
attacks. The first class of attacks is some subset of partic- 
ipants trying to get a fraudulent message accepted by some 
receiver, i.e., trying to cheat a receiver. We separate into two 
cases, depending on whether the transmitter is included in the 
cheating subset or not. We denote the probability of success 
as Pi(C) for the impersonation, and Ps(C) for the substitution 
attack, when the transmitter is not included in the cheating 
subset. If the transmitter is included, we denote the probabil- 
ity of success as PT(C). 

The second class of attacks is a subset collaborating, claim- 
ing to have received a message that was never sent and thus 
trying to frame the transmitter. Here we have both the im- 
personation case and the substitution case. We denote the 
probability of success as PR0(C) and PR1(C), respectively. 

Let M(et) be the set of messages that the transmitter can 
generate when he is in possession of the key et, and let e(C) be 
the set of keys for a subset £ of participants. The definitions 
of the probabilities of success in the different attacks are: 

Pi(C)   =   max max   max P(m accepted by RAe(C)), 
Ri    C€CRi e(£),m 

T£C 

PS(C)   =   max max     max    P(rn accepted by RAm, e(£)), 
Ri    C€CR. e(£),m,m' 

PT(C)   =   max max     max   Pirn accepted by fl;|e(£)), 
Ri    £€CH.     e(£),m 

TeC   m$M(et) 

PRo(C)   =   max max P{m € M{et)\e(C)), 
C£CT e(C),m 

PRAC)   =   max    max    P(m € M(et)\m € M(et),e(C)). 
£€CT e(£),m,m' 

An important class of broadcast authentication systems is a 
system where V = {T,Ri,R2, ■ ■ ■ ,Rn>A), and such that: an 
honest arbiter A makes decisions in case of a dispute; all at- 
tacks from any subset of at most k participants (excluding the 
arbiter) exist; the verification set is Vi = {JRI, Ä2, • • • ,Rn,A}, 
Vi = 1,... , n. We call such a system an (n, fc)-threshold USDS 
[4]. Such system can be constructed by choosing /(l),/j € T 

and Zj    € R such that 

/ 1 
1 

Vi 

„(1) 
"2 
.(2) 

» 

z(2) 

\) 

(      *      \ 
h 

V A+i / 

//C1) 

y(2) 

V /(n) / 
(1) 

xThis work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grant 94-457 

where any (k + 1) rows are linearly independent. The trans- 
mitter's key is ET = (fi,--- ,/k+i) and receiver i has key 

ERt = (/(,),22X)i-■■ >zk+i)- The transmitter sends the mes- 
sage m = (s, /i(s),... , fk+i(s)) and receiver i checks that 

MS) + *?h{8) + ■■■+ Z&fk+lis) = f(i)(s). 

An example of performance is given by the following theorem. 
Theorem 1: Let 7 = {/(s); f(s) = as + b, Va,6 e Fg}. Then 
(1) is an (n,k)-threshold USDS, where 

Pi(C) = Ps(C) = PT{C) = PRo(C) = PRl(C) = 1/q. 

We further consider collaboration sets which are not of 
threshold type. 
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I. INTRODUCTION AND SUMMARY 
In an open information system, all the information in the sys- 
tem are known by the public. For such a system, the users 

are responsible to encipher their own information in a way 
that they can be accessed by authorized users only. Let 

U = {Ui,..., Un} be the set of users in the system. Asso- 
ciated with each Ui is an authorization list Ai C U such that 
Ui can access the information of Uj if and only if Ui £ Aj. 

In this paper, we propose two simple access control 

schemes. For the first scheme (Scheme 1), for any 1 < t, j, k < 

(Uk G AS   and   Uj £ Ai) => Uk € Ai. (1) 

In other words, if Uk can access the information of Uj and Uj 

can access the information of Ui, then Uk can accessed the 
information of Ui. This is called hierarchical accessibility. For 
the second scheme (Scheme 2), there is no constraint on the 
authorization lists. To our knowledge, this is the first scheme 
in the literature that supports arbitrary accessibility. 

II. SCHEME 1: HIERARCHICAL ACCESSIBILITY 

If Ai, i = 1,..., 7i satisfy (1), the elements in U has a partial 
order, with Ui > Uj signifies that Ui can access the informa- 
tion of Uj. Ui is called a predecessor of Uj, and Uj is called 
a successor of Ui. The scheme we propose is as follows. Each 

Ui has an encryption algorithm Ei and a decryption algo- 
rithm Di which are parametrized by e; and di, respectively, 
where ei is publicly revealed and di is kept secret to Ui. (It 
is assumed that the class of encryption/decryption algorithms 

that Ei and Di belong to is publicly known, and Ei and Di 
are completely characterized by e; and di, respectively.) Fur- 

ther, the encryption/decryption pair (Ei,Di) forms a public 
key cryptosystem, i.e., 
(PK1) For each message m, Di(Ei(m)) = m. 

(PK2) Ei and Di are easy to compute. 

(PK3) It is practically impossible to find a decryption algo- 
rithm D'i from Ei such that D'i(Ei(m)) = m for all m. 

The scheme works as follows. Let m; be the information of 
Ui. Each Ui enciphers rm as Ei(mi) and reveals it publicly. 
Let Uj be an immediate predecessor of Ui (Ui can have more 
than one immediate predecessor). In order that Uj can access 
the information of Ui, Ui enciphers di as Ej(di) and reveals 
it publicly. Then Uj can recover di as Dj(Ej(di)) and then 

recover m,- as Di(Ei(mi)). 
Now suppose Ui is an immediate successor of Uk and Ui is 

an immediate successor of Uj. Then Uk can recover dj as de- 
scribed above. With dj, Uk can also recover di as Dj(Ej(di)), 
since Ej(di) is publicly known. With di, Uk can then recover 
mi. Likewise, Uk can access the information of any of its 

successors. 
Different hierarchical access schemes have been proposed 

in the literature ([1,2], [4]-[7]). All these schemes have the 
common property that key management in the system is per- 

formed by a central authority. By contrast, our scheme is 

completely decentralized and does not need a central author- 
ity. In addition, our scheme has the following advantages: 

1. Users are allowed to choose their own keys. 

2. It is not necessary to deliver keys to the users in a secure 
way (cf. for example [1,2]). 

3. The amount of storage required is proportional to the 

total number of immediate successors in the system. 

4. Insertion and deletion of users are simple, and do not 

affect the encryption and decryption procedures of ex- 

isting users. 

5. Update of encryption and decryption keys is simple. 

III. SCHEME 2: ARBITRARY ACCESSIBILITY 
We assume that Ai, i — 1,..., n are arbitrary. In this scheme, 

each Ui has two encipher algorithms Eu and E^i, and two 
decipher algorithms Du and D-a, which are parameterized by 
eu, ezi, du and du, respectively, e-a are revealed publicly, 
while en, du (called the file decryption key) and d%i are kept 

secret to Ui. (Ex, £>2i) forms a public key cryptosystem, while 

(Eu,Du) forms a conventional cryptosystem. 
The scheme works as follows. Each Ui enciphers its in- 

formation m; as Eu(mi) and reveals it publicly. For each 
Uj e Ai, Ui enciphers du as E2j(du) and reveals it publicly. 

Then Uj can recover du as D2j(E2j(du)), and then recover 
mi as Du(Eu(mi)). It is easy to see that if Z7j 0 Ai, then Uj 
cannot access the information of Ui. 

In Scheme 1, a user uses the same encryption/decryption 
pair for both its own information and the decryption keys of 
its immediate successors. For this reason, a user can access 
the information of all its successors. In Scheme 2, however, 

two different encryption/decryption pairs are used for its own 
information and the file decryption keys of those users whose 

information it can access. This arrangement breaks up the 
hierarchical structure of the scheme. 

To our knowledge, this is the first scheme in the literature 

that supports arbitrary accessibility. This scheme enjoys all 
the advantages of Scheme 1 except that the amount of storage 
required is proportional to J^iLi \Ai\, which is upper bounded 

by re2. 
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Abstract— We propose two different methods for at- 
tacking Tanaka's IDNIKS presented in SCIS'94. One 
is to find the secret informations using public param- 
eters, and the other is to find the center's secret keys 
by collusion. 

I. INTRODUCTION 

IDentity-based Non-Interactive Key Sharing(IDNIKS) scheme 
was first proposed by Blomfl]. Since then, there have been 

many works for IDNIKS [2], [3], but, many of them were found 
to be breakable by collusion attacks [4], [6]. 

In SCIS'94, H.Tanaka[5] proposed the new IDNIKS which 
could be easily implemented. We propose two methods for 

attacking Tanaka's IDNIKS. The first method is to find the 
secret informations using public parameters of the center, and 
the other is to find the center's secret keys by 8 collaborators. 

II. TANAKA'S IDNIKS 
At first, a center chooses RSA modulus N(= PQ), one- 
way hash function /, random number e,ei,e2 satisfying 

gcd(ei,e2) = gcd(ei.e) = 1. And choose x,y,d,n,r2 such 

that a: = (riL)/gcd(eJ(ce2+Ci)ri, L), y = (r2£)/gcd(e£(ee2 + 
ei)''2, L), d — Z/gcd(ee2 — e\, L), and keep them secret. Cen- 
ter selects a random number rA for entity A, and calculates 

the secret keys gAi and (jA2 such that <JAI = rA
dgxIA\t gA2 = 

reAdgyIA* where IA1 = f,f{IDA) + e = eifA + e,IA2 = 

e2fA + Y 
The common key KAB between A and B can be obtained 

as follows •   K^ — a1"'«1'3- — JAl J*7 — R'1-13^ as lonows .  i\ AB — gA]   (jA2    _ (jBi gm   — I\ AB. 

III. ATTACKING METHODS 

Method 1 : Assume that gcd(e1(ee2 + ei), L) = gccl(ei(ee2 + 
ei),I),gcd(e|(ee2+ei),L) = gcd(e2(ee2-t-ei), L). In RSA type 
modulus N, the previous equations hold with high probabil- 
ity. Then, the following relations hold : xe\_m = ye^m = 0 

(mod L) => K'XB = gm<-xe* + ri (mod N) where m denotes 

gcd(ee2 + e\,L). Thus the m-th power of common keys be- 

tween any entities have the same value. If in is small enough, 
then the common keys between entities will be the same value 
with high probability. 

Method 2 : Now we consider collusion attack. First, an 
entity A builds the following equations for the common key 
KAB between two entities A and B: 

Xi = (j xel+yel X, 2ieeJ+2j/e| A3 ,ie   er + je« 

YA1 = X[
A
XI

A
X3,YA2 = x£x{AXi,YA3 = xf*X(AXo, 

KAB    =    (.xl*XlAXa)
fB(x{*Xl*Xs,y*(x{*XlAX6) 

=    YlfYifYM     (modn). 
The attacking procedure consists of the following 3 steps : 

step 1. As above, any entity A can obtain KAB, KAC, 

KAD, KAE, KAF, KAG, KAH and KM. Using them, 
Y

A\i 
Y

A2> YAZ can be easily obtained. 

step 2. By collaboration, we obtain Xf, X2\ Xi, X}, Xl, 
and Xe. 

step 3. Then a common key Kuv for any entities U and V 
can be expressed : 

Kuv = X\c^ilX^Jri2XlC3+i3Xi
i
c^iiXlc^isX&, 

where 0 < I'J , i2,u < 4 and 0 < i3, is < 2. Let a — fu mod 4 

and b = fv mod 4. Then in case (a, b) = (0, 0), (0, 2), (2, 0) or 
(2, 2), ti, ... , i5 are all zeros, and so Kuv can be calculated. 

All the other cases are classified as follows: 

(i)  (0, 1), (0, 3), (1, 0), (3, 0) : XaXi 

(ii)   (1, 1), (3, 3) : XtXiXi 

(iii)  (1, 2), (2, 1), (2, 3), (3, 2) : X$X3XlX5 

(iv)  (1, 3), (3, 1) : XxXl 

Hence Tanaka's scheme can be broken if 8(^4, B, C, D, E, 
F, G, and //) entities collude, whose hashed values are : 
fA mod 4 = 0,  fB mod 4 = 1, fc mod 4 = 2, fD mod 4 = 3, 
JE mod 4 = 0, fF mod 4 = 1, fa mod 4 = 2, fH mod 4 = 3, 

and gcd(Ä, S) = 2 where R = (fA - fB){fc - fv)(fA + fB- 
fc-fo) and S = {fE - fF)(fa - fH){fE + fr - fa - fu). 

IV. CONCLUSION 
In this paper, we introduced two different ways for attacking 

Tanaka's IDNIKS. First, we have shown how to get the secret 
information from the public parameters of the center. Second, 
even if it is impossible to get the secret information of the 
public parameters, we have shown that Tanaka's scheme can 
be broken by 8 collaborators. 
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Abstract — A new simply implemented identity- 
based non-interactive key sharing scheme(IDNIKS) 
has been proposed. The center algorithm is very sim- 
ple and easily implemented. The security depends on 
the difficulty of factoring. The proposed IDNIKS can 
be certified to be secure for the considerable attacks 
involving user's collusion. 

I. INTRODUCTION 

In this paper a new identity-based non-interactive key sharing 
scheme(IDNIKS) has been proposed in order to realize the 
Shamir's original concept of identity-based cryptosystemfl]. 
The algorithm is very simple and easily implemented. The 
security depends on the difficulty of factoring and it can be 
certified to be secure for user's collusion. 

II. BASIC CENTER ALGORITHM 

Let P and Q be two large primes and their product be 
N = PQ. Then the Carmichael function of N can be given by 
L=LCM{P-1,Q-1}. Let g be a primitive element in GF(P) 
and GF(Q), and let n and w(~ n/2) be two positive inte- 
gers which satisfy gcd{w,L}=l. We assume here that the 
identity information of each user / (/=A,B,C,...) is given 
by IDi, and introduce a one-way function / which satisfies 
0 < It = f(Wi) < nCw - 1. Then using the Schalkwijk al- 
gorithm^], we obtain a constant weight binary vector v; = 
(01,0,01,1, .... ,oi,„_i), a;,; € GF(2) from It, where the Ham- 
ming weight of vi is w. We assume here that any n-vectors of 
vi are linearly independent. From the vector v; an index set 
can be defined as J/ = {j | aij = 1, 0 < j < n - 1 }. Here 
we introduce a set of random numbers X = {a?o, a?i,..., #„_i}, 
and calculate the following equations. 

Si  =   ^Xj(modL) (1) 

je/; 

gi(j)  =  gS!X> (modN)    (0 < j < n - 1) (2) 

Finally the trusted center publishes {N,n,w,f,IDi(l = A,B, 
C,..)} and delivers Gi = {gi(j); 0 < j < n - 1} to each user / 
though a secure channel or by an IC card. 

III. NON-INTERACTIVE KEY SHARING 

We assume here that two users A and B want to share a 
common-key KAB between them non-interactively. First A 
calculates JB from IDB using / and the Schalkwijk algorithm, 
and then performs the following simple calculation to share a 
common-key KAB with B. 

«AB   =   Ei ^U)    (modiV) 
i€JB 

Similarly B calculates 

KA
B

^ = n SBU) t™^) 

= gSl>SA    (modN). 

Then their shared common-key is given by 

KAB = gSASB    (mod AT). 

(4) 

(5) 

= /'(E>6Jj,«i)  ( 

= gSA SB
    (modN) 

modN) 

(3) 

IV. CONSIDERATIONS ON THE SECURITY 

In order to certify the security of our proposed IDNIKS we 
must show that a common-key between any third parties can 
not be forged under the following assumptions even if the col- 
lusion among users would be allowed. 

Assumptions 
Al. Factoring of JV = PQ is too difficult to execute. 
A2. Any set of less than or equal to n vectors is linearly 

independent. 
The possible strategies to forge a common-key between any 
third parties X and Y are only the following two attacks. 

Attack 1: to solve in Zij = gX{X' (mod N) (0 < i,j < 
n -1) the simultaneous equations given by Gi or Kn gathered 
by user's collusion, and to construct a desired common-key 
between X and Y using their index sets Jx and JY ■ 

Attack 2: to gather many gi(j) or KlY and forge a user X's 
secret gx(j) or a common-key KXY by replacing the exponent 
part using a linear combination vx = a\A + b\B + cvc +■■■■ 
(mod L), where a, b, c,... are integer coefficients. For example, 
KXY seems to be forged by 

KXY = KZYKBYKSY-    (modN). (6) 

In the process of executing the attack 1, we are inevitably 
confronted with solving an equation 

zfj = C (modN)    or    z?-   = C (modN), (7) 

where C is some known factor. However, we can not calculate 
w-th root of C because the inverse element (mod L) of w is 
unknown under the assumption Al. Such a situation is the 
same as that of RSA public-key cryptosystem. 

In order to obtain the integer coefficients a,b,c,... for exe- 
cution of the attack 2, we must solve an equation (a, b, c, ..)V 
= vx (mod L), where V is an n X n matrix of which each row 
vector is v/. However, it is impossible to solve it in (a,b,c,...) 
because, from the assumption A2, \V\ is always equal to w 
or -w, of which inverse element (mod L) can not be obtained 
because of the assumption Al. Such a situation is the same 
as that of RSA public-key cryptosystem. 
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It is important in cryptology to study the degenera- 

tion of multi -valued logical functions (MVLF). The 

main purpose of this article is, with the help of Chresten- 

son spectrum , to reveal the relationship between the de- 

generation of MVLF and its linear structures, and to 

characterize the property of these linear structures. The 

discussion here after is restrained to the prime field 

GF"(p) . 

Definition 1: Assume MVLF f-. GF'(p) -* 

GF(p) , the Chrestenson transform and reverse transform 

are 

and 

/ (x ) = log. 

respectively, where u = exp 

2_, sf(o>yu 

In /=T , (<o,x > denotes 

the inner production of vetor co and x , and M
<
"
,
*

>
 the con- 

jugate of u<"'') . 

In the following description , © means module p ad- 

dition, and + the ordinary addition. And / is a MVLF 

such that GF'(p) -» GF(p) . 

Definition 2: /(a) is said to be degenerate if 

there exists a h X n (k < w) matrix D and MVLF 

gOj) over GFl(p) such that / O) = giDx') = 
g Oj ) » V a  G GF"(y)  , where y = Dx . 

Definition 3: Let W.{ = {x G GF'(p)\f(x) = 

i}, 0 ^ i ^ p — 1 , and \Wi\ be the number of the ele- 

ments in W,. f (x) is said to be balanced if \W0 \ = \W^ \ 

= •••= l*Vil- 
Definition 4 • a G GF"(p ) is refered to as a linear 

structure of / if / O © a) — / (x ) = constant(= f (a) — 

/(0)), Vi6 GF'Cp). 

Let Z/^ be the set of all linear sturctures. An imme- 

diate conclusion from the definition is that Uf is a linear 

subspaceof GF'(p) . Lett/, = {a £ GF'(p)\f(x ©a) 

-/(z) = i, V * GGF*(p)}, 0<*<p - 1. The ele- 

ments in U i are refered to as the ith class of linear struc- 

ture. Obviously, the difference between any two points 

inf/iCl <i<? - 1) belongs to*70- Hence, if J7<?M , 

then Vi = ß + U0 . SoUf is the union of U0and some of 

its cosets. 

Theorem  1- Let V = ({<o\St(.a>) # 0}> , dim I 

= fc , and # = [Ai,Ä2>*">Ät]T > Wherehlth2,"- ,hkbe 

group of bases of V.  Then there exist functions with 

variables g(y): GF'(p) -*■ GF(p) , such that g (y) = 

<7(Fx) =/(*). 

Theorem 2; (ZWB^CUI^CCU) ^ 0}> = k if and onl; 

if / (x ) degenerates into a function with at most k vari 

ables. 

Theorem 3: a G #iif and only if Sf (co) = 0,V < 

G GF'(p), (co,a) ^ i , where i7j is set of the ith clas 

linear structure of / (x ) . 

Theorem 4; U0 = {a\Ha= 0} = ({co\Sf(co) 7 

0})1. 

By Theorem 2 and Theorem 4 it is known that th 

0th class linear structure virtually characterizes the de 

gree of degeneration of function f(x) . The function i 

degenerated whenever U0^ {0}. Meanwhile, it is point 

ed out that U 0 = ({co\Sf(co) ^ 0}>x . 

Corollary- dim U f = n ifand only if / is a linea 

function, i. e. , f (x ) = c^ + c2x2 + ••• + c,x, + c0 

where c( G GF(p) . 

Theorem 5: If/(x) has if A (i ^ 0) class linea 

sturcture then (1) / (x ) must has other classes linea 

structures; (2) f (x ) is balanced. 

By Theorem 5, if Us ^Z70 > then all classes of linea 

sturcures exist. Once a 1st class linear structure a i 

found, ka(0^.k^p — 1) is a kth class linear sturcture 

Thus, if U 0 and one »6 U j is determined, all U f can b 

determined. 
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Abstract — Many cryptographic protocols depend on one and only 
problem, the one of factoring. This paper presents a new identification 
scheme whose security depends on an NP-complete problem from the 
theory of error correcting codes : the syndrome decoding problem. The 
computation complexity of the proposed scheme is smaller than those of 
the other schemes based on SD problem. Moreover the amount of memory 
needed by the prover is very small. 

I. INTRODUCTION 

We define, in this paper, a new identification scheme based on the 
syndrome decoding problem [1]. The decision problem of the SD 
problem (stated in terms of generator matrix) is the following : 
Let G(k,n)bea generator matrix of a random linear binary code. Let 
p be an integer and x be a random binary vector of length n. Does 
there exist a word e of length n and weight p such thatx+e belongs to 
the code generated by G. Thus the problem is to know if there exists 
a couple (m, e) such that x = mG + e where e is a word of weight p. 
We will use the following definitions : 
. Let ß = {ßi,..., ßk) be a basis of F2t and y = YH=\ Y<ß> ^e an 

arbitrary element of F2*, the ^-weight of y, a>ß(y), is defined as the 
Hamming weight of (yi y*)- 
. Let y be an arbitrary element of F2»-. The ß-product matrix of y, 
[yJjS.isdefinedastheKroneckerproductß'igiy where, forl <i <k, 
{ß' ® y), is considered as a row of k elements over F2, and ß' denotes 
the transpose of the row vector ß. Thus [y]ß is a k x k invertible 
binary matrix. 
. Let y be a fixed element of F2t. Let p = J2i=i P>ß> ^e an arbitrary 
element of F2t then : py = (pi,..., Pk)[y]ß- 

II. THE IDENTIFICATION SCHEME 

Notations 
. From now on, a binary vector of length k will be considered as an 
element of F2* if needed (and vice versa), 
. Let y be a vector of length n and a be a permutation over {1 n}, 
then ya is defined as the vector z such that Zj = yau)- Likewise, if 
M is an m x n matrix then Ma = (m,x;-)), 
. < x > denotes the action of a hash function over the string x, 
. A vector x of length 2k will be represented by the couple (xi, x2) 
where xi and x2 are vectors of length k. o 
Let/Si = {l,a a*_1}beabasisof F2t,/32beabasisof F2» and/82 

be its dual trace basis. A certification center C, having the confidence 
of all users, computes two random elements y\ and y2 of F2t. Let S be 

equal to I :   f 1 and G' be a random k x2k binary matrix of rank k. C 

computes G = SG'. This matrix is common to all users. 5 and G' are 
no longer needed and are unknown to all users. Finally, C computes 
for each user : a random binary vector u = (u\, u2) of length 2k, 
which verifies uS = 0, and the matrix G = [p]ß>(G \ Q)n2, where 
n2 is a random permutation of {1 Ak), and Q is a random (2k, 2k) 
matrix. 

Secret quantities of each user are: 7r2"', m a binary word of length 
2k, e a binary word of length 2k and weight p, u, mG and p~x. 

Public data of each user are : ak, G, x = mG + e and p. 
Suppose that A wants to prove its identity to B. The protocol 

includes r rounds, each of these being performed as follows: 

• A computes a random element r\ of F2A and v a random vector of 
length 2k. Let w = u + v, A computes y = (rivi, r)v2) and sends to 
B the quantity yp~\ 
• B sends back z = (yp~l)G, 
• A randomly computes: a permutation a of {1 2k] and zn2~

x. 
The first 2fc bits of this vector are equal to(>;tui, /?ui2)G(since«5 = 0). 
Lett = (»jtui, ?)t(j2),Asendstoß:ci =< a >,c2 =< (z+m)Go >, 
C3 =< (TG + x)a > 
• ß sends a random element e of {0,1,2}, 
• If e is 0, A discloses r + m and a. B checks the validity of c\ and 

C2, 

• If e is I, A discloses (T + m)Go and ea. B checks the validity of 
c2 and C3 and verifies that co{ea) = p, 
• If e is 2, A discloses x and a. B checks the validity of c\ and c^. 
The security of the scheme is linked to the values of the parameters 
k, p, cOß*(p) and r. 

III. SECURITY OF THE SCHEME 
According to [2], minimal parameters which guarantee the security 

of the scheme are : k = 255, p = 56, a>ß*(p) = 20 and r = 35. 

The complexity of the various attacks is then, at least, 270, and the 
probability of success of the different frauds is about 10"6. 

It can be shown that repetition of the protocol is a "proof of knowl- 
edge" of a solution of the system x = mG + e, w(e) = p. Moreover 
we believe that this scheme is computationally zero-knowledge. 

IV. PERFORMANCES OF THE SCHEME 
The prover do not have to store the matrix G or the matrix G 

since he doesn't execute any computation with these matrices. Thus, 
the latter needs a very little amount of memory. Using the basis ß2 

allows the prover to compute yp~l without storing p_1. Moreover the 
complexity of the computations done by the prover can be reduced by 
using an irreducible trinomial [5] so as to generate F2*. To show the 
efficiency of the scheme, we have compared it with Stern's scheme [4], 
which among the schemes based on SD problem is the most practical. 
Here are results: 

Stern's scheme Our scheme 

Global transmission rate ~ 40133 bits ~ 75740 bits 

ROM 66048 bits 2415 bits 

Prover's workfactor ^ 2
22 13 

< 219-9 

1 veron@marie.polytechnique.fr 
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Extended Abstract 

We consider an alternate approach to coding information 
bearing data for the reliable transmission of two-tone images 
over noisy communication channels with memory. This con- 
sists of jointly designing the source and channel codes (a tech- 
nique referred to as joint source-channel coding). 

Source and channel coding are two problems that have 
traditionally been implemented separately, forming what is 
known as a tandem source-channel coding system. The sep- 
aration of channel and source coding is only optimal in an 
asymptotic sense, i.e., when no constraints exist on the cod- 
ing block lengths (delay) and on the complexity of the en- 
coder/decoder [1]. Joint source-channel coding, however, has 
recently received increased attention. It has been shown that 
if delay and complexity are constrained, performance can be 
increased if the source and channel codes are jointly designed, 
as opposed to being treated independently [2, 3]. 

In this work, we propose joint source-channel coding 
schemes for the reliable transmission of two-tone images over 
a binary channel with additive Markov noise. Applications of 
this work are in the transmission of facsimile documents over 
land mobile radio channels. 

We model the image as a one-dimensional non-uniform bi- 
nary iid, a Markov process or as a two-dimensional causal 
Markov process. We then investigate the problem of the max- 
imum a posteriori probability (MAP) detection of binary im- 
ages directly transmitted over the Markov channel. The ob- 
jective is to design a MAP detector that fully exploits the 
redundancy of binary images to combat channel noise. It will 
also exploit the larger capacity of the channel with memory as 
opposed to the interleaved (memoryless) channel. Since this is 
a model-based decoding algorithm, we assume that the image 
parameters are provided to the decoder (this can be achieved 
by transmitting them over the channel using a forward error- 
control code). We next address the problem of MAP detec- 
tion of compressed binary images directly transmitted over 
the Markov channel. Comparisons of the performance of the 
above coding schemes with traditional tandem schemes (that 
use Run-length and Huffman coding for source coding, and 
convolutional codes and interleaving for channel coding), are 
also presented. 

Simulation results for the transmission and detection of an 
uncompressed two-tone image of Lena are displayed in Figures 
1 and 2. In this experiment, the Markov channel bit error rate 
is Pr(Zn = 1) = e = 0.1 and the noise correlation parameter 
is 5 = 10.0 (the corresponding noise correlation coefficient is 
JTJ). These parameters correspond to a very noisy channel 
with high noise correlation. The resulting average decoding 
bit error probability is 0.02. This result is very promising 
given the low complexity of the system (which primarily re- 

sides in the MAP decoder). The decoder is implemented using 
a modified version of the Viterbi algorithm. 

Figure 1. Received two-tone Lena 

[1] 

[2] 

[3] 

Figure 2. Decoded two-tone Lena 
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Abstract - A hierarchical scheme for chain encoded digital 
contours is introduced. If the contour represents the 
boundary of a binary image, a true digitization or the image is 
realized as the pyramid structure goes from the fine to coarser 
resolution levels. A progressive transmission system is 
designed to go from a coarse resolutin level to finer levels 
which uses essentially the same number of bits as 
transmission of the contour at the finest resolution. 

SUMMARY 

We consider a pyramidal structure for digital binary images 
which lends itself to efficient multiresolution transmission. 
Binary images of objects are digitized by coloring a pixel black 
if the center point of the pixel cell is within the object. 
Otherwise, it is white. 

Quadtrees are commonly used to create multiresolution 
structures. In this method the pixel cells which intersect the 
boundary of the object are designated as gray cells. It is only 
these cells that need to be subdivided to obtain a finer level of 
representation. Grey cells (or nodes) of the quadtree are 
designated as either gray-colored black or gray-colored 
white. Consequently, node designations are of four types, 
white, black, gray-white and gray-black. Thus, for a 
heirarchial representation using quadtrees, 8 bits are used to 
describe the four higher resolution children cells of each 
coarse resolution gray cell. 

A second approach for the encoding of binary images is to 
use chain codes to follow the boundary of the digitized 
object. This consists of using 4-directional links that follow 
the edges or "cracks" of the pixel cells and hence is sometimes 
referred to as crack codes. 

The crack code requires 2 bits per link and on average the 
number of links equals the number of gray cells for 
quadtrees. For contour following codes the number of links 
double with each level of increased resolution. Thus the 
"brute force" method of simply transmitting the full crack 
code at each level of resolution uses 4 bits per coarse link, half 
that for quadtrees. 

A pyramidal structure for the crack code which makes use of 
the coarse information while transmitting information for the 
finer resolution could give further improvement. However, 
one finds that for digital binary images the content in the fine 
resolution is not sufficient to determine the coarse resolution 
image. This is due to the fact that as 4 small adjacent pixel 
cells coalesce into a coarser cell, knowledge of whether the 
center point of the coarser cell is within the object is not given 
by the colors of the smaller cells. 

Conversely, this implies that when going from coarse to fine, 
a portion of the coarse information is not relevent when 
providing additional information for the fine resolution 
image.    Thus for an efficient multiresolution system one 

should search for a structure whereby the course information 
is contained by the finer. This can be achieved by shifting (in 
each direction) the pixel cells, or equivalently the image, by 
1 /2 the value of the side of a cell. In this way the center point 
of a coarse cell coincides with that of a smaller cell. 

We construct such a multiresolution structure for contour 
following chain codes. The total number of bits required for 
transmission if sent progressively is shown to be essentially 
the same as that for transmission only at the final level of 
resolution. Thus, in a sense, no coding inefficiency is created 
by the multiresolution structure and the scheme makes full 
use of the coarse data. Each level of resolution requires 2 bits 
per coarse link or coarse cell as opposed to 8 bits for 
quadtrees. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 
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Abstract — An efficient coding method using a 
three-dimensional discrete cosine transform (DCT) 
for still images is presented. This is an extended 
version of the traditional DCT coding method. The 
adaptive application of the three-dimensional DCT to 
each sub-block makes the coding more efficient than 
the other DCT methods. 

I. INTRODUCTION 

In Near future an information-superhighway will be working 
all over the world. In such a situation an image coding method 
was standardized by the international body called Joint Pho- 
tographic Expert Group (JPEG) [1]. And still now an efficient 
and fine image coding technique is required as urgently as 
ever. In this work using three-dimensional DCT we demon- 
strate that a more attractive image coding method for still 
images can be made. 

II. IMAGE CODING 

Traditional DCT image coding is done by sectioning the full 
picture into tiny sub-blocks separately. The block size is usu- 
ally taken an 8~32 pels. In such a tiny size there exist strong 
correlations between the block and its neighbor block. Hence 
it is considered that there exists redundancy in taking a trans- 
form coding for each sub-block independently. To remove such 
redundancy, we adopt a three-dimensional DCT for the differ- 
ence between sub-blocks. First we take nine sub-blocks (3x3 
blocks) as a unit as shown in Fig. 1. Each sub-block is square 
with 8 pels. The nine sub-blocks are ordered as in Fig. 1. 
After each sub-block is transformed by two dimensional DCT 
the DCT coefficients of the Oth sub-block are subtracted from 
those of other sub-blocks. 

DCT is utilized again in the depth direction for the cubic 
structure. 

pels 

4P% 
1 2 3 
8 0 4 
7 6 5 

K- 8 pels 

Fig. 1: Sub-block and its ordering 

Fig. 2: Cubic structure 

If the unit includes the clear edges of the image then 
the traditional coding method (JPEG method) is applied for 
each sub-block of the unit because the separate processing for 
each sub-block is preferable in such a case. Hence, the pro- 
posed method is a hybrid type of two-dimensional and three- 
dimensional DCTs. The total bit rate is determined from the 
rate distortion function and its quantization level from the 
Max's theory. For simplicity, however, using a constant re- 
duction area and the equidistant quantization levels we can 
make an easier coding method which is still effective. 

III. SIMULATION 

The reconstructed image by using this method in 1 bit/pel 
have been of the SNR 29dB~33dB. The image qualities are 
all good and the block noise does not appear in these images. 

IV. CONCLUSIONS 

Using three-dimensional DCT we have constructed an efficient 
transform image coding method. It is considered that this 
method can play an important role for quick transmitting of 
still images. 
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That is to say, with Di(i,j) the (i, j)th DCT coeffi- 
cient of the Ith sub-block we calculate differences Di(i,j) — 
Do(i,j)(i,j = 1,2, ...8) for any 1(1 = 1, 2, ...8) and set these dif- 
ferences in the /th sub-block. Next using these sub-blocks we 
make a cubic structure as in Fig. 2. And the one-dimensional 
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Abstract — We address the problem of data 
compression and transmission applied to 
images. We present a differential pulse coded 
modulation (DPCM) scheme whose prediction 
filter is the hi filter. We also present an ECC 
decoder which takes advantage of side 
information to selectively filter the 
reconstructed prediction difference sequence, 
using the weighted median filter. We apply our 
schemes to some test images, and we compare 
their performance to the appropriate baseline 
schemes. Our techniques exhibit a lot of 
resilience to noise, even for very noisy 
channels. 

I.    INTRODUCTION 

DPCM is a well known technique for the compression of 
correlated sources, and has been widely used in the 
compression of speech, images, and video. It is simple and 
remarkably effective. DPCM is appropriate in applications 
where the hardware costs need to be kept low. Examples 
include many telephone systems and personal wireless 
communication systems. It is also appropriate in 
applications such as digital television, where the large data 
rate requires state of the art high speed electronics, which 
may prohibit the use of complex compression schemes. 

Because of its differential nature, DPCM can suffer 
from acute sensitivity to bit errors. That is, a single bit 
error can affect many reconstructed samples. To mitigate 
this effect, in this paper we propose to use the L( filter of 
Palmieri and Boncelet. This filter is a good predictor, and it 
also significantly reduces DPCM's sensitivity to bit errors. 

We also present a modified ECC decoder which takes 
advantage of side information to selectively filter the 
reconstructed prediction difference sequence. This decoder 
uses the weighted median filter. This modified decoder 
further enhances the scheme's resilience to channel errors. 

II.    THE CODING SCHEME 

We propose the L£ filter as a predictor in the DPCM 
feedback loop. Our filter is given by 

wy = <£-2j ut_2j + (U-ij-i ut_hH 
«A n      A n      A 

+ 0?-lJ u^j + CCy-2 Ugj_2 + ay-i «y_, 

where the coefficients a" depend on the ranking of the 
elements u. We consider a special case of L£ filter, where 

the only ranking information used consists of the location 
of the largest and smallest u, which we discard by making 
their coefficients equal to zero. For the remaining three 
elements, we choose the filter that minimizes the MSE in 
the absence of a quantizer. One can see that our choice of L( 
filter behaves like both a linear filter and a median filter. 
Its linearity makes it a good predictor. Its nonlinearity 
gives noise immunity to the DPCM decoder, because it 
provides a mechanism for discarding outliers. 

We also propose a modified ECC decoder that takes 
advantage of two sources of additional information. The 
first is the residual redundancy in the prediction difference 
v. Generally speaking, v is not highly correlated, but it 
retains enough local correlation to help the decoder. The 
decoder takes advantage of this by filtering the prediction 
difference estimate v'. The filter will be applied 
selectively, only when the decoder has a low confidence in 
its output. Our choice of filter is the center weighted median 
filter. 

The second source of additional information comes 
from the ECC decoder, which can produce an estimate for 
the error pattern e introduced by the noisy channel. If the 
weight of e is zero, the decoder is very confident in its 
decision. As the weight increases, it becomes less and less 
confident. We set a threshold T > 0, and let the decoder 
enable the filter each time the weight exceeds x. 

III.    EXAMPLES 

We apply our schemes to some test images. We compare 
the compression of DPCM with an U filter (Li-DPCM) and 
its behavior in the presence of bit errors to that of two 
baseline schemes: DPCM with a linear filter (f-DPCM) and 
DPCM with a median filter (M-DPCM). In terms of 
quantization, the mean squared error (MSE) performance of 
Li-DPCM is better than M-DPCM and worse than ^-DPCM, 
but all three are good. Visually, the three schemes are 
essentially identical for quantizers with 3 bits and above. 

In terms of channel response, without ECC, and with 
ECC and a standard decoder, Li-DPCM sometimes beats £- 
DPCM in MSE, and sometimes not, while M-DPCM is a 
distant third. Visually, L^-DPCM does the best job of 
concealing distortion, since it suffers the least from the 
very noticeable streaks typical of linear DPCM. Using ECC 
with the modified decoder helps all three DPCM schemes in 
MSE, with ^-DPCM benefiting the most, and M-DPCM the 
least, because the median filter is not a particularly good 
predictor. Again, visually, L^-DPCM wins. 
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A fundamental problem in two-dimensional signal pro- 
cessing is the modeling and analysis of nonhomogeneous two- 
dimensional (2-D) signals. For example, in almost any image 
taken by a camera, perspective exists, and hence the acquired 
2-D signal is nonhomogeneous, even if the original scene was 
homogeneous. Conventional approaches to the problems of 
perspective and camera orientation estimation usually involve 
local analysis of the image, by means of edge detection algo- 
rithms. Parametric models, when used in image processing, 
generally assume the observed image to be homogeneous, or 
piece-wise homogeneous. In this paper we consider a paramet- 
ric model which is nonhomogeneous, and attempts to perform 
global (or at least, less localized) image analysis. We will 
study a model consisting of a sine (or cosine) of a polynomial 
function of the image coordinates. 

For practical reasons it is more convenient to work with a 
complex valued model in which the sinusoidal function is re- 
placed by a complex exponential. In applications where the 2- 
D signal is real, it can be converted subject to some restrictive 
conditions, into complex form through the Hilbert Transform. 
Throughout this paper we will consider 2-D signals which can 
be represented by a constant amplitude complex exponential 
whose phase is a polynomial function of the coordinates. 

Let {v(n, m)} be the 2-D field which is given by 

v(n,tn)    =    Aexp{j<j>s+i(n,m)} 

<j>s+i(n,m)    =       y     c(k,l)n TO   , (1) 

where I = {0 < k, £ and 0 < k + £ < S + 1}. We shall call 
4>s{n, m) a 2-D polynomial of total-degree 5. In other words, 
one might think of the phase polynomial <f>s(n, m), as if it has 
5 'layers' since increasing 5 by one adds a 'layer' of additional 
5 + 2 parameters to the phase model. 

Definition 1: Let rm and T„ be some positive constants. 
Define 

PDm(«)K«>m)] = 

PDm(,_i) [v(n, TO)] I PDm(,-1) [v(n, m + rm)] 

n = 0,1,..., N - 1 , m = 0,1,..., M - 1 - qrm     (2) 

PDn(">Mn>m)] = 

PD„(J>-I) [»(»."»)] ( PD„(r-i) Mn + Tn, m)] 

n = 0,l,...,N ■ 

where PDm(o) [v(n, TO)] = 

• PT„ , TO 0,1, ,Af ■ (3) 

Let PDs[v(n, TO)] be the 2-D signal obtained by succes- 
sively applying in some arbitrary sequence, P times the oper- 
ator PDn(i) [•], and 5 — P times the operator PDm(i) [•], to the 
signal (1). Then, PDs[v(n, m)] is the 2-D exponential 

(4) PD  [v(n, m)] = exp < j[u>sn + vsm + ys(rn, rm)] 

whose spatial frequencies are given by us = (—l)sc(P+l, S- 
P)(P+1)\{S-P)\ 
1-Py.rZrZ- 
of n. 

Vs=(-l)bc(P,S + l-P)P\{S + 
, and ls{jn,Tm) is neither a function of m nor 

We can thus reduce any 2-D nonhomogeneous, polynomial 
phase signal, v(n, m), whose phase is of total degree 5 + 1, to a 
2-D single tone whose frequency is (u>s, vs). Hence, estimating 
(u>s, vs) using any standard frequency estimation technique, 
results in an estimate of c(P + 1, 5 — P), and c(P, S + 1 — P). 
At present we estimate the frequency of the exponential using 
a search for the maximum of the absolute value of the signal 
2-D Discrete Fourier Transform. We have thus obtained an 
estimate of two of the parameters of the highest order 'layer', 
5+1, of the phase model parameters( i.e., those c(fc,^)'s for 
which 0 < k, £ : k + £ = 5 + 1). However, the highest order 
'layer', 5 + 1, of the phase model parameters has 5 + 2 param- 
eters, which need to be estimated. This can be achieved by 
repeating the procedure which was described above assuming 
some arbitrary P, for all P such that 0 < P < 5. 

Multiplying v(n,m) by exp{-iJ2^ c(k, 5 + 1 - 
fc)m +1_ n } results in a new polynomial phase signal whose 
total degree is 5. By applying to the resulting signal a proce- 
dure similar to the one used to estimate the parameters c(k,£) 
for k+£ = 5+1, we obtain an estimate of the 5+1 parameters 
in the 5 'layer'. Let v^"+1'(n, TO) denote the 2-D signal, where 
s +1 denotes the current total-degree of its phase polynomial. 
By repeating for all s = 5,..., 0, the two basic steps of esti- 
mating the c(k,£) parameters of 'layer' s + 1 through finding 

the maxima of DFT(PDr i(»-p) PD„<p>b(3+1)Km)] 

PDn(o) [v(n, TO)] = v(n, TO). 

for all 0 < P < s, followed by multiplying the already reduced 
order 2-D polynomial phase signal by exp{—.;'^f. c(fc, s + 
1 — k)m"+1~ n } in the next step, we obtain estimates for all 
the phase parameters. 

In many cases the observed 2-D signal is corrupted by 
additive white Gaussian noise. In this paper we derive the 
exact Cramer-Rao Lower Bound (CRLB) on the accuracy of 
estimating the model parameters in the presence of additive 
white Gaussian noise. The performance of the algorithm is il- 
lustrated by numerical examples, and its performance is com- 
pared with the Cramer-Rao bound. 
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Abstract — This paper presents a restoration algo- 
rithm based on a local signal description using dis- 
crete polynomials. The algorithm is made adaptive 
by estimating the local signal-to-noise ratio and by 
computing the corresponding deblurring filter. 

Furthermore, this method is developed for discrete 
signals, the input and output images being almost al- 
ways available as discrete signals. 

I. INTRODUCTION 

Methods to describe, restore and compress signals by 
mean of polynomials have already been developed by 
Martens [1, 2] and Philips [4]. The basic idea behind 
these methods is the computation of filters in order to 
estimate the polynomial coefficients describing the ideal 
signal, starting from the degraded signal. 

Martens [2], applying these methods to image restora- 
tion assumes that each sample of the sampled degraded 
image corresponds to the zero-order term of the ideal im- 
age polynomial expansion. This implies that the blurring 
kernel is identical to the squared local window function 
used to describe the signal. 

In the proposed method, no other assumption is made 
about the blurring kernel than a general low-pass be- 
haviour. This allows the choice of arbitrary-shaped blur- 
ring functions and of arbitrary positions for the localisa- 
tion windows. 

II. DISCRETE POLYNOMIAL TRANSFORMS 

This transform consists in approximating the localised 
signal using polynomials. These polynomials are or- 
thonormal with respect to a window function V(i), i.e. 
they are defined by 

(Gn, Gm) = Y, V2(i) Gn(i) Gm(i) = 8n,m       (1) 
i 

and the coefficients of the polynomial expansion are ob- 
tained in the usual way. 

When the localising function is a binomial, the orthog- 
onal polynomials to be used are the Krawtchouk polyno- 
mials. 

The extension to two dimensions is trivial when a sep- 
arable localising function is considered. 

III. NON ADAPTIVE RESTORATION 

The restoration algorithm consists in computing the co- 
efficients of the polynomial expansion of the ideal signal 
from its degraded version using filters. 

*The authors can be contacted via E-mail at the following 
addresses: Xavier.Neyt@elec.rma.ac.be and Marc.Acheroy@elec- 
rma.ac.be 

Note that because of the noise included in the blurred 
signal, it is not possible to estimate accurately the high 
order polynomial coefficients. 

The filters to use are obtained by minimising the mean 
square error between the unknown coeffcients Ln^ and 
their estimate Ln^- 

These filters strongly depends on the local signal to 
noise ratio in the ideal image, which must be estimated. 

Selecting a constant value for the signal to noise ra- 
tio yields permanent restoration filters, hence resulting 
in non adaptive restoration. 

IV. ADAPTIVE IMAGE RESTORATION 
To make the algorithm adaptive, the local signal variance 
must be estimated in each window and the corresponding 
filters computed. 

Since the SNR of the estimated coefficients of low order 
is high, even if the SNR of the filters doesn't match that 
of the image, the coefficients computed using these filters 
can be used to get an estimate of the local signal variance 
hence yielding the signal to noise ratio. 

Having the SNR of the ideal image in each window, the 
estimation filters can be computed. These filters applied 
to the blurred image will give estimates of the coefficients 
of the ideal image, thus yielding the restored image. 

V. CONCLUSIONS 
A local description is particularly well suited for adap- 
tive restoration methods. Only adaptivity with respect to 
the SNR has been considered here but a spatially variant 
blurring filter B could easily be considered since no as- 
sumption has been made about the blurring filter. More- 
over, due to the property of orientation selectivity of this 
kind of transform (when extended to 2D), a directional 
restoration could also be implemented. 

Note finally that this local description enables the easy 
parallelisation of the algorithms. 
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Abstract - In this paper, we use the extreme elements to 
obtain size and shape information of random structures. 

I.- INTRODUCTION. 
In textural analysis, Mathematical Morphology M.M. [l]use the 
probabilistic models and the Granulometry to obtain size and 
shape information. On the other hand, fractal objets are 
characterized by applying morphological dilations. Here, we 
proppose an approach working with the extreme elements of a 
Granulometry and of the Eroded. 

II.-MORPHOLOGICAL TRANSFORMATIONS 
In M.M.the basic morphological transformations, the Dilation and 
Erosion   by  B   (structuring   element),   are   given   by, 

8B(X) = X®B=u\xb:beB\ 

8S(X) = Xefl=n|Xi:6eß}   ;  B= {-x : x e B) 

and the morphological closing and opening   are defined by, 
CPBW = SV5B(X)    YB = 8V8B(X). 

Definition 1.. A Granulometry is a family 4't, for t>0, such that 
*Ft is antiextensive, increasing for all t and for all s,t>0, 
¥,(¥,(*)) = 'F.CJ'tW) = ^sup(s.t)W 
The opening yxß , with B a compact convex set satisfies these 
axioms and two functions are associated; the probability 
distribution function and its derivate: 

F&X)=W-vteBQO)    g(XX) = AF(KX)      (1) 

where p. is the Lebesgue measure (area in this case). 
For the X. parameter we associate the critical element X=Xn for a 
given set X. X.n=sup{X.: yxsOQ * 0}. In the same way for the 
erosion case,X.n=sup{A,: BXBVO * 0} ■ 

III.- GRANULOMETRY OF CRITICAL ELEMENTS. 

Let be ry(X,X) =ry(X) =X-ymVO the residue operator of X 
after application   of Y?IB    and   X.n the critical element of X. 
Invariably we use y^B = Yxand rY(X.„+i) = X for X.n+l>Xn. In a 

recursive way, we have    ry(X.n) =ry(X.n+i)-Ya.B(ry(X.n+i)) and 
for a given k,    Ty(Xk,ry(Xk+i))=ry(Xk+\)-yxk(iy(Xi.+\)), 
where Xk is the critical element of ry(X\,+\). hi other words, 
Xi = sup{X:yj,B(ry(Xi+]))^0} 
We associate two functions; the probability distribution function 
of critical elements and its derivate: 

nW-2i=kKYxi(ryai+i))) 
Fc(Xk,X)- 

vVO 
(2) 

We   define   Fc(X,X) = Fc(Xk,X),VX e [A-kAk+O   and 
gc(X,X) = d(Fc(X,X))/dX . Using a linear structuring element, 
we have g(X,X)=gc(X,X) and F(X,X)=Fc(X,X). 

To test this approach, we realize a random geometrical 
characterization by using a deterministic approach. In [2] it is 
showed, that the deterministic Sierpinski Gasket objet S.G. has a 
similar behavior, in the percolation studies, than the random S.G. 
We use this physical assumption. In fact, the Fc and gc functions 
calculated on the complement of deterministic S.G. are similar 
than the random case, hi this case we have 
Fcri(Xk) = 1 -(EHk n(yw(ry(Xi+,))yji(W)) = ((4--P)/4)k (3) 
where M is the mask or the frame and P is the probability filling 
to create a random S.G. From (3) we obtain a family of straight 
lines      with      slope      log((4-P)/4), 
log (Fcr/aO) = * log ((4-P)/4) 
By calculating the slope we estimate the filling factor and the 
fractal dimension. We realized experiments to estimate the fractal 
dimension of the union of two S.G. objet with the same fractal 
dimension. We obtain the same fractal dimension.This approach is 
now used on other fractal objets. 

IV.- DEAD LEAVES MODEL 
An appropriate model for grains overlaps when the contour of the 
grains is apparent, is the Dead Leaves Model [3]. A Dead Leaves 
simulation   X,   is   constructed   by   implanting   independent 
realizations of primary grains X at random poins of a Poisson 
point process (density 9) using a masking law.The probability for 
a connected set B to be included in a grain   is given by, 
P(B, t) = P(B cz X(t)) = YW © B)/Y(X' ®B)[l- Q(B, t)] 
where Q(B, t) = exp (-6/pCAf © B)) 
Let XV a random disk (radius R, ) with fj unknow frecuency 
(dicrete case) for "n classes" and B(r) a ball of radius r. Then, 

HW = 7tLRi>rfi(/?i-r)2 

where 
A_£OG(Q(g(r)))P(fi(r),f) 

9[1-Q(S(r))] 
H(r) can be estimated from the images. Initially, we estimate the 
value fn by calculating the size "r" (R„., -r=0)of the extreme 
element of the class n-1 (primary grain). Next, a similar procedure 
is used to estimate f",., by calculating the extreme element of the 
classe n-2. We realize the same operation until all the f; are 
estimated. The number of classes (limits of application) is four or 
five. 
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System 

Dac-Seong Kang 

Satellite Broadcasting System Section 
Electronics and Telecommunications Research Institute 

P.O. Box 106, Yusong, Taejon, Korea 

Abstract — In this communication, we discuss a 
noise tolerant traffic sign recognition algorithm which 
can be utilized in future vehicles to warn drivers that 
they are approaching traffic signs at an intersection. 
It is assumed that the vehicle is equipped with a 
video camera providing chromatic images of the nav- 
igational environment. The primary objective of this 
paper is to develop a noise tolerant color segmenta- 
tion algorithm and a recognition algorithm which is 
tolerant to the rotation, position, and scale variations. 
The treatment of traffic signs by computer vision tech- 
niques has been fairly limited in the literature. 

I. INTRODUCTION 

In outdoor noisy environments, it is not easy to obtain invari- 
ant feature vectors from images which have ratation, position, 
or scale variations. The design of a pattern recognition sys- 
tem for distorted images has long been a challenging goal. In 
classical pattern recognition methods, the input patterns are 
required to be standard patterns, since they are very sensitive 
to rotations, positions, scale variations, or noise. Classical 
pattern recognitin systems, for example, matched filter, do 
not operate well under these distortions. Distortions such as 
rotations, positions, and scale changes of the pattern can be 
tolerated by using proper geometrical transformations. In a 
real outdoor environment, the brightness [1] in images con- 
stantly varies due to sun angle, weather, clouds, or other con- 
ditions. This means the value of brightness is very sensitive 
to the light source. In such a case, we need a pattern recog- 
nition algorithm which is relatively insensitive to brightness 
variation. 

II. SYSTEM PROCEDURE 

The object recognition algorithm consists of two phases: noise 
tolerant segmentation and object classification invariant to ro- 
tation, position, and scale variations. The results of color seg- 
mentation depend not only on its segmentation algorithm, but 
also on choosing the color coordinate system. In this study, 
the proposed (u,v,hue) coordinate system is relatively insen- 
sitive to brightness variation, which is useful to measure of 
color difference between any two arbitrary colors. The pro- 
posed segmentation algorithm uses a split and merge concept 
and an iteration method. Fig. 1 shows the procedure of the 
noise tolerant segmentation algorithm. 

To obtain the above invariances, PLFT(Polar-Log-Fourier 
transform) is used, which is a powerful method to implement 
rotation and scale invaiant mapping for 2-dimensional object 
recognition. Before applying PLFT, we have to do position 
normalization by moving the object to the center of the image. 
The network for object classification is a back-propagation 
network with forty-nine input nodes, one hundred hidden layer 
nodes, and four output nodes. 

III. EXPERIMENTAL RESULTS 

Several images were selected to demonstrate the robustness 
of this approach. Namely: do-not-enter, stop, yield, and 
other signs were processed under different scales, rotation, 
and shape variations. The input vector to the classification 
network was the 7x7 array and the output vector had four 
components corresponding to the traffic signs. 

IV. CONCLUSIONS 

A pattern recognition algorithm which is invariant to noise, 
brightness variation, rotation, position, and scale change us- 
ing color classification technique, geometrical transformation, 
and an artificial neural network has been developed as part 
of a warning system for approaching traffic signs. The algo- 
rithm was tested on a large number of signs with different 
positions, rotations, scales, and backgrounds. The results of 
color segmentation phase were tolerant to noise and brightness 
variations. 

I Stan Color Image Segmentation 

Read (R,G,B) components and 

set up initial parameter values 

Transform from (R.G.B) to (u,v,h) 

Redistribute the samples 

Delete the small size classes 

Update the all class centers 

Calculate the standard deviation 

and correlation coefficient 

Merge the two smallest classes 

Store the classified samples into files 

c Exit Color Image Segmentation 

Figure 1:  Procedure of the noise tolerant segmentation 
algorithm. 
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Summary 

Motion estimation(ME) is a key technique in interframe 
coding. It is the basis of most compression algorithms for 
video compression, such as the CCITT standard H. 261, 
MPEG 2 and so on[l]. The performance of ME is decided 
by two factors: (1) the estimation exactitude; (2) the 
computational load. 

Full search algorithm is the optimal one in the first 
meaning, but it requires extensive computations. To reduce 
the computational complexity, many efficient search 
algorithms have been proposed[3-6]. As described in [6], 
one step at a time search(OSATS) is the second most 
efficient algorithm, but it becomes inefficient when the 
search window is greater than 4 pels/frame. The aim of this 
paper is to overcome this disadvantage. 

The OSATS algorithm[4] looks for a minimum mean 
absolute error position(MMAEP) in the i-direction first, and 
from there proceed in the j-direction to find the final 
MMAEP in the searching window. 

On basis of the OSATS algorithm, VSS makes use of 
variable steps during search, not like in OSATS where one 
step at a time search. Then the search efficient is greatly 
advanced. The algorithm is described as follows(Fig. 1). 

Step 1: Compare the current block with the block(i, j) in the 
previous frame,  if the value D(i, j) of the distortion 
function(in simulations, mean absolute error(MAE) is used) 
is less than a predefined threshold, then the current block is 
thought to be  a  nonmoving block and  search  stops. 
Otherwise, go to next step. 
Step 2: Compute D(i, j), D(i, j-1) and D(i, j+1), a minimum 
is got. If minimum = D(i, j-1), the block moves left; If 
minimum = D(i, j+1), the block moves right; Otherwise it 
goes vertically. Set the search step size "p" equal to half of 
the search window "w", i.e. p = w 12 . 
Step 3: Move the coordinate (i, j) to MMAEP(m, n), i.e. i = 
m and j = n. Find MMAEP(m, n) of the coordinates (i, j), 
(i, j+sp), where "s" is a sign function which is equal to "1" if 
the block moves right or "-1" if the block moves left. 
Step 4: If p = 1, go to Step 5, otherwise halve the step size 
"p" and go to Step 3. 
Step 5: Keep j-direction fixed after finding MMAEP in j- 
direction, proceed in i-direction as that of j-direction. 

Therefore, for the maximum motion displacement of w 
pels/frame,    the    total    number    of   computations    is 
5 + 2log2>f • A simple example is given in Fig. 1, where 

w = 4. 

 1>& 

V 

r\ <\ 

rrH >i £-03 K J V 

From the description of the algorithm in the above 
section, it can be seen that the two algorithms use the same 
idea that is first to find MMAEP in i-direction and then 
keep j-direction fixed, find the position in j-direction with 
minimum MAE, which is also the final MMAEP in the 
searching window. Thus, the result of motion estimation in 
VSS is the same as that of the OSATS. However, the 
maximum number of search points(MNSP) in VSS is much 
less than that in OSATS, where MNSP is     3 + 2w. 

j-4 j-3 j-2 j-1  j j+1 j+2 j+3 j+4 
i-4 

i-3 

i-2 

i-1 

i+1 

i+2 

i+3 

i+4 

# : MMAEP in searching window. 

Fig. 1   Variable Step Search 
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Abstract — In the most general form the defocus- 
ing operator is a linear, circularly symmetric, lowpass, 

and space variant filter. In this paper without any re- 
striction on the general model, the filter's band-width 
will be used as a measure of depth. The paper intro- 
duces a simple and efficient way to obtain this measure 

which has a well founded mathematical tractability. 
Experimental results indicates its high capability to 
resolve depth. 

I. INTRODUCTION 

Depth From Defocus methods are based on the relationship 
between depth and the amount of defocus at each image point 
[1-3]. For a more effective. use of this idea, the most general 

form of the defocusing operator should be used. The main 
idea in the proposed method is using the filter's bandwidth 
at each point as a value related to depth. For well-behaved 

low pass filters second derivative of the frequency response at 

origin, is a good measure of their effective band-width. This 
measure is used here as a sense for depth. In the next section 

theoretical foundations of the method is explained. An exper- 
imental result is given in section III. Section IV concludes this 
paper. 

II. THEORETICAL FOUNDATIONS 
To extract the second derivative of the frequency response 

of the defocusing filter at each image point, the defocusing 
process is analysed in small regions of the image on which, the 
filter can be assumed space invariant. Consider the following 
functions in any small region (radius rm) and in the polar 
cordinates   (r, 8): 

io(r, 6) :     focused image 

ii(r,9) :     blurred or defocused image 
h(r, 6) = h(r)     :     defocusing operator, 

Computing io(r) and i,(r) by averaging the first two functions 
with respect to 9 (from 0 to 2TT) it can be shown [4] that the 
parameter di, which is defined as 

di = Jo 
(r)r 

/   u 
Jo 

(1) 
(r)rdr 

can be used instead of the second derivative of the Fourier 
Transform of i;(r) at the origion. Constructing similar pa- 

rameters d0 and dh for i0 and ih respectively, it can also be 
shown [4] that the parameters di, d0, and dh are related by 

di = d0 + dh (2) 

and they can also be interpreted as powers of signals having 
normalized ri,(r), ri0(r), and rh(r) as their density functions 
in [0,rm]. This inteperetation and the additive form of (2) 
represents the mathematical tractability of di. In other words 

di can be used as a sense of depth in all regions of the image 

100 200 300 400 

Fig.l. Normalized d, for rm — 10 pixels. 

with the same d0. For instance d, can be used as a measure 

of dh or depth in all regions of the image having the same 
texture. 

III. EXPERIMENTAL RESULTS 

As an example for evaluating the performance of the pro- 
posed sense, the edge texture is selected and used for comput- 
ing cf;.The image of a black stripe of approximately 400 pixels 
long and 50 pixels wide on a white flat background, tilted 
against the camera, is used in a noisy environment. The sim- 
ple experimental set up is described in [4]. In figure 1 the 
normalized di along one of the located edges in the image is 
plotted as a function of the length of the stripe. Due to the 
configuration of the set up, ideal curve should have a mono- 
tonically increasing form. Thus the ability of the proposed 
sense of depth, or d,, can be seen from this figure. 

IV. CONCLUSIONS 
In this paper, based on the most general form, the param- 

eter d, is introduced for sensing depth. In the regions of the 
image with the same texture, this parameter is a good mea- 
sure of the second derivative of the defocusing filter or depth. 
Using (1), there is no need for going to Fourier domain and 
differentiating which is sensetive to measurment noise. Ex- 

perimental results on the edge texture indicates its ability to 
resolve depth. 
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Abstract — The problem of fixed-rate block quantiz- 
ation of an unbounded real memoryless source is stud- 
ied. It is proved that if the source has a finite sixth 
moment, then there exists a sequence of quantizers 
Q„ of increasing dimension n and fixed rate R such 
that the mean squared distortion A(Qn) is bounded 
as A(Q„) = D(R) + 0(y/\ogn/n), where D(R) is the 
distortion-rate function of the source. Applications of 
this result include the evaluation of the distortion re- 
dundancy of fixed-rate universal quantizers, and the 
generalization to the non-Gaussian case of a result of 
Wyner on the transmission of a quantized Gaussian 
source over a memoryless channel. 

Shannon's source coding theorem with a fidelity criterion [1] 
showed that by increasing the blocklength n of a lossy source 
code, it is possible to have the mean squared error approach the 
distortion-rate lower bound arbitrarily closely. Pile [3] showed 
that for finite alphabet sources the convergence of the mean 
squared error to the distortion-rate function occurs at a rate 
0(logn/n). It has recently been shown [2] that for bounded 
real memoryless sources and squared distortion this conver- 
gence occurs at a rate 0(\/logn/n) This result was used in 
[2] to analyze the performance of a certain universal quantiz- 
ation scheme. On the other hand, the assumption of bounded 
support is sometimes a severe restriction in signal quantiza- 
tion, especially since some of the most popular source models 
have unbounded support, such as the Laplacian. The conver- 
gence rate results mentioned above also assume that binary 
information is transmitted across a lossless channel. In the 
present paper we eliminate the bounded support requirement 
and also consider transmission across a noisy channel. In ad- 
dition we are able to obtain a rate of convergence result for 
universal lossy source coding. 

Theorem 1 Let Xi,X2,... be a real i.i.d. source with 
E|Xi|2 = Mi andE\Xi\6 < oo. LetO < fii < R2 and assume 
that D(R2) > 0. Then for any R £ [fli,/^] there exists an 
n-dimensional quantizer Qn with rate r(Qn) < R such that 

log» A(Qn)<D{R) + B 

for all n > 1, where the constant B depends only on Ri,R2, 
and the source distribution. Furthermore, the quantizers sat- 

isfy 

max i||Q„(a;)||2 < 2M2. 

In [4] Wyner proved that Dn{R) - D{R) = 0(logn/n) 
for memoryless Gaussian sources, and in [5] showed that 

Dn{R) — D(R) = 0(\/logn/n) for any correlated Gaussian 
source with a sufficiently well-behaved spectral density. Re- 
cently Zamir and Feder [6] showed that a 0(log n/n) con- 
vergence rate is achievable for correlated Gaussian sources 
by means of a variable rate coding scheme using subtractive 
dither. 

Corollary 1 Suppose we are given a real memoryless source 
Xi,Xi,... with distortion-rate function D(R), satisfying 
E|X|6 < oo, and a discrete memoryless channel of capacity 
C, accepting one input per source output. Then there exists a 
source-channel coding scheme with delay n, such that denoting 
by Xi, X.2,. ■., Xn the channel decoder output, we have 

i« Dx-Ai"   sixc+o[ft? 
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Corollary 2 For any R > 0, k > 8, and t > 2/(k - 4) there 
exists a sequence of universal quantizers {Qn} such that 

^-i.-oßüp)«»-), 
and for any memoryless real source with E\Xi\   < oo 
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Abstract — Let {X,} ~ Pe, 9 € A C Et*. Rissanen 
has shown that there exist universal noiseless codes 
for {Xi} with per-letter rate redundancy as low as 
£!2E-2.   where n is the blocklength and k is the num- 
2      n B 

ber of source parameters. We derive an analogous 
result for universal quantization: for any given La- 
grange multiplier A > 0, there exist universal fixed- 
rate and variable-rate quantizers with per-letter La- 
grangian redundancy (i.e., distortion redundancy plus 
A times the rate redundancy) as low as Af-2^2-. 

Let {X,} be a stationary ergodic random process over al- 
phabet X with process measure Pe, 9 € A C 1R , and let Cn = 
ßn o an be a length-n quantizer with encoder an : Xn —► S 
and decoder ßn : S — yn, where S = {su ..., sM} Q {0,1}* 
is some binary prefix code and y is the reproduction alphabet. 
Let d(xn, yn) - J2i d(Xi< »•) be a single-letter fidelity criterion 
and let \s\ denote the length of the binary string 5. The nth 
order operational distortion-fate function for {Xi} is defined 

Dn
e{R) = inf (-Eed(Xn, Cn(Xn)) : -Ee\an(Xn)\ < It} , 

where the infimum is over either fixed-rate or variable-rate 
quantizers with blocklength n, as appropriate. The support 
functional of Dg{R) is defined 

Z£(A)=inf -Eed(Xn,Cn{Xn)) + \-Ee\an{X" 
n n 

where A > 0 is a Lagrange multiplier. 
We show that there exists a universal sequence of fixed- 

rate or variable-rate quantizers {Cn} such that the per-letter 
Lagrangian 

every 

0 € Se,\ and for all n. Then for each A there exists a weakly 
minimax universal sequence of codes {Cn} such thai for all 9 

MA,C")-^(A)<A^l06ra + CM 

If A is bounded, and Se,x and me,\ do not depend on 9, then 
neither does ce,x, and the sequence {Cm} is strongly minimax 
universal. 

Proof. Fix A. Construct Cn = ßn o an as follows. For 
each n > 1, partition IR* into a grid of hypercubes {A? : i = 
1,2,...} each with side l/\n1/2], such that {A? :* = 1,2,...} 
refines {A) : j = 1,2,...}. For each hypercube A" that inter- 

sects A, choose a representative 0" € A? Cl A and its match- 
ing quantizer C" = C^„ y   Then define the encoder an to 

map xn to the string s = s|s"s"' where s't represents the unit 
hypercube A) containing A?, (which can be a fixed-length 
string if A is bounded), s" represents the hypercube A" in- 
dexed within A) (which is a fixed-length string with length 
log|"n1/2l*), and s|" is the string a"(xn) representing xn us- 
ing the quantizer Cf. The decoder maps s to the reproduction 
yn = ß"(s'i'). The index i is chosen to minimize the instan- 
taneous Lagrangian d{xn, C?(xn)) + A|S^'^"I- Thus 

d(xn,Cn(xn)) + \\an(xn)\     =    imnd(xn,C?(xn)) + \\s'ts';a?(xn)\ 

<    d(xn,C?(xn)) + \\s'jS'Ja?(xn)\ 

for any particular j. Let j be the index of the cell A" con- 
taining 9. Then dividing by n, taking expectations, and sub- 
tracting Lg(\), we have 

le{\,Cn)-Ln
e{\)    <    ee(\,C^)-L'S(X) + ^\s'Js

lJ\ 

£e(\, C
n) = -Eed(Xn, Cn(Xn)) + X-Ee\an(Xn) 

Tl it- 

converges to the support functional ig (A) as A^-2^1 for ., 
9 € A C IR*. To be precise, assume that for every 0, A, and 
n, Le{\) is achieved by some Cn, say C£v Then define 

AS(tf||fl) = /e(A,C?J-i?(A) 

to be the divergence between the Lagrangian performance of 
the quantizer matched to 9 and the quantizer matched to 0, 
with respect to 9. We have the following: 

Theorem 1 Let A be a subset ofHRk (bounded if we are con- 
sidering fixed-rate coding but possibly unbounded otherwise). 
Suppose that for each 9, A, and n there exists a code C^ 

achieving the support functional Lg(\). Suppose also that 
the corresponding divergence A"(0||0) is locally quadratic such 
that for each 9 and X there exists a neighborhood Se,\ of 9 and 
a constant me,\ such that A£(0||0) < me,\\\9 - 9\\2 for all 

<    A^(0||0?) + ^(fce + Jlogrl) 

for some constant be. By assumption, A"(0||0) <_me,A||0—0|| 
for all 9 in a neighborhood Se,\ of 0.   Since 0" -+ 0 with 

||0 - ö"||2   <   k/n,  there exists a constant ae,x such that 

A"(0||0") < ae,\k/n for all n.   Thus the theorem is proved 
with ce,x = 2ae,\/X + 2be/k. D 

A simple example of a source satisfying the conditions 
of the theorem is the following. Let Z\, Z2, ■ ■ ■ be an ar- 
bitrary real-valued stationary ergodic process with mean 0 
and variance 1, and let Xi = aZi + fi. Then with 9 = 
(p, o-) e A C IR2, under the squared-error distortion mea- 
sure and fixed-rate quantization of {Xi}, for all A, n, 9, and 
9, A"(0||0) < ||0 - 0||2. Hence for any stationary source with 
unknown mean and variance in a bounded set, there exists a 
strongly minimax universal sequence of fixed-rate quantizers 
for which the nth order Lagrangian redundancy is at most 
A(Jfc/2)(log n + c)/n, where k = 2. 
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Abstract — It is shown that as rate increases the 
problem of asymptotically optimal scalar quantization has 
polynomial-time (or space) encoding complexity if the 
distribution function corresponding to the one-third power 
of the source density is polynomial-time (or space) 
computable in the Turing sense. 

I. INTRODUCTION 

Shannon's distortion-rate theory describes the optimal 
tradeoff between rate and distortion of vector quantizers. 
While it does not address the question of complexity, gener- 
ally speaking, it is evident that quantizers need to become 
very complex in order to approach the optimal performance 
tradeoff, namely, the distortion-rate function. It is well 
known that the full-search unstructured quantizers with dimen- 
sion k and rate R has storage and arithmetic complexity in- 
creasing exponentially with the dimension rate product kR. 
However, there are many reduced complexity full-search meth- 
ods, and the question of how fast complexity must increase as 
performance approaches the rate-distortion function is open. 
Moreover, there are many structured vector quantization tech- 
niques whose complexities are substantially less than that of 
full search, but whose performance does not approach the dis- 
tortion-rate function. It is unclear whether there exist struc- 
tured quantizers with significantly reduced complexity and 
distortion close to the optimal. 

The approach taken in this paper is to consider how the 
complexity of (asymptotically) optimal quantization with a 
given dimension k increases with rate R. Specifically, as an 
initial effort, we focus on the encoding complexity of scalar 
quantization. 

II. PROBLEM FORMULATION 

In stating and deriving the main result we adopt a Turing- 
like framework for evaluating complexity. Instead of 
assuming a different encoding machine for each R, whose 
relative complexities would be difficult, if not impossible to 
assess, we envision one machine, namely an oracle Turing 
machine M, c.f. [1,2], that is capable of encoding at any 
integer rate. That is, when rate R is specified, its output in 
response to a source sample x is an index /, l</<2 . We 
let d(M,p,R) denote the mean-squared error (MSE) that results 
when this Turing encoder is used with an optimum decoder. 

In the context of encoding, an oracle Turing machine 
consists of a finite-state machine, an unlimited tape memory 
and an oracle that provides a dyadic approximation to the 
source sample x to the required precision. The time (space) 
complexity of encoding at rate R with this machine, denoted 
c(M,R), is the maximum number of steps, (alternatively, the 
maximum amount of tape memory) required to encode an 
arbitrary input sample. 

We say a source density p is asymptotically optimally 
quantizable in polynomial time (or space), abbreviated 
PTIME-AOQ (or PSPACE-AOQ), if there exists a Turing 
encoder M and a polynomial g such that 

c(M,R)<g(R)  VtfeZ+,  and  dW,p,R) ^x asÄ_^ 
D (p,R) 

where D (p,R) is the mean-squared error of the optimum 
quantizer of rate R. 

Intuitively, it is easy to see that some source densities are 
intrinsically easier to quantize than others. For instance, 
sources with uniform density can be optimally quantized by 
simple uniform quantizers. On the other hand, it is also 
known that the optimal quantization point density for a given 
source is directly related to the one-third power of the source 
density. Therefore, it seems reasonable that the possibility of 
optimal quantization with polynomial complexity should 
depend on the "complexity" of the desired point density. In 
order to rigorously analyze this relationship, we adopt the 
framework of Turing complexity for real-valued functions, c.f. 
[2]. In this theory, a real-valued function /:SR->9? is said to 
be polynmial-time (space) computable if there is an oracle 
Turing machine M that is capabable of providing, for any x, 
a dyadic approximation to f(x) to within an error of 2~" for 
any pre-specified integer n, and its time (space) complexity is 
bounded from above by a polynomial function of n. 

We are now ready to present the main results of this paper. 

III. RESULTS 

Proposition 1: Suppose   A(x)  is a desired quantization 
point density such that [p(x)IX(xf dx < °° and the function 
F(x)=\ h(y)dy is polynomial-time (alternatively, space) 

computable. Then there exists a Turing encoder that runs in 
polynomial-time (space) and with the resulting MSE satis- 
fying 

hmsup^M^<l 
ä->-  D(X,p,R) 

where D(X,p,R) = {2~2R/I2)jp(y)/ Myfdy   is the Bennett 

integral prediction for the MSE of a quantizer with a given 
point density. 

Corollary 2: If the source density   p is such that the 

function   F(x) = j_jp(y)xndy, where   c = (||p|1/3)      ,   is 

polynomial-time (space) computable, then p is PTIME-AOQ 
(PSPACE-AOQ). 

By applying Corollary 2, one can easily show that 
Gaussian, Laplacian and uniform source densities with zero 
means and unit variances are PTIME-AOQ and PSPACE-AOQ. 
On the other hand, it is also possible to construct a source 
density p for which the function F in Corollary 2 is not 
computable in polynomial time. 
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I. INTRODUCTION 

In this paper we study the waveform coding problem where 
the data source symbols have a distribution that is simultane- 
ously highly peaked and very long tailed—a situation when the 

source entropy is small, but the coding process must deal with 

a very large number of symbols. This type of problem can be 
found, for example, in the lossless compression of medical im- 

ages. Those images are digitized with 10-12 bpp, and they are 
commonly quite smooth. With the adequate reversible trans- 
formation (e.g., linear prediction) we have a large fraction of 
pixel values near zero, but a significant number of pixels have 

very large magnitudes. 

There are many practical difficulties when the data alpha- 
bet is large, which get much worse if we try to exploit the 
statistical dependence left between the source samples by, for 
example, coding several symbols together or designing condi- 
tional codes. Several ad hoc methods have been devised to deal 
with the problems caused by large alphabets. For instance, a 
popular method uses the "overflow" symbol to indicate which 
symbols are too large and should be coded separately. 

II. THE ALPHABET PARTITIONING METHOD 

We study a method to reduce the coding complexity when 
the source alphabet is large, based on the following coding 

strategy: 

• the source alphabet is partitioned in a relatively small 
number of sets, with the number of elements in a set 
equal to a power of two. 

• each symbol is coded in two steps: first the number of 
the set in which the symbol belongs (called set num- 
ber) is coded; afterwards the number of that particular 

source symbol inside that set (the set index) is coded; 

• when coding the pair (set number, set index) the set 
number is entropy-coded with a powerful and complex 
method, while the set index is left uncoded, i.e., its 

binary representation is stored or transmitted. 

The advantage of this scheme is that it is normally possible 
to find partitions that simultaneously allow large reductions 
in the coding complexity and with a very small loss in the 
compression ratios. This partitioning technique is quite sim- 
ilar to the definition of "buckets" used in [1] for complexity 
reduction. The set numbers correspond to the bucket num- 
ber, and can also be used to simplify context-based coding. 

'This work was supported by CNPq, Conselho Nacional de De- 
senvolvimento Cientifico e Tecnolögico, Brazil. 

However, here they have an additional purposes: they allow 

part of the information to left uncoded, with obvious advan- 
tages in speed and complexity. Furthermore, we show the 
advantages with methods that entropy-code several symbols 

together (e.g., Huffman, Lempel-Ziv). 

To evaluate the loss incurred by leaving the set index un- 

coded, we assume a source with M symbols, each with prob- 
ability pi, i = 1,..., M. The source entropy is denoted by 
Ji. Partitioning the source symbols in nonempty sets Sn, 
n = 1,2,... ,N, we denote the number of elements in S„ by 
Mn = 2Kn. We show that the expression for the maximum 
loss due to leaving the set index uncoded is 

AK-EIWTF). 
n=l ieS„ 

where 

Pn=X> 

(1) 

(2) 
iesn 

is the probability that the symbol belongs to the set with 

number n. 

Equation (1) shows that, for each set, the loss should be 

small under two circumstances: 

1. Mnpi ~ Pn, that is, the distribution inside the set is 
approximately uniform; 

2. the contribution of the set n to the entropy is very small. 

Using the approach summarized above we consider the al- 
ternatives to find the best partitions for a given source, and 
analyze the trade-off between the coding/decoding complexity 
and the compression efficiency. Numerical results make clear 

the advantages of the alphabet partitioning method when used 

for the lossless compression of medical images. They show that 
there are simple and efficient methods to define the partitions, 
and those are quite versatile, i.e., they can be efficiently used 

for several images of the same type. 

REFERENCES 

[1] S. Todd, G.G. Langdon, Jr., and J. Rissanen, "Parameterreduc- 
tion and context selection for compression of gray-scale images," 
IBM J. Res. Develop., vol. 29, pp. 188-193, March 1985. 

373 

j 



Some Results on Quantization of a Narrowband Process 
Anurag Bist 

Rockwell International, 4311 Jamboree Rd., Newport Beach CA 92658 
e-mail: anurag.bist@nb.rockwell.com 

Abstract — We present some results on quantiza- 
tion of a narrowband Gauss-Markov process. The 
narrowband process is modeled as a lowpass complex 
envelope with a state space description. We com- 
pare the performance of narrowband process quanti- 
zation schemes with several other previously analyzed 
schemes. 

I. INTRODUCTION 

We present some results on quantization of a narrowband 
Gauss-Markov process. The narrowband process is modeled 
in a state space framework and several schemes for tracking 
the inphase and the quadrature components of the narrow- 
band process are considered. These inphase and quadrature 
components are baseband processes, and thus are much more 
slowly varying than the original narrowband process. We com- 
pare the performance of these schemes with several previously 
analyzed schemes [1, 2] both with respect to a time aver- 
aged smoothed error, and their robustness with respect to the 
changes in the input spectrum. Finally, we present an analysis 
of the case when this narrowband process is input to a sigma- 
delta modulator. By performing an approximate analysis, we 
arrive at results which are applicable for a large class of inputs 
and are consistent with other more rigorous analyses [3, 4]. 

II. MODELING OF NARROWBAND PROCESS 

If x(t) is the original narrowband process, the complex enve- 
lope is given by : x(t) = xc(t) + jxs(t), where xc(t) and xs(t) 
are respectively the inphase and the quadrature components 
of the narrowband process. Once we obtain the inphase and 
the quadrature components, we quantize them independently, 
or together by considering them as a complex state. These 
quantized values are then used to find an estimate of the orig- 
inal narrowband process. We consider three envelope quanti- 
zation schemes: i) scalar quantization of the inphase and the 
quadrature components (complex components), ii) differential 
quantization of the complex components, and iii) quantiza- 
tion of the complex state S(t) = [xc(t) i..(')] • In [1> 2] we 
analyzed several source coding schemes for a continuous time 
Gauss-Markov process. By fixing the overall transmission rate 
we compared the smoothed error performance of these source 
coding systems. By performing an identical analysis for the 
envelope quantization schemes, we can evaluate the optimal 
tradeoff between sampling interval and the quantization levels 
for the envelope quantization schemes. 

III. SMOOTHED ERROR PERFORMANCE 

We compare the performance of the envelope quantization 
schemes with differential state quantization for a second order 
narrowband process. The hierarchy of performance within the 
different schemes is (from best to worst) : i) differential state 
quantization, ii) differential quantization of the complex state, 
iii) differential quantization of the inphase and the quadrature 
components of the complex envelope, iv) scalar quantization 

of the inphase and the quadrature components, and v) state 
vector quantization. Thus the envelope quantization schemes 
perform better than state vector quantization but worse than 
differential state quantization. Differential state quantization 
considers the quantization of a state consisting of the proces 
and its derivatives and was shown to be a superior quantiza- 
tion scheme for Gauss-Markov processes [2]. 

IV. COMPARISON OF ROBUSTNESS 
We define a measure of robustness for different source coding 
systems, when the input spectrum changes. We encounter 
many situations where the input process is changing at regular 
intervals. In such situations the performance of the system 
which is designed for one particular input process deteriorates 
as the input spectrum changes from its original value. We 
model this change in terms of the state space matrices A and 
B and quantify the deterioration which accrues due to the 
changes in the spectrum. We show that for a second order 
narrowband process, for an N level two dimensional vector 
quantizer, the normalized change in the smoothed error due 
to the changes in the input spectrum for both the schemes 
(differential state quantization [2] and differential quantization 
of the complex state) is approximately proportional to -j^rj. 
The changes in the smoothed error are marginally less in the 
differential quantization of the complex state. 

V. RESULTS ON SIGMA-DELTA MODULATION 
Finally, we present a simple analysis of the case when the 
narrowband process is input to a sigma-delta modulator. We 
develop an approximate theory to analyze the quantization 
noise spectra of a sigma-delta modulator when the input is 
this narrowband Gauss-Markov process of any arbitrary order. 
The quantization noise spectra can always be approximated 
by a simple closed form expression in terms of state space 
matrices. 
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Abstract — In this paper, a statistical estima- 
tion framework is proposed for adaptive quantization 
based on causal past. Different estimation methods 
are given for the marginal density based on the quan- 
tized sample. For a stationary and ergodic source pro- 
cess, if its marginal density is in a parametric family 
with a dimension less than the quantization level, then 
"adaptation" can be achieved when the sample size is 
large, i.e., the marginal density can be estimated con- 
sistently. 

SUMMARY 

Adaptive lossless encoding/decoding based on the causal past 
is equivalent to the predictive version Rissanen's MDL (1989) 
or the prequential approach to statistical inference of Dawid 
(1984). In other words, at time N + 1, a lossless code can be 
designed based on the causal past data x = (ii, 12, ...,xjv) 
to encode the next data point z AT 4.1. Since the causal past 
data is available to both the encoding and decoding ends and 
as long as both ends agree to the same lossless coding rule 
depending on the causal past data, the encoding and decod- 
ing can be done "on the fly". In statistical terms, a lossless 
code based on the causal past amounts to a predictive density 
for xjv+i based on xN. Such a predictive density can be ob- 
tained either parametrically or non-parametrically. The para- 
metric predictive density can simply be the plug-in density 
estimator /(-|öjv) where f(-\9) is a pre-determined paramet- 
ric family such as the Gaussian family with unknown mean 
and variance, and 9N is a good estimator (e.g. the maximum 
likelihood estimator) of 9 based on xN. On the other hand, 
the nonparametric predictive density can be any good non- 
parametric density estimator based on 1 , for example the 
kernel or log-spline density estimators. In this paper, we show 
that a parallel estimation theory can be established based on 
quantized or lossy data. 

Recently, Ortega and Vetterli (1994) proposed an adaptive 
quantization algorithm based on the causal past and they also 
presented convincing experimental results. Their approach 
differs from other adaptive quantization in that there is no sep- 
arate training data set needed for the quantization - the quan- 
tizer is re-designed sequentially based on causal past quantized 
sample. Following Ortega and Vetterli (1994), we divide the 
problem into an estimation part and a quantization part. For 
the former, the underlying density is estimated based on the 
causal quantized data, and for the latter a new (optimal) quan- 
tization algorithm (e.g. Lloyd-Max) is designed based on the 
estimated density. Here we concentrate mainly on the estima- 
tion part. 

We now describe a statistical estimation model which lends 
itself to a theoretical analysis. This model is a good approx- 
imation to situations where the quantization levels are sta- 
blized, and these levels don't have to be the optimal levels 

'This work was partially supported by ARO Grant DAAH04- 
94-G-0232 and NSF Grant DMS-9322817. 

based on the unknown density. 
Let an i-level quantization of [a,b] (which can be an in- 

finite interval) correspond to an (interval) partition {.A;};=i, 
and assume we only observe the quantized causal past data 
xN, i.e., we observe only the indicators I{x.eAiy. Denote by 
ni(N) (i=l,..., L) the counts of x's falling into intervals Ai. 
Assume the source process is stationary and ergodic with a 
k-dimensional parametric marginal density f(x\9) (9 £ R ). 
Let Pi = Pi(9) := J f(x\9)dx. Under regularity conditions 
on the parametric family, when k = L, the above equations 
uniquely determine 9 in terms of Pi's: 9 = g(Pi, ...,PL). 

By the Ergodic Theorem, for N large, nt/N « Pi; hence 
9 := g(ni/Nt...,tiL/N) tends to the true 9 as N gets large. 
That is, quantized sample leads to consistent estimation of 
the unknown density when the source is stationary and er- 
godic, and as long as the marginal density is parametric with 
dimension less than the level of quantization - "one needs at 
least the number of equations as the number of unknowns." 
(In the case that k < L, we solve for 9 using the A; equa- 
tions corresponding to the k largest rii/N; or we minimize 
£\(P,(<9) - m/Nf.) When the CLT holds for the stationary 

process, the asymptotic normality of 9 is expected. 
If we further assume that the source process is memoryless, 

then maximum likelihood method can be used to estimate 9 
based on n;: 9mie = arg. max. f|; P;(ö)"\ In particular, the 
Monte-Carlo EM (Expectation-Maximization) or data argu- 
mentation algorithm (cf. Wei-Tanner, 1990) can be used to 
find 9mie if we view the unobserved x's as the complete data 
and the rii's as the observed incomplete data. This algorithm 
is especially useful when the MLE based on the complete data 
has a closed form such as in the case of the Gauss family. 
Moreover, the linear-interpolation estimation method in Or- 
tega and Vetterli (1994) can be viewed in our framework as 
follows: let 9 = (/(ai), ...,/(a*)), where a's are pre-chosen 
points in [a, b], for example, centers of Ai's. Then /(-|ö) is the 
density determined by linearly interpolating the /(a)'s. 

Currently under investigation are non-parametric estima- 
tion methods and using MDL to select window sizes on which 
the causal past is based. Simulation studies are also planned 
to test the estimation methods when used together with a 
quantization algorithm such as the Lloyd-Max algorithm. 
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Abstract — We describe an efficient probability 
quantization scheme for binary arithmetic code im- 
plementation. We show that this scheme is simple to 
implement and has better compression efficiency than 
some existing schemes. 

I. INTRODUCTION 

The binary arithmetic code is a crucial element of many prac- 
tical state-of-the-art lossless and lossy compression schemes. 
The key to an efficient implementation of the binary arith- 
metic coding procedure is to avoid performing the time- 
consuming multipication and division operations in the prob- 
ability update for each binary symbol sent. IBM's QM-coder 
[1] keeps track of two fixed-length registers A and C, where 
A represents the size of the current interval, and C indicates 
the base of the current interval. By means of a normaliza- 
tion process A and C are kept within a specific range. By a 
simple approximation that requires A to be in the range of 
0.75 < A < 1.5, the QM-coder replaces multiplications with 
simple additions and subtractions. Using a binary entropy ar- 
gument, the worst-case efficiency can be shown to be about 
97.0%. Langdon et. al. proposed a more intuitive approach to 
perform binary arithmetic coding [2]. Langdon's binary arith- 
metic coding procedure keeps track of two values high and 
low, where high and low correspond to the top and the bot- 
tom of the current interval. Langdon suggested to constrain 
the probability of the less probable symbol to the nearest in- 
tegral power of \, so that multiplications can be replaced by 
simple shifts. The worst-case efficiency of Langdon's binary 
arithmetic code can be shown to be about 95.0%. 

II. PROBABILITY QUANTIZATION SCHEME 

In this article we improve upon Langdon's results by approx- 
imating the probability of the less probable symbol with a 
fraction of the form 2~l or 2~l~1 + 2~l~2 for I = 1,2,.... It is 
easy to show that multiplying a number by 2_!_1 + 2~'~2 is 
equivalent to right-shifting it by I 4- 0.415 bits. Computation- 
ally this correponds to replacing a multiplication operation 
with 2 shifts and an add. As we will show later, this scheme 
improves the worst-case coding efficiency to 98.5%. 

The following is a sketch on how to optimally quantize 
the probability of the less probable symbol to achieve the 
aforementioned computational efficiency. We use a similar 
approach as Langdon's. Let p, 0 < p < 0.5, be the true 
probability of the less probable symbol. The question is 
to choose a step-wise probability quantization function Q(p) 
of p such that the average code length per symbol, namely 
plog2(Q(p)) — (1 — p) log2(l — Q(p)), is minimized. The design 
of Q(p) is complexity-driven, not performance-driven. How- 
ever as we will show later, that we do not sacrifice much 

by quantizing p into the form 2  '  or 2 '  *  + 2  '  2 for 
1 = 1,2,. We examine two different cases. 

Case 1: 2-'-1 + 2-'-2 < p < 2~l 

This corresponds to finding the breakpoint p' such that 

p'(l + 0.41504) - (1 - p') log2(l - 2"'- 

= p'Z-(l-p')log2(l-2-i) 

-T 2) 

Case 2: 2-,_1 < p < 2-'-1 + 2_i~2 

This corresponds to finding the breakpoint p' such that 

j/(J + l)-(l-^)log2(l-2-'-1) 

= p'(l + 0.41504) - (1 - p') log2(l - 2-'-1 - 2-'-2) 

We use the same performance efficiency definition as Lang- 
don's, which is given by the entropy as a fraction of the aver- 
age code length, 

efficiency = -plog2P- (1 -plog2(l -P) 
pQ(p)-(l-p)log2(l-2-Q(p))- 

We tabulate the optimal probability range and the worst-case 
efficiency for each quantized probability value (Figure 1). 
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Prob. Range Right-Sft Probability Efficiency 

0.437 - 0.500 1 0.5 0.988 
0.310 - 0.437 1.415 0.375 0.985 
0.218 - 0.310 2 0.25 0.994 
0.155 - 0.218 2.415 0.1875 0.991 
0.109 - 0.155 3 0.125 0.996 
0.077 - 0.109 3.415 0.09375 0.994 
0.054 - 0.077 4 0.0625 0.997 
0.039 - 0.054 4.415 0.046875 0.995 
0.027 - 0.039 5 0.03125 0.998 
0.019 - 0.027 5.415 0.0234375 0.996 
0.014 - 0.019 6 0.015625 0.998 

Figure 1 
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with Channel Noise1 

Andras Mehes and Kenneth Zeger 

Coordinated Science Lab., Dept. of Elect, and Comp. Engineering, University of Illinois, Urbana-Champaign, IL 61801 
email: zeger6uiuc.edu. 

Abstract — A general formula is given for the MSE 
performance of affine index assignments for a binary 
symmetric channel with an arbitrary source and a bi- 
nary lattice quantizer. The result is then used to com- 
pare some well-known redundancy free codes. The bi- 
nary asymmetric channel is considered for a uniform 
input distribution and a class of affine codes. 

Two major issues in noisy channel vector quantization are 
complexity and sensitivity to channel errors. Structured vec- 
tor quantizers and index assingments provide a low complexity 
solution for enhancing channel robustness. 

A d-dimensional, n-bit noisy channel VQ with index set 
X - {0,1,... , 2n - 1}, and code book C = {y; £ W: i € 1} 
is a functional composition Q = V o TT

-1
 O n o K O £, where 

£: R -* X is the quantizer encoder, V: X —¥ C is the quantizer 
decoder, n:X-*X\s the index permutation, and rj: X —> X is 
a random permutation representing the channel. 

A binary lattice quantizeris a vector quantizer, whose code- 
vectors are of the form y; = yo + Yl?=o v'*' ^or ' ^ %< where 
the ordered set of vectors V = {vi}"^1 is called the generating 
set, and it £ {0,1} is the /th bit in the binary expansion of 
the index t (here io is the LSB). A binary lattice quantizer is 
equivalent to a direct sum quantizer (or multistage or residual 
quantizer) with two code vectors per stage. Examples include 
truncated lattice vector quantizers (e.g. uniform quantizers). 
A binary lattice VQ is similar to the non-redundant version 
of the LMBC-VQ (VQ by Linear Mappings of Block Codes) 
presented in [3]. 

An affine index assignment is an assignment of the form 

T(I) = tG©d,        jr_1(i) = (7ed)F,   (F = G~1) 

where G is the generator matrix, d is the translation vector, 
and the operations are performed over GF(2). Many popular 
redundancy free codes are affine, including the Natural Binary 
Code (NBC), the Folded Binary Code (FBC), and the Gray 
Code (GC). 

For a given source X, the Hadamard transform of its dis- 

tribution is defined as Pi = J2i€X P P(X) = *'] (-1)^. 
The MSE of a quantizer that satisfies the centroid condi- 

tion, can be decomposed as D — Ds + Dc, where 

Ds = Y,E [nx - y-n21 w =«]p P(x) = «i 

Dc = J2 E ny- - y'ii2 p PW = •']p [»ox«-)] • 
iex j'ex 

Theorem 1   The channel distortion of a 2" point binary lat- 
tice vector quantizer with generating set {vi}^1, which uses 

'The research was supported in part by the National Science 
Foundation under Grants No. NCR-92-96231 and INT-93-15271. 

an affine index assignment with generator matrix G to trans- 
mit across a binary symmetric channel with crossover proba- 
bility q, is given by 

n-l n-l 

(I - 2(1 - 29)u,(/-*)+(i - 2qyiK--*n:-ii\, 

where w(-) denotes Hamming weight, y = [/i,*,... ,fn,k] is 
the &th column of F = G-1, Pi is the Ith component of the 
Hadamard transform of the induced discrete distribution on 
the encoder cells, and © indicates modulo 2 addition. 

Let FBC denote the "best" Folded Binary Code obtained 
by reordering the generating set V to minimize Dc, and let U 
be a uniform discrete random variable on the code points. 

Corollary 1 Given the conditions of Theorem 1 (and q < 
1/2J, D{JBC<) > Z?^BC) if and only if 

Var[Q(X)] + E2[Q(X) - U] > 
maxygy ||v|| 

-Var[U] 

For a uniform (discrete) distribution on the code vectors, 
and a binary symmetric channel the NBC is the optimal index 
assignment [1], [2]. An affine translate of the NBC is an index 
assignment of the form jr(t') = i © d = ic~l (»'). 

Theorem 2 If a 2n point binary lattice vector quantizer 
induces equiprobable encoder cells for a given source, and 
transmits an affine translation of the Natural Binary Code 
across a binary asymmetric channel with crossover probabili- 
ties P [1 JO] = p and P [0|1] = q, then the channel distortion is 
minimized if and only if the translation vector d satisfies 

d = argmin||y<-E[U]|| 
iex 
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Abstract -*■ A quantizer design algorithm for trans- 
mission over finite state channels is presented. Opti- 
mal design algorithms for a variety of conditions re- 
garding the knowledge of the state information at the 
transmitter and the receiver are derived. Both cases 
of noiseless and noisy observations are considered. 

I. SUMMARY 

We want to transmit the output of an information 
source to a receiver over a finite state channel with two 
states. In general, the entropy rate of the source is too 
high, and therefore we need to quantize the source out- 
put to make it suitable for transmission. Our objective 
is to design the quantizer to minimize the mean squared 
error (MSE) when the channel is in state S\, subject to 
a constraint on the MSE when the channel is in state 52. 
In other words, the problem is to minimize 

£>! = E[(X - i")2|channel state is Sj] 

subject to    D2 = E[(X-X)2 [channel state is S2] < D 

where X is the source output, X is the reconstructed 
output at the receiver, and D is the maximum allowable 
distortion when the channel state is S2. 

Let Pm(A;|i) be the probability of receiving k as the 
channel output when the channel input is i and the chan- 
nel state is Sm, where m = 1,2, i G {1,2,..., N\} and 
k € {1,2,..., Ar

2}. We also assume that noisy state infor- 
mation is available both at the transmitter and the re- 
ceiver. Let tji and rjj be the probability that state 5; is 
perceived as state Sj at the transmitter and the receiver, 
respectively. Denote the ith quantization region by Ami 
when the channel state is perceived as Sm at the trans- 
mitter, and the kth reconstruction level by gn(k) when 
the channel state is perceived as Sn at the receiver. 

To design the quantizer, our approach is to convert the 
constrained optimization problem to an equivalent un- 
constrained minimization problem by the method of La- 
grange multipliers, i.e., to minimize L = D\ + A(D2 — D), 
A > 0 is a constant. By optimizing the encoder structure 
for a fixed decoder and the decoder structure for a fixed 
encoder, we obtain the necessary conditions for the op- 
timality of the quantizers. This results in the following 
algorithm for the quantizer design as derived in [1]. 

Algorithm: Optimal quantizer design to minimize L for 
a fixed A. 

1) Start with an initial encoder structure. 

2) Find the optimal decoder structure for the current 
encoder structure by using 

9n(k)    =    jSpflchannel output is k 

and channel state is Sn]   (1) 

for all k€ {1,2, ...,N2}, n = 1,2. 

3) Find the optimal encoder structure for the current 
decoder structure by using 

where 

=    {x : 1oLmix - ßmi > 2amiix - ßmi, 

Vf'^i, i')i6{l12 ATi}} 

2 2 N2 

= 12XjJ2 tn)1""! Yl Pi (*IOffn(*). 

(2) 

2 
* = 1 

N2 

ßmi =J2
X

JY1 *n>;rnj X) P>(*IOfl'n(*) 
j-l       n = l k=l 

» € {l,2,...,JVi}, m=l,2, Ai = l, A2 = A. 

4) If the change in L is below a prespecified threshold, 
stop. Otherwise, go to step 2. 

The Lagrangian is non-increasing at each step and is 
bounded from below, therefore the algorithm is always 
convergent. A numerically efficient algorithm to find Ami 
in (2) is presented in [2]. 

In order to complete the solution of the problem one 
has to vary the Lagrange multiplier (A > 0), apply the 
design algorithm, obtain a set of achievable distortion 
pairs, and convexify these points. The last step is justified 
by the use of time-sharing. In [1] it is illustrated that, in 
general, time-sharing is necessary to obtain the optimal 
performance of the system. A set of numerical examples 
where the above algorithm is employed is also presented. 

We also consider the quantizer design problem when 
the observation is noisy. It is shown that the problem 
of optimal quantizer design for noisy observations can 
be separated into two parts — first estimating X from 
the observation in the MSE sense, and then using the 
quantizer design algorithm for no observation noise. 

[l] 

[2] 
1This work was partially supported by the NSF Grant NCR- 

9101560 
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Performance of the Adaptive Quantizer 
Nina I. Pilipchouk 

(Moscow) 

Abstract — The probabistic analysis of the adaptive 
quantizer DH is presented. For the case when the 
number of quantizer levels is equal to 4, Mean square 
error - Average Entropy functions are calculated. 

I. INTRODUCTION 

The Adaptive DPCM (ADPCM) has been recommended by 
CCITT [1] to implement in communication. 

The exact mathematical analysis of the APCM systems is 
rather sophisticated [2] and therefore there is not the complete 
analysis of any of them. In this paper, it is presented the 
complete probabilistic analysis of the simple variant of the 
adaptive quantizer DH [3] as well as the comparison with 
Max's quantizer [4], 

II. MAIN PERFORMANCE 

Consider the adaptive uniform quantizer DH with iV = 4 
quantizer levels, the variable size of the quantizer step h, and 
the variable size of the quantizer range d. The step and the 
range at the sampling instant tk+i depends on their values and 
a value of an input signal at the preceding sampling instant 
tk (see, for details, [3]). The adaptive quantizer is equivalent 
to the two virtual quantizers with steps hi = h and h2 = 2h, 
respectively. The first quantizer is used for the small values 
of the input signal, and the second one is used for the large 
values. 

The adaptive quantizer is designed to reduce the value of 
the entropy of quantized signal for a given error in comparison 
with Max's nonadaptive quantizer [4]. 

Main performance is the Mean square error - Average En- 
tropy function. In [3], it is shown that the joint probability 
distribution of the input signal and parameters Wi(y) (i = 1,2) 
is given by the equations 

m(y) I 
J\x\<hi 

(w1(x,y) + w2(x,y)) dx;w2(y) = w(y)-wi{y), 

where w(y) is one-dimensional probability density of the input 
signal, w;(z, y) is the joint probability of the samples x, y and 
parameters i = 1,2. Put h\ = h, h2 — 2h. 

For this case the solution of the equations is as follows: 

wi(y) = 1 
J\x\<h 

w(x,y)dx; w2(y) -s 
J\x\>h 

w(x,y)dx; 

where w(x,y) is two-dimensional probability density of the 
input signal. 

We consider the Gaussian input signal with zero mean 
value, variance 1 and correlation coefficient between two adja- 
cent samples p. For this case , the average mean square error 
and the average entropy can be rewritten as follows: 

H=-2 JQ
h w(y)f1(y)dy\og(l/Q1 ft w(y)f1(y)dy) 

-2 T w(y)f1(y)dylog(l/Q1 f^° w(y)f1(y)dy) 
-2 rw(y)f2(y)dylog(l /'Q2 f™ w(y)f2(y)dy) 
-2 f~ w(y)f2(y)dy\og(l/Q2 f™ w(y)f2(y)dy), 

where 

w(y) = exp(-2/2/2)V2T; 
{h-Py)/y 

fi(y) = l/y/tof exp(-Z
2/2)dz;f2(y) = l-f1(y), 

-{h+py)/y/l-p2 

Q1 = I\x\<h W(X)dx> <?2 = 1 - Ql 

„ .       .        III. NUMERICAL RESULTS 
Mam performance, i.e., the Mean square error - Average en- 
tropy function, is presented in the Fig. for the nonadap- 
tive quantizer (1), and for the adaptive quantizer and p = 
0, 0.9, 0.99, 1 (2,3,4,5). One can see that in the region where 
the error is minimal the value of the error changes slowly with 
H. Hence, we can get an extra gain in data compression if 
we use suboptimal values of h. For example, if it is allowed 
to have the error e2 = 0.119, which is minimal for the non- 
adaptive quantizer, then we can get the gain about 0.62 bit 
per sample for large p. 

[1] 

[2] 

[3] 

£2 = 2 Joiv ~ h/2)2w(y)f1(y)dy + 2 J"(y - 3h/2)2w(y)f1(y)dyi} 
+2Joh(y-h)2w(y)f2(y)dy + 2/*(y - 3h)2w(y)f2(y)dy, 

M.H. Sherif, D.O. Bowker, G. Bertocci, B.A. Orford, G.A. Mar- 
iano, "Overview and Performance of CCITT/ANSI Embedded 
ADPCM Algorithms," IEEE Trans. Commun.,V6l. COM-41, 
pp. 391-399, Feb. 1993. 
N.I. Pilipchouk, G.RT. Nadezhdina,  "APCM Performance Im- 
provement by Means of Entropy Coding," In Proceedings of the 
IEEE ISIT, page 196 , Trondheim, Norway, July 1994. 
N.I.   Pilipchouk,    V.P.   Jakovlev,    "Adaptive   Pulse 
Modulation,"-Moscow: Radio i Svjaz, 1986 (in Russian). 
J.Max,      "Quantizing     for     Minimum     Distortion," 
Trans.Inform. Theory, pp.7-12, March 1960. 
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I. INTRODUCTION 

Mobile telephony in CDMA channels encounters a variety of 
communication challenges including fading due to multipath 
(MP) and multiaccess interference (MAI) due to simultane- 
ous transmissions from interfering users. Detectors which em- 
ploy multiuser detection and temporal (RAKE-type) combin- 
ing have been shown [1] to provide near-far resistant solutions 
which effectively combat both of these impediments. In the 
first part of this paper, we address the potential gains of us- 
ing spatial combining in conjunction with multiuser detection 
and temporal combining. In the second part of the paper, we 
examine an adaptive multiuser detector which is well suited 
for MAI-limited MP channels. 

II. MULTIUSER ARRAY DETECTION FOR MULTIPATH 

CHANNELS 

Recently, efforts have been made to combine the use of tem- 
poral combining and spatial combining. Most of these efforts 
are based on conventional detection schemes which have been 
shown to be near-far limited. In the first part of this paper, we 
combine results from [1] and [2] to derive a class of near-far 
resistant detectors which uses a linear multiuser detector in 
conjunction with spatial and temporal combiners. It is shown 
that the optimum (in terms of near-far resistance) linear mul- 
tiuser detector with an array of P sensors consists of a bank 
of match filters at each sensor matched to the users' delayed 
spreading codes, followed by a spatial combiner (which acts 
as a beamformer pointing in the direction of each users' MP 
signals), a temporal combiner (which coherently combines a 
user's MP components), and a linear transformation which 
decorrelates the users. Since this decorrelation process re- 
lies on the estimates of the signals' spatial and MP parame- 
ters, this detector (known as the spatial-temporal decorrelator 
(stD)) is near-far limited when the estimates are not exact. By 
interchanging the order of the three processors, we can obtain 
two suboptimum detectors, the sDt and Dst, which, respec- 
tively, retain their near-far resistant characteristics when there 
is MP parameter mismatch and when there is both MP and 
spatial parameter mismatch. If all of the system parameters 
are known exactly, we have the following relationship among 
their respective bit error rates as a function of the noise level: 
PstD{<r) < PsDt{&) < Pcät(o'). This result is illustrated in 
Figure 1 for a 2-user synchronous, coherent system where each 
user contributes L = 2 MP components and where there are 
P = 2 sensors. 

III. BLIND ADAPTIVE DETECTION FOR 

MULTIDIMENSIONAL SIGNALS 

Motivated by the need for a noncoherent multiuser detector 
for MP channels which has no a priori knowledge of the in- 
terfering users, in the second part of the paper, we derive an 
extension of the blind adaptive detector [3] for differentially 
encoded, multidimensional signals. Such a detector is ideally 
suited for MP channels since, if we assume negligible ISI, the 

spanning set for the multidimensional subspace is given by the 
truncated, delayed translates of the desired user's spreading 
code. Given the i-dimensional subspace in which the desired 
user's signal lies, we can obtain an arbitrary orthogonal basis 
Zi ... Z£. The resulting detector consists of a bank of L linear 
filters followed by an inner-product operation between the cur- 
rent filter bank output and that from the previous bit interval; 
the bit estimate is the hard-limit of this inner-product. The 
Ith filter consists of a real part (zi+xf )/||zi+xf ||, 1= 1...L 
which operates on the real part of the received signal and a 
corresponding imaginary part. The xf* and xf are each con- 
strained to be orthogonal to all of the basis vectors Zi ... zz, 
and are obtained adaptively using the output energy of the 
respective real and imaginary part of the Ith filter. Each of 
the xf1 and xf can be adapted independently, exhibits global 
convergence, and requires knowledge of only z; and the timing 
(bit-epoch) of the desired user. Hence this detector requires 
even less knowledge than the conventional RAKE receiver; yet 
as seen in Figure 1, for a 2-user system with L = 2, it essen- 
tially achieves the same performance as the optimum linear 
MP multiuser detector (equivalent to the differentially coher- 
ent stD with P=l). 

^^^<<^- ̂ stD. 
-P = l 

P = 2- 

Dst' 

sDt. 

^V 

V stD-  *-\ 

\ 
5 6 7 8 

SNR^SNRg (dB) 

Figure 1: Performance of Multiuser Detectors (L = 2) 
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Summary 

Multi-user communication scenarios, to date, have 
almost exclusively focussed on the situation in which all 
users share a common symbol rate l/T. However, future 
multi-media services will require that users with different 
(and possibly time-varying) data rates share a common 
transmission channel. We consider the problem of opti- 
mizing a multi-user receiver when the users transmit with 
different symbol rates. The problem of optimizing the 
transmitter pulse shaping filters for each user assuming 
different transmitted symbol rates is also considered. We 
assume the Minimum Mean Squared Error (MMSE) per- 
formance criteria. 

The kth user generates a sequence of pulses 

sk(t) = lLbk[i]S{t-iTk) 
i 

where {£*[(']} is the sequence of symbols corresponding 
to user k, and \/Tk is user k's symbol rate. This signal is 
the input to a pulse shaping filter with transfer function 
Pkif)- The channel corresponding to user k is Hk{f), and 
the additive noise n(t) is assumed to be white. The 
received signal is therefore 

K 

yit) = Ii'Lbk[i]{Pk*hk(t-iTk)} + n(t) 

where K is the number of users, and pk * hk is the con- 
volution of the transmitted pulse shape with the channel 
impulse response. We will assume that there exist non- 
negative integers mi,...,mK such that 
Tl:T2:---:TK = ml: m2: ■ ■ ■: mK, where 
mx < m2 < ■ ■ ■ < mK, implying Tx >T2>-> TK. 

For systems with multiple rates, the optimum 
receiver is periodically time-varying, due to the underly- 
ing cyclostationarity of the sampled received signal. The 
approach we take is to embed the optimum receiver design 
problem into an equivalent higher-dimensional problem 
that is wide-sense stationary. To do so, we 'decompose' 
the input data stream from user k into LCM(m)/mk low- 
rate streams each with a common symbol period 

_LCM(m) 
1 s -   l k mk 

where m = (ml,...,mK), and LCM() denotes the least 

common multiple of the elements of the vector argument. 
It is convenient to think of the additional streams created 
by this process as 'fictitious' new users in the system. This 
procedure effectively yields an equivalent higher dimen- 
sional, single-symbol-rate multi-input, multi-output com- 
munication system with input dimension (corresponding 

to the.total number of 'users') equal to J£ 

Note that for the case mt 

4=1 mk 
1 for all k, this reduces to 

multi-user communication with identical symbol periods. 
Accordingly, the vector of channel transfer functions 
which corresponds to the embedded system with equal 
symbol rates is given by 

H(/) = [ff, if\Hx(f)e ßxfTi ■,Hdf)e jlnfmT^ 

; HK(f), HK(f)e n*fTK ,Ht 
0j2nfmTK 

1. where m = LCM(m)/mK 

We also consider the optimization of the transmitter 
pulses pi(t),...,pK(t) subject to the power constraints 

j\Pk(f)\
2df < nt,   k = l,...,K, assuming   a  linear 

MMSE receiver. Using the preceding decomposition tech- 
nique, the problem can again be embedded in a higher- 
dimensional problem in which the users transmit with the 
same symbol rate. Necessary conditions for optimality 
can be derived, and show that FDMA achieves a local 
optimum (which may be globally optimal). The FDMA 
solution differs from that given in [1], in that for a particu- 
lar frequency 0 < / < l/(2m]71), user 1 (user 2) can place 
power at up to mx (m2) different Nyquist translates, (that 
is, / + il(m\T\) for different nonnegative integers *')• 

Numerical results will be presented that illustrate 
the tradeoff between changing symbol rates and changing 
the number of constellation points to achieve a given mix 
of data rates. 

Reference 

[1] M. Honig and U. Madhow, "Optimization of Trans- 
mitter Pulses for 2-User Data Communications", 
Proc. 1992 Int. Symposium on Information Theory, 
San Antonio, TX, Jan. 1992. 

381 
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Abstract — Receiver structures based on joint 
MMSE diversity combining, equalization and multi- 
ple access interference suppression are discussed. It 
is shown that receiver complexity can substantially be 
reduced by exploiting the structure of multipath. Ex- 
perimental results, obtained in an underwater acous- 
tic channel, demonstrate superior capabilities of the 
receivers proposed. 

I. INTRODUCTION 
Due to their superior performance, multiuser receivers 

are being considered for applications ranging from wideband 
CDMA systems to bandwidth-efficient multiple-access under- 
water acoustic (UWA) communication channels [1], [2]. In 
severely dispersive time-varying channels, multipath propaga- 
tion presents a major limitation to the system performance. In 
such a case, multisensor signal processing offers potentials of 
robustness to fading, reduction of residual intersymbol inter- 
ference (ISI) [3] and suppression of multiple-access interference 
(MAI). 

II. RECEIVER STRUCTURE 
We address the general case of a multipoint-to-point com- 

munication system where multiuser signals are subject to ISI 
and may overlap in both time and frequency. Assuming the 
presence of L users in a system with K receiving elements, the 
optimal receiver consists of a combiner followed by a sequence 
detector, as shown in Fig.l.   The Ith combiner is optimally 
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Figure 1: Optimal receiver. 

represented as a bank of K matched filters whose outputs are 
summed and sampled at the symbol rate. The L discrete-time 
combiner outputs are processed by an L x L detector, chosen 
as a MIMO DFE [4]. When the channel is not known, the 
combiners are realized as banks of fractionally spaced adap- 
tive filters. 

III. REDUCED-COMPLEXITY ADAPTIVE PROCESSING 
Although the use of an equalizer eliminates the exponen- 

tial complexity of the optimal (MLSE) detector, the resulting 
combiner/equalizer structure may still have complexity pro- 
hibitively high for many practical cases. Besides the increase 
in computational time, a critical disadvantage of large adap- 
tive filters lies in their high noise enhancement, which ulti- 
mately limits the gain obtained by increasing the number of 

input channels. These issues motivate the search for a differ- 
ent combining strategy in which the size of the combiner will 
be reduced, but multichannel processing gain preserved. 

By modeling the channel as consisting of a finite number 
of propagation paths, it is revealed that the optimal com- 
biner can equivalently be realized using fewer matched filters. 
The resulting adaptive combiner is shown in Fig.2. The pre- 
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Figure 2: Reduced-complexity adaptive combiner. 

combiners C; perform spatial processing only, reducing the 
number of channels from K to P < K for subsequent multi- 
channel equalization. Shown also is the multichannel phase- 
locked loop which is an essential part of a practical receiver. 

When the multipath structure is not known, the approach 
most beneficial is to conduct unconstrained optimization of 
the combiners and the equalizers. To preserve performance of 
the full-complexity receiver, the pre-combiners and the mul- 
tichannel equalizers need to be optimized jointly. An adap- 
tive algorithm suitable for application in rapidly time-varying 
channels is a combination of the second-order gradient up- 
dates for the carrier phases, and a multiple RLS updates for 
the coefficients of the combiners and the equalizers. 

The methods described above were applied to the real data 
obtained from experiments conducted in the shallow water 
acoustic channel, characterized by rapidly time-varying ISI 
which extends over several tens of symbol intervals. Due to 
the bandwidth limitation of the channel, only very low spread- 
ing ratios can be used (e.g., 3), resulting in increased MAI. 
The proposed techniques demonstrated superior performance 
in such conditions. 
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Abstract — A flexible iterative receiver is proposed 
for the multiple access channel. The receiver splits 
the detection problem into a "single user" decoding 
step followed by a combining step. The structure of 
the receiver is suitable for many different types of 
multiple access channels. 

I. Introduction 
Motivated by the need for reduced complexity, the success of 
iterative methods for decoding of concatenated codes [1], and 
recent theoretical results concerning successive cancellation re- 
ceivers [2], we propose an iterative detector for co-operative 
detection of multiuser systems, which for reasons that will 
become apparent, we have named the consensus decoder. 

The detector divides the detection operation into two parts 
- a "single user" estimation step (in which soft decisions are 
produced), and a "multiuser" combining step. 

We shall consider a general m-user multiple access system, 
in which user i transmits Xi, drawn independent of other users 
from a finite alphabet, Xi, i = 1,2, ...,m; according to the 
distribution Pi(xi). The channel produces output symbols, Y, 
members of the alphabet y, according to transition probabil- 
ities, p(y | xi,x2,...,xm). 

II. The Consensus Detector 
Consider an m-user system. The operation is as follows. 

User i adds redundancy to its source data, Ui, via an en- 
coder, producing Xi. We shall restrict each Xi to be drawn 
from an identical alphabet, X. Without loss of generality, 
denote the members of X = {0,1,..., J — 1}. The chan- 
nel outputs Y € y, according to some transition probability, 
p(Y | Xi,X2,... ,Xm). We shall denote the output alphabet 
y = {o,i,...,K-i}. 

The detector operates as follows. 
1. User t attempts to estimate Xi given Y, treating other 

users as noise. At each symbol interval, each single user 
detector outputs soft information, p. which is a vector 
of probability estimates for each channel input symbol. 
p. = [P(Xi = 0\Y),...,P(Xi=:J-l\Y)] 

2. The symbol estimator for user i forms a list of possi- 
ble channel outputs, y. due to the other m — 1 users. 
This can be interpreted as an estimate of the channel, 
treating the other users as part of the channel. Each 
element of y. has associated with it a probability, which 
is determined from p.. 

—i 

3. The detector for user i now estimates Xi given Y and 
the list of possible channel outputs, once again out- 
putting soft information. 
p. = [P(Xi = 0\Y,y.),...,P(Xi = J-l\Y,y.)] 

4. Steps 2 and 3 are now repeated as many times as de- 
sired. 

This procedure separates the detection into a single user step 
(Step 3) and a combining step (Step 2). 

In practice, it is impossible for the symbol estimator to 
form the full list of possible channel inputs, since there will in 
general be Km combinations. For example a 10 user system 
with 8 channel input symbols, there are already about 1 billion 
possibilities. Therefore, we shall only keep the L most likely 
symbols, which can be found with a simple M-algorithm. This 
is where the system complexity is reduced. 

The final output of the detector is in a sense the set of se- 
quences to which the m detectors have "agreed" to, hence 
the name consensus detector. It is also simple to include 
"confidence levels" in particular users as follows. If we de- 
fine a parameter, d, to be the confidence we have in user 
i, 0 denoting no confidence and 1 denoting complete confi- 
dence, we adjust the probability estimates from a particular 
user p* = dp. + (1 — Ci)u where u is the uniform distribution, 

P(Xi= j) ='i, for all 0 < j < J - 1. This has the effect 
that as we have less faith in a particular user, we flatten out 
their distribution, placing more uncertainty (entropy) in their 
decision. 

III. Discussion 
The advantages of the proposed detector are as follows. 

The complexity of the system may be easily varied to pro- 
vide different levels of performance. Simulation results have 
shown that in practice only L at 10 likely symbols need to 
be retained. The number of iterations can also be varied. In 
general at most 4 — 5 iterations are required, usually less. The 
reduced complexity nature of the detector gives a complexity 
that increases only linearly with the number of users. 

The structure of the consensus detector is suitable for use 
with many multiple access channels. All that is required is a 
suitable single user detector to perform step 3 of the algorithm. 

The system may be biased according to previous knowledge 
about the users, for example different power levels, through 
the use of confidence levels. 
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Abstract — An adaptive near-far resistant technique 
for the blind joint multiuser identification and detec- 
tion in asynchronous CDMA systems is analyzed in 
fading and dispersive GSM channels. 

I. INTRODUCTION 

Multiuser detection in CDMA systems usually requires 
either knowledge of the transmitted signature sequences 
and channel state information or use of a known train- 
ing sequence for adaptation. Consequently blind adap- 
tive multiuser receivers have gained considerable atten- 
tion [1]. We recently proposed a joint multiuser deconvo- 
lution scheme [2] characterized by: 

• No knowledge of timing, channel state information 
or signatures nor use of training sequences is re- 
quired for any user. 

• The estimate of the signature sequence of each 
user convolved with its physical channel impulse re- 
sponse is provided after initial convergence. 

• The blind multiuser detector is near-far resistant. 

The purpose of this paper is to further investigate the 
behavior of this scheme in fading and dispersive channels. 

II. SYSTEM MODEL 

We consider the asynchronous CDMA channel 

K 

r(t) = J2^2bk[n]hk(t-nT,t) + aw(t) (1) 
n   it=l 

where hk(t — nT,t) is the overall complex channel im- 
pulse response, given by the convolution of the signature 
sequence, physical radio channel and the receiving filter 
impulse responses. It incorporates the amplitude and the 
delay for user k, and its duration is assumed to be smaller 
or equal to L symbols, i.e. hk(r, t) = 0, r < 0, r > LT, Vi. 
The total number of active users is K and their trans- 
mitted sequences are binary independent symbols && [n] £ 
{1, -1}. The symbol rate is 1/T and w{t) is normalized 
white Gaussian noise. The CDMA channel is sampled at 
a rate M/T = 1/TS to derive the vector sequence r[n] 

r[n] = [r(nT), r(nT+Ts),..., r(nT+ (M - 1)TS)]T • (2) 

The observation r[n] is modeled as a probabilistic M 
length vector sequence of a state vector s[n] 

[n] = Ti[n]s[n] + vr[n] (3) 

iWork supported by CIRIT of Catalonia (GRQ93-3021) 

where (M x KL) matrix Ti[n] depends of the overall dis- 
crete impulse response for all users and w[n] is the nor- 
malized noise vector. There are TV = 2LK possible state 
vectors corresponding to L binary symbols of K users. 

III. BLIND IDENTIFICATION AND DETECTION 

ALGORITHM 

If the overall impulse response for each user was known, 
that is if the signature sequence, physical channel im- 
pulse response, amplitude and delay corresponding to 
each user were available, then using this information, the 
Viterbi algorithm could be employed to determine the 
multiuser maximum-likelihood transmitted sequence. In 
the method we presented however, the Viterbi algorithm 
is applied with current estimates of the overall impulse re- 
sponses which are updated recursively after arbitrary ini- 
tialization. The number of users (K) is assumed known 
together with a bound for the impulse response dura- 
tion (L). A similar approach was proposed for the blind 
equalization of single user channels using the Viterbi al- 
gorithm [3] and the Baum-Welch identification algorithm 
[4]. Specific to the multiuser approach is the procedure 
which overcomes the convergence to a local minimum [2]. 

IV. BEHAVIOR IN FADING AND DISPERSIVE CHANNELS 

The blind multiuser algorithm has been tested using the 
mobile radio channel model for typical urban areas (Type 
1) TUX60, as denned in [5]. Simulations indicate that, 
for moderate Doppler frequency (50 Hz) and multipath 
spread (1.35 symbols), convergence can still be attained 
within few hundred symbols. Afterwards, the algorithm 
is still able to track slow channel variations. Possible 
modification of the receiver, after the initial convergence, 
may include a simpler decision-directed MMSE scheme. 
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Abstract — Unslotted asynchronous multiple access 
without feedback is considered. Poisson population, 

least length single sequence hopping and interleaved 

outer coding with guard spaces are assumed. Bounds 
from both sides on the least decoding error probabil- 

ity are proved to vanish with rate ^7 (from a given 

finite source block length K' on) and under further 
conditions defined precisely in a companion preprint. 

I. INTRODUCTION 

For slotted (frame) asynchronous least length single se- 

quence hopping and a single inner R-S code, bounds from both 
sides on the least possible decoding error probability have been 

already obtained by the same author, that disappear with the 

source block length K at rate ^, far not exponentially ([1]). 
This is the price (in error probabity) of being constrained to 

this simple kind of multiple access. It is, obviously, a ques- 
tion of interest under what additional conditions can, for the 
same decoding error probability, the very same decay rate - 
be proved also for truly (unslotted) asynchronous access, with- 

out assuming any common clock for signal trasmission. It will 
be shown next that (i) proper kind of interleaving, and (ii) 
keeping silence (inserting a dummy guard space, just at one 
end of each message carrying interval as in [2]) are the addi- 
tions to the model, sufficient for so doing. The question will 

be answered by Theorem 1. 

II. MORE ON THE UNDERLYING MODEL 

Infinite source population is assumed, with demands due to 
a Poisson process of given parameter A, called total demand 
rate. One of the sources is activated next to each demand, 
never active before. Just time hopping is considered, for sim- 

plicity and also because of the actual tasks kept in mind by the 

author. A message of vkm symbols, sent next to each demand, 
is taking values in GF(q). n = q — 1. Each of the consecu- 
tive m subblocks of each source block of length k are encoded 
by means of ra distinct (n, k) Reed-Solomon component codes 
over GF(q) of the same kind. Along each frame superslots are 

denned consecutively, each of m + fi slots. (Superslot duration 

is defined as time unity. The last a slots of each superslot are 
kept dummy.) The same binary hop sequence s0 of length N, 

of weight n, of complete cyclic order, and of cyclic correlation 
c = 1 is assigned to each potential source. Multiple access 
erasure channel is assumed with neither noise nor delay. 
Definition 1 Consider a register step t at which match is 
declared. There is frame front coincidence at t provided frame 
fronts from at least two distinct sources occur at t within the 
correlator window, within supeslot distance (mod N) (from the 

rear end of the window (mod N)). 

as activity threshold. Consider any correlator step t at which 
match is declared. Denote by k' the value of the subblock 

length k (associated with each component code) at which 

fi.iiTn. := (1+ ™)_1 ^T takes it largest possible value, given n, 
m, N, and A'. (Obviously K = km.) Denote by N' the short- 
est possible hop sequence (frame) length at which decoding is 

error free, at any t, with match but with neither frame front 
coincidence nor overflow (with respect to activity threshold 

Denote by Ao the largest possible zero error activity thresh- 

old, given n, k = k'. Let N = N'. 

Lemma 1 
Ao = k', 

given any N, n, and k — k . 

Call peak factor the ratio (1 + <5) of Ao to X2N'. Confine 

the study to 0 < 8. Denote, at any instant t, by Ct the con- 
figuration of all frame fronts that are just window active at t; 

and by 
P(dec err), 

the decoding error probability at any t with match, but with 
neither frame front coincidence nor overflow with respect to 

A = Ao = k'. Refer to 

P(dec err)' := P(dec err) 

at any register step t at which Ct equals one of the worst pos- 
sible configurations (in the sense that the number of erasures 
along the considered codeword is the possible largest). 

Theorem 1 Assume the considered model for truly (unslot- 

ted) asynchronous single sequence hopping (with 0 < S, block 
length k' > 2, the number of frames 1/ > 3 next to each de- 

mand, and k  > 10. Then 

Choose 
III. RESULTS 

= A' := n - k + 1 

(1-Si) 
1 

4(1+£)(! +I) fc< 
< P(dec err) 

<(1+S2)(1 + S3) 'e(l+«)(!+ I) fc'' 

(Expressions of gi(l — 1,2,3) are precisely given in the com- 

panion preprint, gi (7 = 1,2, 3) exceed 1, tend to I asK-t 00, 
and are close to 1 for usual values of k'. Recollect that the 

source blocklength of K' q-ary symbols equals mk .) 
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Abstract — Direct sequence spread spectrum sys- 
tems using partial-response signals in a specular mul- 
tipath environment are investigated. Instead of us- 
ing the conventional precoder-decoder combination 
for non-spread partial-response signals, a RAKE re- 
ceiver is employed to take advantage of the resolvabil- 
ity provided by wide-band DS/SS signals and the in- 
herent diversity of partial-response signals. The per- 
formance measure of interest is signal-to-interference 
ratio (SIR). Our results suggest partial-response sig- 
nals perform well in an outdoor mobile DS/SS system 
with high chip rate. The technique developed in this 
paper can be extended to any type of partial-response 
signals. 

I. INTRODUCTION AND SYSTEM MODEL 

Partial-response signals have been widely used in many non- 
spread communication and magnetic recording systems be- 
cause they allow transmission at the Nyquist rate by intro- 
ducing known interference. Since the interference is known, 
it can be removed by certain processing. In addition, partial- 
response signals confine all the signal power to the main lobe. 
This feature makes filter design very straightforward when 
out-of-band power emission has to be strictly limited. Among 
many variations of partial-response signals, class I and class IV 
signals are most widely used because of their spectral shapes 
and simpler decoding operations at the receiver. 

Two types of decoding algorithms are normally used for 
partial response systems: symbol-by-symbol decoding and 
maximum likelihood sequence detection (PRML) PRML per- 
forms better than symbol-by-symbol decoding. However, the 
performance of PRML depends on the size of the decoder 
memory and the decoder complexity is proportional to the 
size of the memory. Several technical difficulties are usually 
associated with conventional partial response systems. First 
the receiver has to estimate the power level of the received 
signal even when binary signaling is used. The inaccuracy of 
the power level estimate of the received signal degrades the 
noise immunity of the decoder. The degradation could be sig- 
nificant when a large signal set is used. Moreover, channel 
distortion or other types of interference requires the receiver 
to employ an equalizer. 

In this paper, a direct-sequence spread-spectrum (DS/SS) 
system using class-I partial-response (PR-I) and class-IV 
partial-response (PR-IV) signals is considered. The self- 
interference introduced by partial-response signaling is treated 
as a form of multipath interference with known delays and 
amplitudes, and a RAKE receiver is used to take advantage 
of the known multipath interference. The main advantage of 
using a RAKE receiver instead of a conventional precoder- 

decoder combination for a system using partial-response sig- 
naling is the reduction of the complexity of the decoder. It 
was mentioned previously that conventional precoder-decoder 
structure needs to estimate the power level of the received 
signal, to equalize the channel distortion and multipath in- 
terference, and to use a sequential decoder to maximize the 
performance. However for a binary partial-response DS/SS 
system with a RAKE receiver, the decoder does not need the 
information about the power level of the received signal and 
can sustain the channel distortion and multipath interference 
to a certain degree without having to equalize the channel. 
Moreover, symbol-by-symbol detection should perform fairly 
well for such a receiver. The transmitter, channel and receiver 
model were all detailed in [1]. 

II. NUMERICAL RESULTS AND CONCLUSIONS 

We calculated the SIR's for a DS/SS system using PR-I, PR- 
IV, and filtered rectangular chip waveforms. Here, for fair 
comparisons, the filtered rectangular chip is a unit amplitude 
pulse low-pass filtered by an ideal brickwall filter with cut- 
off frequency equal to one half of the chip rate to produce a 
DS/SS signal of the same bandwidth as its partial-response 
counterparts. Our results show that when random spreading 
sequences are used filtered rectangular chips outperform PR-I 
and PR-IV by about 0.5-1 dB. On the other hand, with m- 
sequences and differential delays longer than 3 chips duration 
but no longer than N — 3 chips duration, where N is the num- 
ber of chips per bit, partial-response signals perform better 
than filtered rectangular in certain cases. This suggests that 
partial-response signals may be attractive in an outdoor mo- 
bile radio environment with high chip rate. Another feature 
of partial-response signals is they can be designed to match to 
the frequency response of the channel or the frequency band 
allocations. It may be possible to optimize the system to min- 
imize the self-interference. 

The RAKE receiver structure presented in this paper 
also makes the decoding process for other types of partial- 
response signaling straightforward, whereas for the conven- 
tional precoder-decoder structure the decoding process be- 
comes cumbersome when the number of controlled interference 
terms of partial-response signaling is greater than two. 

A potential disadvantage of partial-response signals is that 
they do not have uniform amplitude, and hence may suf- 
fer from non-linear amplification. Therefore, the transmitter 
power amplifier must operate in the linear range. 
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Abstract - Practical frequency hopped spread spectrum (FHSS) 
wireless networks and multitone modulated wireline systems can be 
modeled as sets of interference channels. In these systems, it is 
desirable to optimize a cost function over the network that includes 
the transmission rates, blocking probability, and dropping probabil- 
ity for users. This optimization can be approximated using distrib- 
uted algorithms that do not require explicit communication between 
pairs of users. We present one such algorithm that is designed to 
quickly identify a suboptimal, but reasonable solution. The perfor- 
mance of this algorithm is evaluated with simulations of prototype 
wireline and wireless systems. 

I. INTRODUCTION 

Both frequency hopped wireless networks [3] and multitone 
modulated wireline networks [1,2] can be modeled by a gain matrix 
plus additive white gaussian noise. In the wireline case, user pairs 
sharing a twisted pair cable interfere with each other through near 
end cross talk (NEXT) and far end cross talk (FEXT). Likewise, in a 
cell based wireless system, communication pairs formed between 
base stations and users interfere because of the shared radio chan- 
nel. We assume here that the base station receiver decodes the 
received signals from different users independently, as is done in 
practice. For both systems, the resulting channel model is a set of 
interference channels. 

Current digital wireless systems (IS-54 TDMA) and wireline sys- 
tems (discrete multitone ADSL) use fixed reuse patterns to guaran- 
tee a minimal signal to interference ratio (SIR) and a minimal level 
of service. These reuse patterns take the form of cellular frequency 
planning in wireless systems, and fixed transmitter power levels in 
wireline systems. Since reuse patterns are designed for the worst 
case (cell boundaries for wireless and 1 % worst case interferers for 
wireline) they are inherently inefficient. Capacity improvements can 
be made in both systems by adapting to the actual interference and 
avoiding the worst case situation when two users with high interfer- 
ence levels share the same channel. 

Recent work has shown that high capacity can be achieved in 
wireless systems with frequency hopping over orthogonal hopping 
patterns [4]. With orthogonal hopping patterns, a user sees a differ- 
ent set of independent interferers in each hop. Power and bits can be 
allocated to those hops where interference is relatively low and a 
high SIR can be maintained for all users on the channel. A similar 
situation exists for the multitone wireline system, except the K 
channels are accessed in parallel. Certain pairs of users will inter- 
fere strongly. We choose to allocate power among users and chan- 
nels to avoid this situation. 

II. COST FUNCTION OPTIMIZATION 

Assuming the interfering signals are independent and Gaussian, 
the aggregate bit rate over K channels is the average of the achiev- 
able bits rates over the channel set. For the wireline case, the trans- 
mission rate is increased by a factor of K because the channels are 
accessed in parallel. The relevant measure of the system perfor- 
mance is a cost function with call blocking, dropping, and system 

capacity as arguments. The goal is to optimize the cost over all users 
in the network so that the maximum revenue for network operation 
can be maintained, subject to specific service constraints. 

Since the SIRs of the users in the network are all interconnected 
by the transmit powers, the optimal choice of the feasible set is diffi- 
cult. Any algorithm for optimizing the cost function must operate 
jointly over all the users. Our approach is to choose a suboptimal 
solution based on admission control. New users rapidly probe all K 
channels to determine which can be used without excessive interfer- 
ence to previously active users. The algorithm is modeled after [5] 
but extended to handle multiple constellation sizes and periodic 
adaptation of active users. Active users make an effort to accommo- 
date new users, but only if doing so will allow them to maintain the 
transmission rate they achieved when entering the network. The bal- 
ance between blocking and dropping probabilities is controlled by 
the aggressiveness of new users and the ability of active users to 
block new users when necessary. After admission, an active user 
will use a distributed power control algorithm [6] to maintain the 
SIRs on all allocated channels. 

III. CONCLUSIONS 

At a fundamental level, multitone digital subscriber lines and fre- 
quency hopped wireless networks have formally similar channels 
and network cost functions. Optimizing the capacity and utility of 
these systems can be achieved by algorithms that operate in a dis- 
tributed fashion, using only the knowledge of one's own channel 
characteristics and the interference from other users. The differ- 
ences between wireline and wireless systems lie in the magnitude of 
the interference between user pairs and the associated costs of 
blocking and dropping. When these factors are incorporated into the 
adaptation algorithms, good performance can be achieved with both 
systems. 

ACKNOWLEDGMENTS 

This work was supported by grants from ARPA/ETSO, Univer- 
sity of California MICRO, PairGain Technologies, and Rockwell. 

REFERENCES 

[1] Kalet, I. "The Multitone Channel", IEEE Transactions on Communi- 
cations, Vol. 37, No. 2, February 1989, ppll9-124. 

[2] Chow, J.S., et al, "A Discrete Multitone Transceiver System for 
HDSL Applications", IEEE Journal on Selected Areas in Communi- 
cations, Vol. 9, No. 6, August 1991, pp 895-908. 

[3] G.J. Pottie and A.R. Calderbank, "Channel coding strategies for cellu- 
lar radio," submitted to IEEE Trans. Vehic. Tech. 

[4] C.C. Wang and G.J. Pottie, "Dynamic channel resource allocation in 
frequency hopped wireless systems," 1994 International Symposium 
on Information Theory. 

[5] C.J. Hansen, C.C. Wang, and G.J. Pottie, "Distributed Dynamic 
Channel Resource Allocation in Wireless Communication Systems," 
Proceedings of the 1994 Asilomar Conference on Signals, Systems, 
and Computers. 

[6] S. Chen, N. Bambos, and G. Pottie, "Admission Control Schemes for 
Wireless Communication Networks with Adjustable Transmit Pow- 
ers", Proc. IEEE Infocom '94, pp 21-8, vol 1. 

387 



A Bayes coding algorithm for FSM sources 
Toshiyasu MATSUSHIMA'and Shigeichi HIRASAWA 

School of Science and Engineering, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169 JAPAN 

I. INTRODUCTION 
The optimal universal code for FSMX sources[l| with re- 

spect to Bayes redundancy criterion[2] is deduced under the 
condition that the model, the probabilistic parameters and the 
initial state are unknown. The algorithm is not only Bayes 
optimal for FSMX sources but also asymptotically optimal 
for a stationary ergodic sources. Moreover the algorithm is 
regarded as a generalization of the Ziv-Lempel algorithm. In 
the basic CTW algorithm, the algorithm needs the initial con- 
text xi~dX2-d ■ ■ ■ xo, where a finite constant d is the depth 
of the context tree, for calculating the coding probability of 
x\. For the problems of the initial situation and the infinite 
depth tree, the extensions to the CTW algorithm have been 
proposed in [3]. The optimal algorithm proposed in this pa- 
per gives a solution against these problems from another new 
point of view. 

II. THE PROBABILITY OF A SEQUENCE FROM A FSMX 
SOURCE 

If arithmetic coding is used for universal coding, the main 
problem is deciding coding probability Pc(xn) or PcXx^x1^1) 
which is the probability assumed to code a source sequence 
x" : xiX2 ■ ■ ■ xn where Xi 6 A. Let m be an FSMX source 
model. The state set of m is represented by a Z-ary complete 
tree T(m) called a context tree. Let S(m) be the set of all 
states in m. S(m) corresponds to the set of all leaf nodes 
in T(m). The state of a model m at t is determined by the 
postfix of a source sequence xl. This mapping from xl to a 
state s G S(m) is denoted by fm(xt). The node corresponding 
to a postfix x\_j is denoted by s(x\_j). All interior nodes of 
a tree T(m) is denoted by 57(m). 

For efficiency of the calculation of Bayes coding, we intro- 
duce a parametric representation for the probability of FSMX 
sources. Let 0(m) be a transition probability {P(x|s)|a; e 
A,3 e S(m)}. Moreover, the initial transition probability 
0'(m) = {PT(x\s)\x e A,s e S'{m)} is introduced. The 
probability of a sequence xl is represented by 

P(xt\0(m),0I(m),m) = PI(xl\\)-PI(xj\S(xi-1)) 
i 

' P(xi+1\fm(xi)), (1) n 
where J = argnün,{s(a^,)|s(a:Q) e S(m)}. 

III.  A RECURSIVE CALCULATION OF THE CODING 
PROBABILITY 

The Bayes optimal redundancy code for hierarchy source 
models such as FSMX models given an initial state was pre- 
sented in our previous paper. In the case that the initial con- 
dition is unknown, the Bayes code of the FSMX models repre- 
sented by Formula (1) is given in this section. The recursion 
formulas of the adaptive coding probability of the code are in- 
duced by using special classes of the prior : q(s), P(0(s)|s)[4] 
and P(0(sY\s). 

P' (xt\x
l  l,s) and Ps(xt\x

t  ',s) are defined as follows: 

P^l**-1,») =   I       jp(xt\xt-\BI(s)1s) 

P(e'{s)\xl-\s)deI(s\ (2) 

PS(xt\x
l-\s) =   /"...  /Pfoli'-SOW,«) 

P{9{s)\xt-\s)de(s\ (3) 

where F(ö/(s)|xt_1,s) is the posterior probability of 01(s) 
given (xt_1,s). 
Theorem 1 Let q(s\xt^1) be the posterior probability ofq(s) 
given x1 . The adaptive coding probability of Bayes code vrith 
respect to Formvla (1) is given by the following recursion for- 
mula: 

Paixtlx1^1) =g(xt|x*_1,sA), (4) 

(*1)     ifs = s(x\-1) 
q(xt\x       ,s) (5) (*2) otherwise, 

{*\)=q(s\xt-x)PS{xt\x
t-\s) + {\-q{s\xt-1))PI(xt\x

t-\s), 

(*2) = q{s\xt-l)PS(xt\x
t-\ a) + (1 - q^x^M^x*-1, *'), 

where s' is a child node, of s, and s , s G {s(xt~,-)|j — L • • • J t~ 

IV. THE PROPOSED ALGORITHM 

Using Theorem 1, we propose a practical Bayes coding al- 
gorithms for FSMX sources. The context tree used in the 
algorithm, which is not always an Z-ary complete tree, grows 
according as the length of the source sequence increases. The 
set of the paths from the root to the leaves in the context tree 
with respect to the sequence xl contains all parsing blocks of 
xl by the Z-L algorithm. This means that the FSMX sources 
implicitly assumed in the Z-L algorithm are included in the 
context trees in the proposed algorithm. Although the Z-L 
algorithm assumes a single FSMX source for parsing, our al- 
gorithm uses a mixture model with respect to the set of FSMX 
sources which includes the single FSMX source. The proposed 
algorithm is regarded as a generalization of the Z-L algorithm. 

[1] 

[21 

[3] 

[4] 
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Abstract — The presented paper addresses a mod- 
ified version of the CTW (Context Tree Weighting) 
which deals with some FSM (Finite State Machine) 
models as well as the FSMX (FSM X) models at little 
expense of computing in encoding/decoding. 

The FSMX model is an FSM model g G GD (D > 0: in- 
teger) in which each state s the data xt+i, t = 0,1, • • •, n — 1 
(n > 1: integer), to be encoded depends on is expressed as 
the shortest sequence xt-d+iXt-d+2 • • • xt (d < D) such that 
no state s G S(g) is a postfix of any other state, where GD is 
the set of the models whose depth d is at most D, and S(g) 
is the set of the states for g G GD- In general, the length 
K^ri^-oo) given xi«,  G X°° is expressed by /(z"k-oo) = 

-l°g{£9eGD W(9)Il.esig)Q'M\*-<>°)} - x" € X"' where 

W(g), g G GD, satisfys X29ecD W(g) < 1 (model weighting 
technique).   Then, for each model g G GD, the probability 

Q.(« >) = n nt[xt+i,s] + 1/2 
is assigned to each state 'll — oo,  -X1        nt[s] + a/2 

s G S(g), where the product is taken over t = 0,1, • • •, n ■ 1 
such that the state at time instance t + 1 is s G S(g), and 
nt[xt+i,s] and nt[s] are respectively the occurrence of xt+i G 
X given s G S(g) and that of s G S(g) in t = 0,1, • • • n — 1. 

The CTW gives length /(x^-oo) = -logPx(x?\x°_D+i), 
i" G Xn, by setting x°_D+i G XD and constants 0 < ßs < 1 
for s G uJ=

_
0
1Xd (/?, = 0 for s G XD), and applying the 

following equation recursively: 

PSK|X°_D+1) = { 

{l-ß.)Q.(x?\xlD+1) 
+ßs IJ P"{x?\x<LD+1)     (0 < |»| < D) 

Qs(x?|x%+1) (M=ö) 

(1) 
where xs G UK^DX

11
 is the concatenation of x G X and s G 

Uo<d<D-i^d, and D > 0 is some constant. Then, W^(fif), </ G 

Gr>, are expressed as W(g) = ]lses(9)(1-^) llter(9)-s(9) ^' 
where T(g) is the set of any postfixes of s G S(g) including 
s itself. For example, W(g), g G GD, are obtained for five 
models (D = 2) and ß3 = 1/2, s G {A} U X, as depicted in 
Figure 1. Notice that just O(Dn) computation and 0(aD) 
storage are needed for the encoding/decoding although the 
depth is bounded by the finite constant D [1]. 

In this paper, we remove the constraint in the CTW that 
the source should be an FSMX model [1]. Although the pro- 
posed scheme does not yet cover the general FSM models with 
bounded depth D, the upperbound of the individual redun- 
dancy coincides with that of the original scheme except the 
length of model g G GD (Theorem 1). In addition, the com- 
putation complexity is shown to be 0(2Dn) (Theorem 2). Al- 
though the 0(2Dn) computation may seem to be enormous 
compared with that of the original scheme, 0(|GD|TI) com- 
putation is required to realize model weighting technique for 
general FSM models. The number of possible models which 

we deal with in this paper is proved to be \GD\ = 0(2" ) 
(Theorem 3). 

The model class we deal with is such that each state which 
Xt+i, t = 0,1, • • •, N—1, depends on is expressed as an element 
in (Xl){*})D rather than that in U0<d<ri^d, where "*" refers 
to a don't care symbol meaning that the state does not depend 
on the value of the position. Then, Eq. (1) is replaced by the 
following recursive equation 

P3(xi\x1D+i) 

(l-ß.)P"W\z°-D+1) 
+ßs Y[ P"K|x°_D+1)   (o < M < D) 

xex 

Q.W\*°-D+I) (M = D) 
(2) 

Then, W(g), g G GD, are expressed as W(g) - ]lrefi(9)(1 ~ 
ßr)YlteR(g)ßt, where R(g) is the set of r G Uo<d<D-i(X U 

{*})d such that concatination *r is a postfix of any state in 
model g G GD- For example, W(g), g G GD, are obtained for 
six models (D — 2) and ßs = 1/2, s G {A} U X, depicted as 
in Figure 2. Note that any FSMX model can be expressed as 
a specific case where, once "*" is emitted by some node, the 
"*" does not stop until the leaf, thus such a model as Figure 
2 (e) is excluded in the original scheme. 

The procedure of the update at time instance t + 1, t = 
0,1, • • • ,n — 1, is summaized as follows: Replace some place 
of the a-nary sequence x|_D+1 G XD with "*"'s to obtain 
2D (a+ l)-nary sequence of length D; update Qs(xi\x°_D+1), 
nt[xt+i,s], Xt+i G X, and nt[s] for the 2 states s G (X U 
{*})D generated in step 1; and generate Ps(x"\x°_D+1) by 
recursively applying Eq. (2) to the updated Pxs(xi\x°_D+i), 
x G X U {*}, until JP

A
(X"|X^£,+I) is obtained. 
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Abstract — We investigate the effect of time rever- 
sal on tree models of finite-memory processes. This is 
motivated in part by the following simple question 
that arises in some data compression applications: 
when trying to compress a data string using a univer- 
sal source modeler, can it make a difference whether 
we read the string from left to right or from right to 
left? We characterize the class of finite-memory two- 
sided tree processes, whose time-reversed versions also 
admit tree models. Given a tree model, we present 
a construction of the tree model corresponding to 
the reverse process, and we show that the number 
of states in the reverse tree might be, in the extreme 
case, quadratic in the number of states of the original 
tree. This answers the above motivating question in 
the affirmative. 

I. SUMMARY 

Tree models [2] provide a reduced parametrization of finite- 
memory (Markov) sources, which can be efficiently and opti- 
mally modeled using Algorithm Context[l, 2], thus allowing a 
model size that is not necessarily exponential in the Markov 
order. In this work, we investigate the effects of time reversal 
on the structure of the minimal tree model of a finite-memory 
source. Time reversal of stationary Markov processes is well 
understood in the literature. In particular, it is known that 
time reversal preserves both the order and the entropy of a sta- 
tionary Markov process (see, e.g., [3, Ch. 4]). This still leaves 
the question of the effect on the minimal tree parametriza- 
tion open, and our interest in it stems from its implications 
(through model cost) on the rate of convergence to the entropy 
of a universal modeler. 

Let A be an alphabet of a symbols, and let A de- 
note the empty string. For a string u=u\U2 ■ ■ ■ Uk€A*, let 
u=UkUk-i. . .«i denote the reverse of u. A process (or in- 
formation source) over A is defined as a probability assign- 
ment P : A* -+ [0,1] satisfying P(X) = 1 and P(u) = 
^2,a-AP(ua) Vu € A*. Consider an arbitrary sequence 
xn = S1X2 ■ ■ -xn over A. A process P has the finite-memory 

property (see, e.g. [2]) if the function p(a\xn) = P(xna)/P(xn) 
(a conditional probability by the properties of P) satisfies 

p(.\xn) = p(-\us(xn))   \fueA", (1) 

where s(xn) = xnxn-\ ■ ■ ■ xn-t+i for some I, 0 < I < m, 
not necessarily the same for all xn (the case I = 0 is inter- 
preted as defining the empty string). Such a string s(xn) 
is called a state. In a minimal representation of the model, 
s(xn) is the shortest suffix of xn (or context) satisfying (1). 
The set S of states defines a complete a-ary tree T, with the 
branches labeled by symbols of the alphabet, and S as the 
set of leaves. The pair T = <T,p(-|-)> is called a tree model 
for the process P, which is called minimal if for every node 
w in T such that all its successors wb are leaves, there exists 
a, b, c € A such that p(a\wb) 7^ p(a\wc). Conversely, we prove 
that given a tree model T — <T,p(-\-)>, there exists one and 

only one two-sided tree process P modeled by T, such that 

the reverse assignment P(u) = P(u) is also a finite memory 
process (called also the reverse process of P). 

JThe reverse process P admits a minimal tree model 
<Tp,p(-\-)>. The underlying tree Tp in this model depends on 
both T and p(-|-)- In contrast, we define the reverse tree of T 
as T = (Jall (is Tp , which depends solely on T. The tree T is 
the minimal representation for the reverses of all the processes 
whose minimal tree models have T as underlying graph. We 
can also see T as the minimal tree of a reverse process Pz, 
where Pz is a "symbolic process" with a minimal tree model 
<T,pz(-|-)> in which we have substituted (a—I) symbolic in- 
determinates za>s for the free parameters p(a\s) at each state 
s. Notice that, while there is a symmetry between T and Tp, 

so that (Tp)- = T, no such symmetry exists between T and 

T, and we might have T / T. We present a combinatorial 
construction of T, and use it as a tool to bound the size differ- 
ence between T and Tp, noting that the latter is a subtree of 
T. The construction and proofs rely on the characterization 
of tree models that have the finite-state machine poperty, i.e., 
whose leaves uniquely define a next-state function. Let \T\L 

denote the number of leaves of a complete a-ary tree T. 
Theorem 1. (a) Let T besuch that \T\L=N. Then, 

w^^T)N2 + °w- 
(b) For every N>0 such that N = 1 mod (a—1), there exists a 
complete a-ary tree T with \T\L=N, such that \T\L attains 
the upper bound of part (a) up to an additive term O(N). 

Corollary 1. Let P be a process with minimal tree model 
<T,p(-\-)>, and let N=\T\L- Then, the minimal tree model 
<Tp,p(-\-)> of P satisfies 

y/2(a-l)N-0(l) < \fp\L <  ^±-jN2 + 0(N). 

It follows from Corollary 1 that, when using tree sources to 
model data, there might be significant differences between the 
size of the tree estimated when reading the data from left to 
right and the one estimated from right to left. These differ- 
ences, in turn, affect the model cost incurred by the modeling 
algorithm. This behavior is a consequence of the choice of 
class of models targeted by the algorithm, since the number 
of free parameters determining the reverse process is identical 
to the number of parameters in the original process. On the 
other hand, it is this choice of model class that allows for an 
efficient estimation algorithm. 
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In this abstract, we give an approximation formula for the 
predictive Bayes code for the FSMX' models (subspaces of 
Markov models). Moreover, we empirically show that the 

code using our approximation formula with the Jeffreys prior 
employed gives shorter code length than the one using the 
Laplace estimator for the first order Markov models. 

Let A be a set of m symbols. Suppose that A contains 
symbol UJ and let A' denote A — {w}. Let T be a subset of A*. 

When, for all s £ T, any postfix of s belongs to T (e.g., the 
postfixes of 0102 are a\a2, a,2 and A (the null sequence)), T is 
called a context tree. Define dT = {as\a e A,s€ T}U{A}-T. 

Each element of dT is called a leaf of T or a context. For 

any a1 = aio2,...,a, (i > d(T) = ma,xsegT \s\), let s(al) de- 
note a postfix of a1 which belongs to dT. s(a') is called 

the context of a{ defined by T.   Now, we define the FSMX' 

d(T) + l ''sfa')' sourcep(-\V,T) asp^.T) = p{ad^\r,,T) Ut'äm+i V. 
where rfe denotes in general the probability that a is pro- 

duced at the context s (i.e. 77° > 0 and YlaeA *!* = * h°ld.) 

and p(ad^\r],T) denotes the initial probability determined 
by the stationary probabilities. Let r\ be the (|.4| — 1) • \dT\- 
dimensional vector whose components are 77" (s 6 dT, a € A') 
and H(T) denote the range of r\. We can write p(aN\r],T) = 

p(ad\v,T)Yl3€9TTlaeA(Vs)n', where na
s denotes the num- 

ber of times a is generated at the context s in the sequence 
ad+i...aN, and we let na = J2a€A nj. An FSMX' model M(T) 
is defined as M(T) = {p(-|r?,T)|?7 £ H(T)}. (When Vs € dT 
Va € A sa$T holds, M(T) is called an FSMX model.) By 
introducing the another parameter 9, p(aN \r/) can be rewritten 
as follows. 

p(aN\V,T)=p(ad\V,T) J] exp(n,( £ (£)# - V(*.))),   (1) 

sSÖT a€A' 

where we let 9a
3 = ln(r)?/?#), 77° = </ns, and ip(9s) = 

— In77" = ln(l + YLa^A' exP#?)- Cm' denotes the natural log- 
arithm.) We let 0(T) denote the range of 6 as 77 varies over 
H(T). Note that a class of probability distributions written as 
exp{ns(^2a€A,(0s)f)s — yj(9s))) is called an exponential family. 
We use p(-\9, T) as a short hand notation for p(-\r)(9),T). 

Next, we define the Bayes code for M(T). We fix a con- 
text tree T and let p(-\9) denote p{-\9, T). We assume a prior 
w(9)d9 over ©(T). Then, the predictive Bayes code with prior 

w is given by ^(ajv+ila^) = Jp(aN+1\aN,9)w(rj\aN)d9 = 

J r)""J^ w(r]\aN)d9, where w(9\aN) denotes the posterior den- 

sity of 9. Now, we can state our main result. 

Theorem 1 Let w(9) be the prior defined on the measure d9. 
Under a certain weak condition, for every a 6 A', 

pw(a\a   ) = rj°c + 
1   dln(p(ad\9)w(9)) + 0( \ZhTFi 

),      (2) 
rise d9ic ' ~yn3C\/N' 

holds, where sc and 9 denote s(aN) and 9(fj), respectively. 

Remark: The key of the proof is expression (1). This extends 

the approximation formula for the Bayes code for any (i.i.d.) 
exponential family given in [3]. 

We let rj denote the first term plus the second term of 
(2). Then we can use fj JV^1 as an approximation formula for 

p(aN+i\a ). Let wj denote Jeffreys prior, which is defined as 
wj(9)d9 = (detJ(9))1'2/c (c is a normalization constant and 
J(9) is the Fisher information matrix with respect to 9). We 
refer to pWJ as the Jeffreys code. It is known that pWJ for 
the i.i.d. case (i.e. T = 0) is asymptotically minimax in terms 

of redundancy ([1]) and almost equals the Laplace estimator, 
which is used in C0NTEXT[2] and CTW method[4]. 

Now, we compare our approximation formula for wj with 
the Laplace estimator. Let A = {0,1} (a» = 0) and T = {A}. 
(dT = {0,1}) Suppose that s(aN) = 0. By Theorem 1, the 
approximation of the Jeffreys code for this case is given by 

- vh+fjO    '■ (3) 

Note that the difference between 770 and the Laplace estimator 
(nj + 0.5)/(n0 + 1) equals ft(l/n0). 

We have compared the redundancy of the code using (3) 
with that of the one using the Laplace estimator (let pt de- 
note it) by a computer simulation. In general, the redun- 
dancy of code q is defined as Rn(9,q) = Ee(—\ogq(aN) — 
(— \ogp(aN\9))), where q(aN) is the block probability given 
to a by q and Eg denotes the expectation with respect to 
p{-\6). ('log' dnotes the logarithm to the base 2.) We have 
estimated the expectation with respect to p(-\9) by perform- 
ing a large number of trials using pseudo random numbers. 
We show the result with iV = 50 in Table 1. The number of 
trials is 1000. In each cell, the right hand sides and left hand 
sides denote Rflt(9,pWJ) and RN(9,PL), respectively. The ver- 
tical and horizontal axis correspond to the values of 770 and 77? 
of the actual source respectively. We can see that Rp/(9,pj) 

0.1 Ö.5 Ö.9 

0.1 PJ   1 PL 3.59 / 3.72 3.52 /3.72 3.71 / 4.01 
0.5 3.44 /3.83 3.36 / 3.78 
0.9 3.41 / 3.86 

Table 1: Redundancy 
< RN(9,PL) holds for all cases.   This seems to support our 
conjecture ([5]) that the Jeffreys code is minimax for FSMX' 
models as well. 

Our approximation formula requires not only the n"c's but 
also the n°'s for all s S dT. On the other hand, the Laplace 
estimator can be calculated based on the n"c's alone. Both 
CONTEXT and CTW methods make use of such property of 
the Laplace estimator. Hence, there is a difficulty in introduc- 
ing our formula to CONTEXT or CTW. 
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I. INTRODUCTION 

Markov chain (N-gram) source models for natural language 

were explored by Shannon and have found wide application 
in speech recognition systems. However, the underlying lin- 

ear graph structure is inadequate to express the hierarchical 

structure of language necessary for encoding syntactic infor- 
mation. Context-free language models which generate tree 

graphs are a natural way of encoding this information, but 

lack the modeling of interword dependencies. 

In this paper, we consider a hybrid tree/chain graph struc- 

ture which has the advantage of incorporating lexical depen- 
dencies in syntactic representations. Two Markov random 

field probability measures are derived on these tree/chain 

graphs from the maximum entropy principle. 

II. STOCHASTIC CONTEXT-FREE GRAMMARS 

A stochastic context-free grammar G is specified by the quin- 
tuple < VN,VT,R, S, P > where VN is a finite set of non- 
terminal symbols, Vr is a finite set of terminal symbols, R is 

a set of rewrite rules, 5 is a start symbol in VN, and P is a 
parameter vector. If r € R, then Pr is the probability of using 

the rewrite rule r. 
An important measure is the probability of a deriva- 

tion tree T. Using ideas from the random branching pro- 
cess literature [1, 4], we specify a derivation tree T by its 
depth L and the counting statistics zi(i,k),l = 1,..., L, i — 

1,..., |Vjv|, and k = 1,..., \R\. The counting statistic zi(i, k) 
is the number of non-terminals <x; € VN rewritten at level I 
with rule Tk € R- With these statistics the probability of a 

tree T is given by 

L    \VN\  \R\ 

-(r)=nnn^ l(',k) 
(1) 

1=1   t=l  & = 1 

In this model, the probability of a word string WI,N = 

witi)2 ■ • • WN, ß(WliN), is given by 

ß{Wi,N) 
T£Pa.rses(WliN) 

*F) (2) 

where Parses{W\tN) is the set of parse trees for the given 
word string. For an unambiguous grammar, Parses(W\tN) 

consists of a single parse. 

III. MARKOV RANDOM FIELD MODELS 

We now consider adding bigram relative frequencies as con- 
straints on our stochastic context-free trees inducing linear 

constraints on the leaves of the CF tree. For a given word 
string W\tN = W1W2 ■ ■ ■ WN, the relative frequency of the word 

pair ViVj is 

CVlVj(W1>N) 
N-l 

N-l 

N 
  2J l«iiij(w>k, Wfc+i) (3) 

where i>;, VJ € Vr ■ 
Theorem 1 [3] 
The probability distribution on trees, p(T), minimizing the 

relative entropy with respect to the distribution T(T) defined 
by a stochastic context-free grammar, 

P(X) I>^^ (4) 

VjVj(Wl,N) 
subject   to   the   bigram   constraints    {E 

HviVjJVi,Vj€Vrp  IS 

p(T) = ± exp IJ^-J   £    J2  «v1»2C„1„a(W1,JV))*(T) 
\ t>i€VT v2€VT / 

where Z is the normalizing constant and the aVlV2 are the 
Lagrange multipliers chosen to satisfy the constraints. 

This distribution is a Markov random field with the follow- 

ing neighborhood structure on the leaves: 

p(wi\T\wi) = p(wi\v)i-i,Wi+i,fi) (5) 

where 7,' is the part-of-speech of tu;. Note that because of the 

added lexical neighbors, the distribution is no longer context- 
free. 

A second, more computationally efficient model which re- 
tains the neighborhood structure of the MRF above is given 
by the distribution 

p(T) = -^T(T*)p(w1\y1)J^p(wi\wi-1,ji) (6) 

where T* is a tree down to the preterminal, or part-of-speech, 
level. This model is interpreted as a SCF model generating a 
sequence of parts-of-speech with word attachment according 

to a non-stationary Markov chain. 
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A Multialphabet Arithmetic Coding with Weighted History Model 
Meng-Han Hsieh and Che-Ho Wei1 
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Abstract — A multialphabet arithmetic coding 
with weighted history model is presented for variable 
length coding of the video symbols in video compres- 

sion applications. 

I. INTRODUCTION 

A limited past history model introduced by Ghanbari[l] uses 
a limited number of past symbols to estimate the probabil- 
ity distribution. This model takes relatively large buffer to 
achieve its optimal compression performance. Here we present 
a weighted history model that uses less buffer and obtain bet- 
ter performance. 

II. WEIGHTED HISTORY MODEL 

Suppose there are p possible occurrences, and the alphabet 
used in arithmetic coding is defined as S\, • • •, Sp. The buffer 

size used in the limited past history model is M, and the 
occurrence of Si in the buffer is represented by Oj for =21 index 

t lies between 1 and p. Adding all occurrence in the buffer thus 
obtains the buffer size, i.e., 0\ + O? + O3 + • • • + Op = M, 
and the relative frequency of symbol Si can be obtained by 
freq(Si) =     l^.   Therefore the corresponding cumulative 

frequency of symbol Si is cum-freq(Si) = Yl'k=i /re?(^<0- 
The major disadvantages of the limited past history model 

is caused by the requirement that the occurrence of each sym- 
bol is at least one for arithmetic coding. The limited past 
history model overestimates the probability of each symbol 
by 2M, and the total overhead probability is equal to P.. 

When the buffer size M is small, the overhead probability is 
almost one. That is, the probability distribution obtained by 
the limited past history buffer is nearly invariant to occur- 
rence in the history buffer, and the statistical property of the 
source data is not reflected by this model. 

To enforce the relations between the probability distribu- 
tion and the occurrence in the buffer, we can simply induce a 
weight to the buffer. Therefore, the frequency of the tth sym- 

bol is freq(Si) = PXMXV • r^ne t°tal overhead probability of 
the weighted history model is p,^f.w, which is much smaller 
than that of the limited past history model, especially when 
the buffer size is small. 

The weighted history model uses less buffer than the limited 
past history model does. Consequently, the weighted history 
model has a faster adaptation and the local redundancy can 
be exploited more. The performance of the arithmetic cod- 
ing with weighted history model for various buffer sizes and 
various weights was investigated. Fig. 1 uses a coded data of 

the pyramid VQ[2] as the source data. Five different weights 

of the weighted history model with various buffer sizes are 
shown. From this figure, it can be seen that the weighted his- 

tory model really outperforms the limited past history model, 
especially when the buffer size is small. The large weight will 
reduce the probability of the symbols that are not in current 

o 

a 
a. 

1This work was supported by National Science Council, ROC 
under the contract NSC82-0404-E009-338 

Fig. 1: Performance of arithmetic coding with weighted history 
model. Data source: coded data form pyramid VQ. 

buffer. If the next symbol is not in the history buffer, a long 
codeword will be assigned to represent this symbol because of 
low probability. From our experiments, an appropriate weight 
for the weighted history model is in the range from 16 to 128. 

III. HARDWARE IMPLEMENTATION 

The weighted history model uses a smaller history buffer to 
model the cumulative density function of the arithmetic coder, 
and uses smaller counters to record the cumulative frequen- 

cies than the limited past history model. This is because each 
occurrence in the history buffer is multiplied by a weight, thus 
all bits below the weight are not changed if the weight is an in- 
tegral power of 2. Because of smaller buffer size and counters, 
the weighted history model is well suited for hardware imple- 
mentation in conjunction with the multiplication-free multi- 
alphabet arithmetic coder proposed in [3]. 

IV. CONCLUSION 

A weighted history model can solve the disadvantages of the 
limited past history model. The performance of the weighted 
history model is better than the limited past history model, 
and the history buffer used in the weighted history model is 
smaller. From the experiments, it can be seen that the arith- 
metic coding with weighted history model is good for image 
coding. 
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Bit-Wise Arithmetic Coding for Data Compression 
Aaron B. Kiely1 
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Abstract — Consider the problem of compressing 
a uniformly quantized IID source. A traditional ap- 
proach is to assign variable length codewords to the 
quantizer output symbols or groups of symbols (e.g., 
Huffman coding). Here we propose an alternative so- 
lution: assign a fixed length binary codeword to each 
output symbol in such a way that a zero is more likely 
than a one in every codeword bit position. This re- 
dundancy is then exploited using a block-adaptive bi- 
nary arithmetic encoder to compress the data. This 
technique is simple, has low overhead, and can be used 
as a progressive transmission system. 

I. ENCODING PROCEDURE 

A continuous source with probability density f(x) is quantized 
by a uniform quantizer whose output symbols are mapped to 
b bit codewords. The first codeword bit indicates the sign of 
the quantizer reconstruction point. Each successive bit gives 
a further level of resolution and is assigned so that zeros are 
more concentrated near the origin. Figure 1 illustrates this 
mapping for 6 = 4. 

fix) 

■a * i8 ryTn-n^nrn-h^T-°T<hr0-rrre i* i * * 
gOOOOOOOOllllllll 
£1111000000001111 
.§1100110000110011 
81010101001010101 

Fig. 1: Example of a pdf and codeword assignment for a four bit 
uniform quantizer. 

We assume that f(x) is symmetric about x — 0 and nonin- 
creasing with \x\ so that the probability is more concentrated 
near the origin. Such sources are not uncommon in practice. 
Because of this assumption, the codeword assignment ensures 
that a zero will be more likely than a one in every bit position. 

Codewords corresponding to N adjacent source samples are 
grouped together. The N sign bits of the codeword sequence 
are encoded using a block-adaptive binary arithmetic encoder. 
Then the N next most significant bits are encoded, and so 
on. Each bit sequence is encoded independently- at the ith 
stage the arithmetic coder estimates the unconditional proba- 
bility that the ith codeword bit is a zero. This can be viewed 
as a simple progressive transmission system- each subsequent 
codeword bit gives a further level of detail about the source. 

The obvious loss is that we lose the benefit of inter-bit 
dependency. E.g., the probability that the second bit is a 
zero is not in general independent of the value of the first bit, 
though the encoding procedure acts as if it were.   However, 

for many sources (e.g., Gaussian and Laplacian), this loss is 
small, and this technique often has lower redundancy than 
Huffman coding, because the arithmetic coder is not required 
to produce an output symbol for every input symbol. 

The independent treatment of the codeword bits provides 
some benefits. The overhead required increases linearly in 
b. By contrast, because the number of codewords is 2b, the 
overhead of block-adaptive Huffman coding increases expo- 
nentially in b unless we are able to cleverly exploit additional 
information about the source [2]. 

II. ARITHMETIC ENCODER OPERATION 

A binary arithmetic encoder has a single parameter P, the 
anticipated probability of a zero. We encode an JV-length 
sequence of bits block-adaptively, i.e., the encoder output se- 
quence is preceded by overhead bits that identify to the de- 
coder the value of P being used. By using log2 N bits of 
overhead, we could specify the exact frequency of zeros in the 
sequence, but by using fewer bits we can exchange accuracy 
for lower overhead. If m overhead bits are used, we can select 
2m probabilities {pi, P2,... P2m} that can be used as values 
for P. This amounts to using line segments to approximate 
the binary entropy function [1]. 

Omitting the remaining details, we find that for large N, 
to minimize the maximum redundancy (including overhead), 
the probability values are 

Pi « l-sin(^T[l + 2m-2i]) 

and the optimal number of overhead bits m is approximately 

m « 2 log2 N + lo§2 "" ~ 1- 

The encoder counts the number of zeros in the input se- 
quence to determines the probability index i. We transmit 
m bits to identify i, followed by the arithmetic encoder out- 
put sequence. The encoder and decoder both use parameter 
P = Pi. 

III. PERFORMANCE 

The rate R of the bit-wise arithmetic coder is approximately 

RxH(Q) + H + 2J^+logaT-i + ilog2JV 

1 The research described in this paper was performed at the Jet 
Propulsion Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space Administration. 

here H(Q) is the entropy of the quantized source and 72. is the 
redundancy due to independent treatment of the codeword 
bits. 
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Fast Enumerative Source Coding 

Boris Ryabko 
Novosibirsk Telecommunication Institute, Kirov st. 86, 630102, Russia 

Abstract — The problem of enumerative coding 
was considered in [1] for the first time. By coding 
words of a length n the method from [1] has an 
encoding and decoding speed which equals to 0(n) 
when n —► oo. We propose a code which has the 
high speed: 0(log2 n loglogn), n —► oo. This code is 
close to author's method from [2]. 

I. Introduction and the Main Idea 

The problem of enumerative coding is well known in 
Information Theory and widely applied to retrieval 
problems and combinatorial analysis [1]. The suggested 
fast code uses the method from [2]. The simplest 
but important example of enumerative coding is the 
problem of translation numbers from one number system 
to another. We use this example for the description of 
the main idea of the proposed method . Let we have to 
translate the number xi...xn from the ?n-system (m > 2) 
to the binary system. A "common" method is based on 
well - known Homer scheme : 

(1)    code(xix2...xn) = (...(ijm + x2)m + x3)...m + xn 

When we calculate in the binary - system, we obtain the 
value x\...xn in the binary - system . We shall assess the 
calculation time by the number of operations on single - 
bit words. We use the Schonhager- Strassen method of 
multiplication and division of numbers.For this method 
the time of multiplication of two numbers with L digits 
each, is equal to 0{L\ogL\og\ogL),L —* oo. [3]. It is 
easy to see that the time for calculation by (1) is not less 
than en2, c > 0, n —»■ oo . Hence, the speed is not less than 
en. We suggest computing by the scheme 

(2)    code(x1...xn) = ((...((xim + x2)(mm) + (x3m + X4))) 

((mm)(mm)) + (x^m + x§){mm) + (17m + Kg)...) 

In this case the main part of multiplications will 
be implemented on comparatively small numbers and 
when (2) is used, the time for computing is equal to 
O(nlog nloglog n),n —* 00 and the encoding speed is 
equal to 0(log2nloglogn)... We can see that "proper" 
arrangement of brackets allows to decrease the calculation 
time essentially. It is worthy of noting that the described 
method is known as "divide and conquer" principle [3]. 

II. Main Result 
We use definitions from [1].    Let A =  {0,l,...,m— 1} 
be an alphabet of m letters,m > 2, An be the set of all 

words of length n over the alphabet A. Let an arbitrary 
S C An be a source. Let's give the lexicographic order 
to words S, and for the integer 1 < k < n and for the 
word x\...xk G Ak, denote by Ns(x\...xk) the quantity of 
words produced by S and having the prefix x\...xk In [1] 
the code by formula 

n 

(3) code(xi...xn) = X] X/ N,(xi...Xi-ia) 
j=l a<xt 

was proposed. Let's define for x\...xn G S . 

(4) P(Xl) = Ns(xx)/\S\, P(xk/x1...xk.1) = 

Ns(xi...xk)/Ns(xi...xk-i),k = 2,...,rc 

(5) q(xk/xi...xk-i)= ^T P(a/xi...xk-i),k = l,...,n 
a<Xk 

From (3), (4), (5) it is easy to obtain 

(6) code(xi...xn) = \S\(q(xi) + q(x2/x1)P(x1)+ 

q(x3/x1x2)P(xi)P(x2/x1) + ...) 

The scheme of the proposed method is following : Each 

P(xk/xi...xk-i), q(xk/xi...xk-i),xi...Xk G Ak can be 
written in the form of a word with 21ogn + 0(1) digits. 
Then (6) resulted in the form 

code(x1.,.xn) = \S\((q(xi) + q(x2/x1)P(xi))+ 

{P(x1)P(x2/x1))(q(x3/x1x2) + q(xA/...)P(x3/...))+ 

((P(x1)P(x2/x1)(P(x3/...)P(xi/...))(q(x5/...)+ 

q(x6/...)P(x5/...)...) 

(Here we used "proper" arrangement of brackets , as if we 
go over to (2) from (1)). Decoding is constructed similarly, 
by using division. It is easy to calculate that the encoding 
and decoding speed is equal to O(log3 nloglogn) when 
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A New Spectral Shaping Scheme Without Subcarriers 
Yongwen Yang & Lloyd R. Welch 
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Abstract — This study is concerned with the selec- 
tion of waveform structure and message redundancy 
for reliable reception in a noisy channel and for not 
interfering with a secondary use of the signal such as 
establishing frequency and phase synchrony. We will 
propose and analyze the Bit Reversal(BR) encoding 
scheme of inserting redundancy to minimize the spec- 
tral energy near zero frequency. The primary math- 
ematical tool for this analysis will be Markov chains 
with finite number of states and constant transition 
probabilities. 

I. INTRODUCTION 

The analysis of power spectrum density (PSD) of synchronous 
baseband digital signals plays a fundamental important role 
in the design of communication and signal processing systems. 
From [1,2,3], we see that the PSD is characterized by modula- 
tor design (this factor determines the structure of the model 
and hence the transition matrix) and signal design (chooses 
a set of waveforms used). In this paper, we will propose and 
analyze a spectral shaping scheme, the Bit Reversal(BR) en- 
coding scheme that increases the data bandwidth by a very 
small fraction, yet reduces the spectral energy near D.C. to 
nearly zero. The primary mathematical tool for this analysis, 
like most digital signal format, will be Markov chains with 
finite number of states and constant transition probabilities. 

wJn"""""^-^           output bit DSV «ate ^"--^^             r 

C>0 

L 

1-2 

L 

1-2 

C<0 

L 

1-2 

L 

1-2 

Fig. 1: The Bit Reversal Encoding Scheme 

Fig. 2: The BR Encoding Markov Model of L=4 

II. THE PROPOSED BR ENCODING SCHEME 

The idea of the BR encoding model is to attempt to balance 
the number of +l's and -l's in the transmitted stream by 
inserting a redundant bit every L—th bit. This bit indicates 
whether the L-block is transmitted directly or sign reversed 
before transmission. The decision is based on the excess of 
+l's or -l's in the message of the t—th L-block versus the 
excess in the transmitted stream from time zero. 
More precisely, assume L be an even integer; let m„ be a 
sequence of ±l's, representing the message stream and let x„ 
be the transmitted stream. For 1 < k < oo define 

k*L 

Co = 1 and Ck = Co + ^2 '' (1) 

to actively maintain the digital sum variation (DSV) of the 
transmitted stream. The BR encoding scheme is summarized 
in Fig 1. 

III. PSD OF A BR ENCODING SCHEME OF L=4 

Let's consider a special case of L = 4 for BR encoding scheme, 
i.e., there three message bits in each frame of four bits (one 
redundant bit). Its Markov model consists of four states of 
{E3, Ei, E-i, aadEs} as shown by Fig 2. This is the model 
where waveforms being probabilistic functions of state transi- 
tions. Applying theorem in [3], we have the PSD: 

G(f) 
2sinc2{irfT) 

;(5 
4sinc2(ir/T) 

T 3(17 - 8 cos(2x/T))T' 

+8 cos(2x/T) + 19COS(4TT/T) + 13cos(6x/T) 

+13 COS(8TT/T) - 4cos(107r/T)) 

The data bandwidth is increased which equal to zero at D.C 
by a very small fraction. 

IV. CONCLUSION 
We proposed and analyzed a new spectral shaping scheme 
without subcarriers, the BR encoding scheme. Unlike the tra- 
ditional method modulating the data onto a subcarrier which 
will result in a much larger bandwidth than necessary to trans- 
mit the data, it increases the data bandwidth by a very small 
fraction, yet reduces the spectral energy near D.C. to nearly 
zero. We apply a general formula given in [3] to compute the 
PSD of the BR encoding scheme. 
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Abstract — Optimum conditions for maximizing the 
throughput of an orthogonal frequency division mul- 
tiplexed (OFDM) system are derived, and an algo- 
rithm for achieving them is presented. Theoretical 
bounds on performance are derived and used to com- 
pare OFDM with conventional equalized single car- 
rier QAM for both the conventional error probability 
criterion and a criterion based on the mean-squared 
error. OFDM is shown to achieve greater throughput 
than equalized single carrier QAM, especially at low 
to intermediate signal-to-noise ratios and on channels 
with poor spectral properties. 

I. SUMMARY 

Orthogonal frequency division multiplexing (OFDM), a form 
of multicarrier transmission, has attracted attention as an al- 
ternative to equalized single carrier transmission over channels 
with spectral nulls, multipath or fading. 

The principle of OFDM is to modulate many parallel sub- 
carriers by dividing the high rate transmission data into lower 
rate sub-streams. For a correctly chosen subcarrier spacing, 
the modulated sub-streams are orthogonal, and hence inter- 
channel interference (ICI) is avoided. For sufficiently narrow 
subchannel bandwidths, the system can be considered to be 
a set of parallel Nyquist I channels. Subchannels which have 
severe attenuation can then be avoided, and subchannels with 
good gain-to-noise characteristics can be exploited by allocat- 
ing them more power and data. As each subcarrier is mod- 
ulated using low rate data, the symbol period is far greater 
than for a single carrier modulated at the same total data rate. 
This mitigates the effects of impulsive noise and fading. 

Early commercial multicarrier modems used guard inter- 
vals in the time and frequency domains to reduce the effects 
of intersymbol interference (ISI) and interchannel interference 
(ICI). Each subcarrier was modulated using the same power 
and data rate. Towards the end of the sixties, a number of 
authors, notably Chang [1], used overlapping orthogonal spec- 
tra to increase the efficiency of multicarrier systems. More re- 
cently, Kalet [2] introduced the concept of adjusting the power 
and data assigned to each subcarrier to increase the through- 
put further. 

Kalet stated that maximum throughput would be achieved 
when the data and power assignments were such that each 
subcarrier achieved the same symbol error probability. Based 
on these assumptions, Zervos and Kalet [3] concluded that 
OFDM would not yield significantly greater throughput than 
decision feedback equalized single carrier transmission. 

In this paper, we do not constrain the error probability to 
be the same over all the subcarriers. An optimization proce- 
dure is used to determine the conditions which must be met 
to achieve maximum throughput, and an iterative algorithm 
is presented which will rapidly achieve these conditions. 

It is shown that, using the conventional error probability 
criterion, OFDM will in fact always outperform decision feed- 
back equalized single carrier QAM. The increase in through- 

put is most significant at low and intermediate signal-to-noise 
ratios, where error propagation renders the DFE impractical. 

As an example, the NEXT-dominated high-speed digital 
subscriber loop is considered. Using the results presented in 
[4] the exact error probability of single carrier QAM using a 
DFE will be compared to optimized OFDM, and it is seen 
that OFDM gives significantly better performance. At a data 
rate of 1.28 Mbps, the equalized single carrier can be used over 
wire lengths up to 11.5 kft at a bit error probability of 10-5. 
For the same data rate and bit error probability, OFDM can 
be used for lengths up to 15.5 kft. 

It is well-known that the mean-square error (mse) is a 
tractable criterion in the design of linear and decision feed- 
back equalizers. We present a criterion for optimizing OFDM 
transmission which is based on the mse. It enables a direct 
comparison to be made between OFDM and equalized single 
carrier transmission in which the equalizer is designed using 
the minimum mse criterion. Examples show that OFDM again 
outperforms equalized single carrier QAM, especially at low 
and intermediate SNRs and on channels with poor spectral 
properties. 
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Abstract — A multitone transmission scheme that 
uses a nonlinear binary code to specify multitone sig- 
nal constellations is proposed and motivated. A tech- 
nique for designing the nonlinear code is presented, 
and methods for making symbol decisions and era- 
sures without knowledge of signal and noise strength 
parameters are given. The performance of a system 
using this scheme with Reed-Solomon error control 
coding is discussed. 

I. INTRODUCTION 

Multicarrier modulation schemes have received increasing at- 
tention for wireless communication systems including messag- 
ing systems [1] and microwave radio [2]. In this paper, we 
consider multicarrier schemes that employ on-off keying on or- 
thogonally spaced subcarriers. Such systems are amenable to 
low-complexity noncoherent demodulation, and because mul- 
tiple bits are transmitted per symbol, these systems also ben- 
efit from the advantages of long symbol durations including 
simulcasting capability and reduced requirements for channel 
equalization. 

A natural approach is to use parallel channels indepen- 
dently; i.e., the data is partitioned into separate bit streams 
that are each modulated on separate subcarriers. In this work, 
we explore the use of a binary code across the separate bit 
streams to introduce and exploit dependencies between the 
modulated subcarriers. 

II. SYSTEM MODEL 

The multitone modulation scheme we consider can be viewed 
as a generalization of M-ary frequency shift keying. A multi- 
tone channel encoder uses a binary (n, k) code to specify the 
mapping from data to multitone signal constellations {c;}, 
i = 1,..., 2 . The Is in a codeword dictate which tones are 
transmitted simultaneously. An (N, K) singly extended Reed- 
Solomon (RS) code with N = 2k is employed to provide error 
control. Multitone symbols are interleaved to mitigate the 
effects of channel fading. 

The demodulator consists of a bank of n energy detectors 
whose outputs are denoted by the vector y = (yi, jfe, ..., yn)- 
The output y is used by a decision device that makes symbol 
decisions or declares symbol erasures. The decision device is 
followed by a RS decoder that employs errors-and-erasures 
bounded-distance decoding. 

Because the multitone constellations are not orthogonal (in 
general), a maximum likelihood detector requires knowledge 
of signal and noise parameters. In many practical applica- 
tions, these parameters will not be known, and they may vary 
significantly with time. We therefore consider the use of de- 
cision devices based on simple linear combinations of the y;s. 
We have investigated decision rules of the following form: 

Choose {Ci if i 
erasui 

= argmaxm d^rn'> and $■') > b; 
erasure otherwise 

where 6 is a fixed threshold and S™^ defined as one of the 
following: 

,(m) _ y -cm y • (cm - cm) y • cm      y ■ cm 

~"M ||cm|| <»—- — 

(cm is the ones complement of cm, 
weight, and y • 0/||0|| = 0). 

l|Cm|| ||cm|| 

denotes Hamming 

III. MULTITONE CODE DESIGN 
Using linear codes for specifying the multitone constellations 
results in very poor performance when the decision rules de- 
scribed above are used. We have therefore focused on the 
use of nonlinear codes for this purpose. Our approach is to 
choose a linear code with good Hamming distance properties 
and generate various nonlinear codes from this code by apply- 
ing different combinations of bit inversions (inverting the «th 
bit of every codeword in the code for various values of i). The 
resulting codes can be have the same distance properties as the 
original linear code, but with different weight distributions. 

Numerical results show that codes containing codewords 
with very small or very large Hamming weight perform worse 
than codes with less variation in weight. This fact may lead 
one to conclude that constant weight codes should be used. 
However, the Hamming distance properties of constant weight 
codes are usually inferior to those of codes based on the best 
linear codes. We have shown that the guaranteed error cor- 
recting capability tm of constant weight codes must satisfy 

E 
j even 

2k < 

where the value(s) of £ that maximize tm must include £ = 
Lf J or f f 1 (<m must also satisfy tm < min(2^, 2(» - £))). The 
error correcting capability of many known linear codes exceeds 
this bound. 

IV. SYSTEM PERFORMANCE 
We have shown that, for a system using errors-only de- 

coding of the RS code, the combination of a good nonlinear 
multitone code and the decision rule described above gives 
performance in AWGN close to that of the corresponding lin- 
ear multitone code with maximum likelihood decoding. Ad- 
ditionally, we have shown that incorporation of errors-and- 
erasures decoding provides significant performance improve- 
ments in channels subject to AWGN and Rayleigh fading. 

[1] 

[2] 
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Abstract — The maximum achievable information 
rate of the zero-forcing Tomlinson-Harashima pre- 
coder (ZF-THP) is given exactly. Bounds are pro- 
vided for the minimum mean square error (MMSE) 

THP. Performance of THP is characterized on an ex- 
ample channel, and discussed for arbitrary channels. 

Consider the power-constrained additive white gaussian 
noise (AWGN) channel with intersymbol interference (ISI) 
where a real input sequence2 X(D) with J5[xn2] < P is fil- 

tered by H(D) and distorted by real AWGN r%k- 
For this channel, we compute the reduction in achievable 

rate from capacity incurred by Tomlinson-Harashima precod- 
ing (THP) combined with codes designed for AWGN without 
ISI. Loss due to finite complexity codes will be neglected. 

Figure 1 shows a general THP system. Linear time invari- 
ant filters F(D) and B(D) are chosen to minimize optimality 
criteria discussed below. B(D) must be causal and monic. 

Transmitter   ; Channe 1      Tlfc ! Receiver 

^rt[-]^ -» H(D) F(D) r,[-] 

•-1-5(£>)<J 
i 
i 

Zk 

Figure 1: Communication system using THP 

r4 is a mapping from "R. to (—1/2, t/2] where t € TZ-+■ 
Specifically, Tt[vk] = «fc + a* where a* is the integer mul- 
tiple of t for which Tt[vk] € (—1/2, t/2]. Figure 2 is equivalent 
to Figure 1 with a* as defined above. The noise ft is n filtered 

by F(D). 

ak hk 

Wk 
B(D) 

Xk B(D) 
Wk + ak 

 —*$ 

H{D)F(D) - B(D) 

r«[-] 
Zk 

Vk 

Figure 2: Communication system equivalent to Figure 1. 

ZF-THP is the scheme originally proposed in [1, 2] with 
F(D) and B(D) chosen so that y* = 0 and hk is white. The 
ZF-THP system is a memoryless channel with input w and 
output rt[tu + ft]. The channel inputs are constrained by w 6 
(-t/2, t/2] and E[x2] < P. THP transmitter output power is 
roughly t2/12 for large alphabet PAM [3]. Thus we restrict our 
attention to the choice of t which obeys the power constraint 
with equality (i.e.  t = y/l2P). This system's achievable rate 

is IZF-THP = loga(t) - h(Tt[n]) (1) 

where h(-) denotes differential entropy. 

1 Email: weseI@isl.stanford.edu. This work was supported by an 
AT&T Foundation Fellowship and NSF grant NCR-9203131. 

2Sequences will be denoted by their formal D-transforms 
X(D)=J2kxkD~k. 

The MMSE-THP is obtained by choosing F(D) and B(D) 
to minimize VAR(n + y). Ideal interleaving is assumed which 
produces a memoryless channel with input w and output 
Ft[w + y + ft], where w is constrained as above. Our bounds 

for this system are 

iog2(o-/»cr(<T2,t))        (2) 
ioga(t) - h(rt[h]) (3) 

mean Gaussian truncated to 
= VAR(y + Tt[ft]) after trunca- 

tion. Note that VAR(ftk) depends on F(D) and thus the right 
hand sides of Equations (1) and (3) are not equivalent. 

Figure 3 plots Equations (l) (2) and (3) as well as capacity 
for a 50 tap bandpass ISI channel with AWGN. 

IMMSE-THP    > 

IMMSE-THP    < 

where   T(<r2,t)   is   a   zero 
(—t/2, t/2] with variance <72 

IDS 

c 

-03 
Ü 

&H2 

m 

::::::            i            :::         v* 

  — Capacity 
— MMSE-TJiP. bounds 
" ~ ZF-THP information rate 

w- i i  ;;;;;;   >' 

 ! i i i     ryv? \     !     !     j 

:„—•■•■         \^>&\   •*' I::::: 

-20     -15     -10      -5 10        15       20        25        30 

SNR [dB] 

Figure 3: Information rates for example channel 

For any H(D) both MMSE bounds converge to log2(t) — 
ilog2(2;reE[ft2]) as SNR -> oo. At high SNR, ZF-THP and 
MMSE-THP identically suffer only the 1.53 dB or .255 bit 
"shaping loss" from capacity regardless of H(D). 

At low SNR, THP achievable rates can still be considerably 
below capacity. Here, the loss is due entirely to the receiver 
Tt (and interleaving for the MMSE-THP). This behavior is 
the reverse of that observed at high SNR where the loss was 

entirely due to the transmitter Ft. 
In Figure 3 the MMSE-THP outperforms the ZF-THP. 

This may be true for all H(D). We have shown that the ZF- 
THP rate will never be more than .08 bits per channel use 
above the MMSE-THP rate. 

ACKNOWLEDGEMENT 

Shlomo Shamai provided several helpful suggestions includ- 
ing using the maximum entropy property of the truncated 
Gaussian. We enjoyed interesting discussions with Amos Lapi- 
doth, Erik Ordentlich, and Yoichi Matsumoto. 

REFERENCES 
[1]  M. Tomlinson.    New automatic equalizer employing modulo 

arithmetic. Electronic Letters, 7:138-139, March 1971. 

[2] 

[3] 

H. Harashima and H. Miyakawa. Matched-transmission tech- 
nique for channels with intersymbol interference. IEEE T. 
Comm., 20(4):774-780, August 1972. 

J. Mazo and J. Salz. On the transmitted power in generalized 
partial response. IEEE T. Comm., 24(3):348-352, March 1976. 

399 



Phase-Shifted Linear Partial-Response Modulation 
Amir Said1 

amir@densis.fee.unicamp.br, Faculty of Electrical Engineering 

State University of Campinas (UNICAMP), Campinas, SP 13081, Brazil 

John B. Anderson 

anderson@ecse.rpi.edu, Dept. of Electrical, Computer, and Systems Engineering 

Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. 

I. INTRODUCTION 

Partial-response modulations are widely used for spectrum 
shaping and bandwidth reduction. Linear partial-response 
signaling (PRS) is a well-known form of linear coded mod- 
ulation which traces back to Lender [2] in 1963. Due to its 

"age," it is widely believed that the properties of linear PRS 
have been thoroughly investigated. However, this is not the 
case. Due to the lack of efficient algorithms for maximum- 

likelihood detection the research on the subject concentrated 
on the simplest forms of PRS, and mainly with suboptimal 

detection [1]. 

In this paper we analyze the properties of PRS signals gen- 
erated from complex-valued functions. Those signals have not 

only the usual intentional intersymbol interference (ISI), but 

also an intentional interference between the quadrature com- 
ponents of the RF modulated signal. Our objective is to show 

how these two forms of interference should be used together. 

The theory presented here is particularly important in the 
design of PRS generators for bandwidth efficient coded mod- 

ulation [3], which are schemes with severe ISI. Furthermore, 
since the results are valid for intentional or non-intentional 
ISI, they can also be used to improve performance of commu- 
nications in non-ideal channels. 

The lowpass representation of a linear PRS is defined by 

si(()=   y^  u[n]h(t-nT), (1) 

where u[n] is the data sequence, and h(i) is a spectrum shap- 
ing (generator) pulse. Note that here both u[n] and h(t) may 
be complex-valued, with the real and imaginary parts of si(t) 

corresponding to the in-phase and quadrature components of 
the RF modulated signal. In most of the literature about lin- 
ear PRS coding the shaping pulse h(t) is considered to be real- 

valued, even when the data sequence u[n] is complex-valued 
(e.g., partial-response QAM modulation). Here we assume 

that the imaginary part of h(t) adds interference between the 
quadrature components. We stress that the signals si (i) con- 
sidered in this paper do not exist at baseband as a real signal; 
rather, they take form only as RF signals. One can consider 

' the problem here as synthesis of coded signals directly at RF. 

The spectrum used by (1) is defined by the spectral power 
density 

<M/) = «i#(/)r. (2) 
where a is a constant, and H(f) is the Fourier transform 
of h(t). Note that the dependence between the in-phase 

and quadrature components makes the spectral power den- 
sity asymmetric, i.e., H(f) ^ H(—f). 

1This work was supported by CNPq, Conselho Nacional de De- 
senvolvimento Cientifico e Tecnolögico, Brazil. 

II. PHASE-SHIFTED-DATA (GENERALIZED) PRS 
The combination of intersymbol interference with the quadra- 
ture components interference produce some unexpected re- 
sults. For instance, it is demonstrated [3] that if we apply a 

complex frequency shift to h(t), and define the signal 

,(i)=   Y^   v,[n]h(t-nT) ,j27f/,(t-nT) 
(3) 

then we can get a PRS with a energy/bandwidth performance 

quite different from that of signal (1). (Of course, in the well- 
known case where there is no ISI, there is no change in perfor- 
mance.) We evaluate those effects by deriving the theoretical 

asymptotic error probability, and also measuring it via simu- 
lations, and it is shown that the energy efficiency can improve 

when fs 7^ 0. 

Alternately, if we apply a phase shift to u[n], and define 

s3(i) =   \      w[n]/t(< — nT) e 
j2ixnf,T 

(4) 

then it can be proved that the generalized PRS (4) has exactly 

(not only asymptotically) the same noise immunity as (3). At 
the same time, the spectrum used by (4) is the same used 
by (1), and it is not shifted as with (3). 

Some important conclusions follow from the results above: 

• When the pulse h{t) is set by the channel ISI, the fre- 
quency/phase shifts of (3) or (4) allow us to improve 
performance by relieving the effect of the ISI. 

• During the design of optimized complex-valued PRS, 
subject to a bandwidth constraint, it is necessary to 

consider a sliding bandwidth parameter in order to find 
the optimal signals. Alternatively, the signal can be 
designed for a bandwidth centered at / = 0, and be 
optimized for the generalized PRS (4), 

• Better PRS coding schemes may be synthesized by fre- 

quency and phase shifts: in a given RF bandwidth 
schemes with better free distance exist, or at a fixed 
distance, schemes with better bandwidth exist. 

REFERENCES 

[1] P. Kabal and S. Pasupathy, "Partial-response signaling," IEEE 
Trans, on Commun., vol. 23, pp. 921-934, Sept. 1975. 

[2] A. Lender, "The duobinary technique for high-speed data trans- 
mission," IEEE Trans. Commun. Electron., vol. 82, pp. 214- 
218, May 1963. 

[3] A. Said, Design of Optimal Signals for Bandwidth-Efficient 
Linear Coded Modulation, Ph.D. Thesis, also in Communica- 
tion, Information and Voice Processing Report Series, TR93- 
3, Electrical, Computer and Systems Department, Rensselaer 
Polytechnic Institute, Troy, NY, Oct. 1993. 

400 



Self-Training Adaptive Equalization for Multilevel Partial-Response 
Transmission Systems 

G. Cherubini, S. Ölcer, and G. Ungerboeck 

IBM Research Division, Zurich Research Laboratory, 
CH-8803 Rüschlikon, Switzerland 

Abstract — We present a new self-training method for adjusting 
the coefficients of a transversal equalizer with T-spaced taps in a multi- 
level partial response class-IV (PRIV) system. Self-training equaliza- 
tion from distorted random data signals is inherently more difficult to 
achieve for partial-response systems than for full-response systems. 
Also, because of the lack of excess bandwidth, traditional bandedge 
timing recovery schemes cannot be applied in PRIV systems. On the 
other hand, an equalizer with T-spaced taps is sufficient to obtain 
equalized output signals for arbitrary sampling phase. Convergence 
with the known self-training algorithm by Sato is too slow to ever 
reach satisfactory performance, e.g., for switching to decision-directed 
equalization, when no recovered clock is available and the phase of the 
local receiver clock drifts only slightly relative to the phase of the re- 
ceived signal. Following Sato, in the described self-training equaliza- 
tion algorithm we first transform the equalizer output into full-res- 
ponse form, then compute a pseudo-error signal, and finally translate 
the pseudo-error signal into an error signal for the desired partial-res- 
ponse equalizer output. This error signal is used to adjust the equalizer 
coefficients according to the LMS algorithm. The new method differs 
from the Sato algorithm in two ways. First, the channel inversion for 
obtaining full-response signals is accomplished exactly by mixed lin- 
ear feedback and decision feedback equalization, whereas in the case 
of the Sato algorithm the inversion is only achieved approximately. 
Secondly, for the derivation of pseudo-error signals more knowledge 
of the statistical properties of ideal, but noisy full-response signals is 
exploited. Basically, the pseudo errors are obtained from knowledge 
of the largest positive and negative symbol values and the probability 
of the occurrence of equalized signals in the interval between these val- 
ues and outside these values. In the absence of noise, the new 
pseudo-error signals vanish as equalization is achieved. We present 
simulation results illustrating the superior convergence properties of 
the new self-training method. 

SUMMARY 

Self-training adaptive equalization has mainly been studied for 
full-response systems in the past, e.g., in [l]-[3]. Methods to achieve 
self-training equalization for partial-response systems have been pro- 
posed in [4] and [5] for linear and distributed-arithmetic equalizers, re- 
spectively. 

We denote the output of the linear equalizer by y„: 

(1) yn 

where c„ = {c„ , cN_ [ „} represents the vector of equalizer coeffi- 
cients and xn = [x„, ...,x„_N+i} the vector of signals stored in the 
equalizer delay line at time n . The objective of an adaptive equalizer 
for a PRIV system is to provide an equalized signal of the form 

yn = ißn - a„-2) + e„ , (2) 

where a„ is the channel-input symbol and e„ is an error signal due to 
noise and residual signal distortion. We describe the algorithm for qua- 
ternary modulation. In this case, a„ E { - 3, - 1, + 1, + 3}. 

We first transform the equalizer output yn signal into a full-res- 
ponse signal u„ by channel inversion via mixed linear feedback and 
decision feedback: 

u„ = y„ + Q un_2 + (1 - Q) an_2 , (3) 

where an is a tentative quaternary decision on the transmitted symbol 

an based on the signal un, and 0 < g < 1. We then define a 
pseudo-error e„ by 

un — a„ if   IM„I > 3 
(4) 

- <5„ sign(w„)    otherwise, 

where d„ is a non-negative value updated at each iteration as follows: 

<5„ - fA        if  ln„l > 3 

<5„ + \A otherwise, «     4 

(5) 

and A is a positive constant. The generation of the pseudo-error e„ 
is based on a priori knowledge of the statistics of the signal un. In the 
case of accomplished equalization, un corresponds to the quaternary 
channel input symbol a„ embedded in noise. Therefore, whenever the 
event \un\ > 3 is observed, we can use w„ - a„ as a trusted error to 
update the equalizer coefficients. If we observe the event lw„l < 3 , no 
trusted error is available. In this case, we choose to update the equalizer 
coefficients so that the probabilities of the events \un\ < 3 and 
lu„l > 3 assume the values 3/4 and 1/4, respectively, which are the 
probabilities of these events for an ideally equalized, noisy quaternary 
signal. This is achieved by setting the pseudo-error equal to 
- (5„ sign(w„) whenever \u„\ < 3 and updating the value of d„ at 

each iteration so that <5„ becomes larger if the event \un\ < 3 occurs 
more often than expected and smaller otherwise. 

The LMS algorithm for self-training adaptive equalization is given 
by 

a  (En  ~ Q E„-2) xn  , (6) 

where a is the adaptation gain. 
We present simulation results which show that convergence is 

achieved even in the presence of significant initial clock drift. The new 
algorithm outperforms the known self-training technique for PRIV 
systems by Sato [4] in terms of speed of convergence and achievable 
mean-square error in the steady-state. The new approach has been real- 
ized in a prototype transceiver for full-duplex transmission at 125 
Mbit/s over telephone-grade twisted-pair cables, which also employs 
adaptive near-end crosstalk cancellation. 
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Abstract — Results regarding two aspects of joint 
Maximum Likelihood (ML) data sequence and inter- 
symbol interference channel estimation are consid- 
ered: (i) the joint-ML estimation problem is ill-posed 
when based on the continuous time observation, and 
(ii) processing based on a discrete time signal model 
yields equivalence classes of data sequences. 

I. CONTINUOUS TIME PROCESSING 
We consider joint-ML estimation of a digital data sequence 
{ak} and a dispersive channel impulse response h(t) from the 
complex baseband model 

r(t) = y(t) + n(t) = ^ ath(t - iT) + n(t), (1) 

where n(t) is baseband equivalent of additive white Gaussian 
noise. The data sequence is assumed to be independent and 
uniformly distributed over a finite alphabet, while h(t) is as- 
sumed to be a static, deterministic function with support con- 
tained in [0,LT). 

A "chipped" signal notation is introduced to convert an 
arbitrary function m(t) into a vector of chip functions 

im(t) = [ m,i{t)    m,i-i(t) mo(t) (2) 

where the ith chip is rm(t) = m{t + iT) for t € [0, T) and zero 
otherwise. Applying this notation to the model in (1) for the 
observation interval [0, kT) yields 

(3) Mt) = yfc(*) + Mt) = Afc o h(t) + nk(t), 

where the ((fc + 1) X L) Toeplitz data matrix Ak has ith 

[ a.i-L+i    a.i-L+2    ■■■    a,i ] . (4) 

row 

af 

For a hypothesized Ak, minimization of the joint-ML met- 

ric over h(t) results in the critical point h(t; Äjt) = Äk<>rk(t), 

where Ak is the pseudo-inverse of Ak. Substitution yields a 
metric dependent only on the hypothesized data sequence 

rfc(Äfc) = rfc(Äfc,h(i;Äfc)) - h" Jo 
{t)oPkork{t)dt,  (5) 

where Pk = AfcA*. is the matrix which projects onto the range 
ofÄfc. 

The metric suggested in (5) does not exist in the mean- 
square sense. To illustrate this, consider a fixed t e [0,T) so 
that 

E {nf (t)Pknk(t)} = tr (PtE {nfc(t)nf (t)} Pk) ,     (6) 

which is not well defined since E{n(t + r)n*(t)} = NO6(T). 

The conclusion - i.e., that the joint-ML channel and sequence 
estimation problem for the model of (1) is ill-posed - holds 
even when the noise is colored [1]. 

II. PRACTICAL PROCESSING 

Front-end processing structures exist which neglect a small 
amount of high-frequency energy and circumvent the ill-posed 
problem [2]. The output of such a front-end is modeled by a 
discrete time version of (3): xk = Ak o f + wjt, with a metric 
function analogous to (5) 

Afc(Äjb) = || (I - Pfc) o ssjb || (7) 

The residual least-squares error metric of (7) can be com- 
puted recursively with k, which allows the problem to be for- 
mulated as a tree-search with per-sequence channel estima- 
tion [1]. Practical recursive algorithms truncate this search, 
maintaining only a finite number of candidate paths. 

III. EQUIVALENT SEQUENCES 

The metric function in (7) implies that data sequences with 
matrices having the same range are indistinguishable. Thus, 
two data matrices Ak and Djt are equivalent if the associated 
projection matrices are equal: P^ = PTJ . We use the 
notation Ak = Dk € £{Ak), where £(Ak) is the set of all 
admissible data matrices with the same range as Ak- An 
equivalent characterization is that there exists an invertible 
(L x L) matrix M such that Afc = DfcM. 

We characterize these classes as either memoryless equiv- 
alence classes or memory equivalence classes. A memoryless 
equivalence class is one in which M is diagonal, and results 
from rotational invariance in the symbol constellation. 
Theorem: For BPSK signals (ak e {-1,+1}) 

lim P(£(Ak) = {Ak,-Ak}) = l, (8) 

where the probability is over all Ak. 
The proof follows from two facts: (i) the probability that 

all 2L possible values of a will appear in Ak goes to one, and 
(ii) for those Ajt which contain all possible rows, there are only 
a finite number of M which yield admissible data matrices. 

The result suggests that for asymptotically large k, the ef- 
fect of the equivalence classes can be negated by differential 
encoding and decoding (i.e., one need only be concerned with 
memoryless equivalence classes). However, the effect of mem- 
ory equivalence classes on the short term acquisition proper- 
ties of practical algorithms is significant. 
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Abstract — Our work introduces a novel data de- 
tection scheme for coded PSK in the presence of un- 
known phase. This scheme offers a performance very 
close to coherent in cases of n > 20, and requires a low 
complexity. 

I. INTRODUCTION 

Coded PSK demonstrates an extreme sensitivity to unknown 
channel phase. Without a careful effort to deal with this 
phase, the gain of coded PSK may be greatly diminished. 
In the case of slowly varying phase (e.g. constant over 500 
symbols), several effective data detection strategies have been 
proposed. However, in communication over a channel with 
rapidly changing phase, these strategies are ineffective. Re- 
cently proposed schemes for data detection in a rapid phase 
change environment are based on extending the ideas of Mul- 
tiple Symbol Differential Detection (MSDD) to coded modu- 
lation (e.g. [1]). These schemes offer some gains over coded 
DPSK, but they are still unable to match coherent perfor- 
mance. We introduce a novel coded PSK data detection 
scheme which offers a performance very close to coherent in 
cases of constant phase over 20 or more symbols. This scheme 
requires a low complexity, and it employs a Viterbi Algorithm 
(VA) implementation. 

II. RECEIVER DESIGN 

The received signal is represented by r = (ro.ri riv-i), 
where r; = ofe,9< + J^. Here, rn's represent samples from an 
AWGN source; 6i corresponds to the channel's phase rotation; 
and a; corresponds to a differentially encoded MPSK symbol 
generated at sample time » by a trellis encoder. The differen- 
tial encoding and trellis encoder are chosen to create ^ phase 
invariance [2]. 

Our data detection scheme is based on ML detection. 
According to ML detection, the best output sequence ö, 

given a received r, is a = arg mzXaeA p(z\ä), where A is 
the set of possible o sequences generated at the transmit- 
ter. Introducing the unknown phase, this becomes ä = 

arg maXaCA JN p(£.|a, £)?(£)<*£> where J refers to Nth order 
integration (one integral per phase 6i in 0). 

Our derivation continues by introducing the information 
regarding phase. It is assumed that flj is constant over a block 
of n symbols, that is, 00 = 0i = ... = 0n-i, 6n = 0„+i = ... = 
0Jn-i, and so on. Using this, we simplify our integral equation 
and achieve an intermediate result. 

We complete our derivation by approximating the contin- 
uous phase space by a discrete phase space. The continu- 
ous phase space is $ = [0,2ir).   However, because we have 

lThis work ii supported by NSERC Grant OGP/N011 and 
NSERC Scholarship 106418 

2 also with SPAR Aerospace Limited, Satellite and Communica- 
tion» Systems Division, Ste-Anne-de-Bellevue, Quebec. 

introduced a differential encoding and TCM code which cre- 
ate 5j phase invariance, we can map the output of our re- 

ceiver into the correct [^-, '^ffi"^) sector of space by follow- 
ing our receiver with a differential decoder. Hence, it suf- 
fices, for the purposes of our receiver, to represent the contin- 
uous phase space by 0 = [0, 2j).   We approximate © using 

© = {JZ2^-, j = 0,1 m-1}. It can be shown that m = 4 
is sufficient to achieve good results. Replacing the continuous 
phase space by 0 in our ML equation leads to our final re- 
sult. Specifically, the discretizing of the phase space results in 
the integrals becoming summations. Additionally, it is easily 
shown that each sum is well approximated by the largest term 
in the sum. This results in: choose the ö from 

w-l Sn-l 

max   )lnp(Ti\ai,90)+        max Y^ lnp(ri|oi,ff„) 
'o6S'*>fe£ •-eö,«„.a(£0) ^ 

iV-l 

+...+ . max V^ lnp(r;|ai,Äin),   (1) 

where g^ = (a0, ...,a„_i), a„ = (an,...,aJn_i), and aIin = 
(oin,..., ajv-i); and E^OQ) refers to the end node of sequence 

III. IMPLEMENTATION 
This equation is implemented as follows. Consider first the 
block of symbols 0,3 = (oo, ...,a„_i). We can choose the best 
OQ and 60 to each end node -£(00), since this is the only term 
future symbols depend on. By best, we mean the values which 
maximize the first sum in the above equation. This selection 
of the best (0^,60) can be carried out by using the VA, with 
metric lnp(rj|at-, oo), over the first block of n symbols. Specif- 
ically, four VA's are carried out, 1 for each possible §o. Next, 
consider the second block of symbols, a^. Much like the pre- 
vious set OQ, the o^ and 8n can be chosen to each end node 
E(an). Their selection can be carried out using 4 VA's over the 
block of n symbols, an, each with path metric lnp(rj|aj,fln) 
(and a unique 8n E ©). Here, each path is weighted by the 
appropriate start node value. This continues, in an analogous 
fashion, over the remaining blocks of symbols. Putting this 
together, we essentially have 4 VA's running over the block of 
symbols. 

IV. PERFORMANCE 
The performance of this scheme increases as n increases. Most 
notably, considering rate 2/3, 8-PSK TCM, the performance 
of this scheme is very close to coherent for all n > 20. 

REFERENCES 
[1] D. Divsalar, M.K. Simon, M. Shahshahani, "The performance 

of trellis-coded MDPSK with multiple symbol detection," IEEE 
Trans. Commun., Vol. 38, pp. 1391-1403, Sept. 1990. 

[2] M. Oerder, "Rotationally invariant trellis codes for mPSK mod- 
ulation," presented at ICC'85, Chicago, HI., June 23-26, 1985, 
pp. 552-556. 

403 



Delayed Decision Feedback Equalization1 

MAHESH K. VARANASI 

ECE Dept, University of Colorado, Boulder, Colorado 80309. varanasi@spot.colorado.edu 

Summary- Decision feedback equalization (DFE) is 
generalized within the context of linearly modulated data 
transmission over intersymbol interference (ISI) channels. 
The main motivation for this new approach is that for 
channels with severe ISI, linear and decision feedback 
equalizers have a poor performance while the the Viterbi 
algorithm has a complexity that is exponential in the 
length of the ISI channel response. 

The delayed decision feedback equalizer (DDFE) intro- 
duced in this work applies to FIR as well as IIR chan- 
nel responses. It is parametrized by two integer de- 
sign parameters M and L with L < M and a subset 
S C {1, • ■ • ,M} = ti of indices with the cardinality of 
S being equal to L. This DDFE is denoted as (M, L, S)- 
DDFE. The parameter M is equal to the decision delay 
in units of symbol duration, L determines the computa- 
tional complexity per symbol (CCS) of the DDFE algo- 
rithm which is 0(FL) where F is the data symbol alpha- 
bet size. For a given channel, and fixed values of M and 
L, the subset S is chosen to optimize the performance 
of the DDFE. This optimized DDFE is denoted as the 
(M, i)-DDFE. The subset optimization adds only to the 
design complexity but not the implementation complex- 
ity for a fixed channel. Performance is defined as the SNR 
gain over the conventional DFE in the high SNR region. 

The connections with previous results are as follows. In 
the degenerate case where M = L = 1, the DDFE reduces 
to the conventional DFE [1]. For a given L, when M = L, 
we have S = fl, so that the (L, L, fi)-DDFE is equivalent 
to the (L, i)-DDFE, which can be shown to be equivalent 
to the (L, 1)-BDFE (block decision feedback equalizer) of 
[2]. For this case, our performance analysis sheds new 
light on the BDFE. 

Example- Consider a binary PAM-ISI, monic, causal, 
min-phase channel G(z) = SSo 9^)z~% Wl^ ff(l) = a 

and a antipodal symbol alphabet {+1,-1}. For the 
(2,1)-BDFE which is also the (2,2)-DDFE, it can be 
shown that the SNR gain is given as 

V(2,2)-DDFB ■{: 
+ a2 

+ (1- 

if |a| 
else. 

< 1/2 

This SNR gain is thus greater than unity implying a uni- 
formly better performance than the conventional DFE. 
Applying this result for the case of the single-zero chan- 
nel model 1 + az~x, we can deduce that 

-{ 
VVA if \at\ < 1/2 

VM-DDFB = | -tgzMV,      else 

1This work was supported by NSF Grant NCR-9406069. 

where TJVA is the SNR gain over the conventional DFE of 
the Viterbi Algorithm so that when \a\ < 1/2, the (2,2)- 
DDFE has a performance that is indistinguishable from 
the more complex Viterbi algorithm. 

The (M,L)-BDFE of [2] when L > 1 is not a use- 
ful generalization of (M, 1)-BDFE. The only "block" size 
in the feedback loop that is meaningful in block deci- 
sion feedback equalization is 1, the degenerate case. The 
reason is as follows. The CCS of the (M, L)-BDFE is 
0(FM) and is relatively independent of L (for sufficiently 
large values of these parameters so as to ignore polyno- 
mial dependencies). Furthermore, it is out-performed by 
the (M, 1)-BDFE. A stronger result is that the (M,L)- 
BDFE is outperformed by the (N, 1)-BDFE (or equiva- 
lent^ the (N, AO-DDFE) where N = M - L + 1. There- 
fore, among the (M, L)-BDFEs, those with L > 1 can be 
outperformed by the corresponding (N, 1)-BDFE which 
has a better performance and a lower complexity. 

The (M,L)-DDFE with M > L on the other hand, 
performs no worse than the (L, 1)-BDFE (or equivalently 
the (L, L)-DDFE). This is an appropriate comparison be- 
cause the CCS of both these schemes is given by 0(FL). 
Consequently, even the best candidates from the BD- 
FEs can be improved for the same CCS by the DDFEs. 
Moreover, the (M, L\ )-DDFE uniformly outperforms the 
(M, L2)-DDFE when L2 < L\ which is to be expected 
since the complexity of the former is greater than that 
of the latter. No surprises here. The following example 
illustrates the superiority of the DDFE over the BDFE 
of the same complexity. 

Consider a binary PAM-ISI, causal, monic, min-phase 
channel G(z) = X^to 9(})z~z and let g(l) = 1/8 and 
g{2) = -31/64. It can be shown that the (3, 2)-DDFE 
has an SNR gain of 1.2462 relative to the conventional 
DFE whereas the (2,1)-BDFE (or the (2,2)-DDFE) has 
an SNR gain of 1.016 inspite of the CCS of the two algo- 
rithms being identical. Furthermore, the matched filter 
upper bound on the SNR gain relative to the DFE is 
met with equality by the Viterbi algorithm for the chan- 
nel G(z) = 1 + {lß)z~l - (31/64)z-2. It is given as 
r]VA = 1.2502. Notice that the (3,2)-DDFE performs 
nearly as well as the Viterbi algorithm without involving 
any sort of trellis detection and it performs much better 
than the (2,1)-BDFE. 
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Abstract — The problem of implementing self- 
adaptive equalization algorithms in real-time is ad- 
dressed. Self-adaptive equalization determines the 
transmitted sequence without using a training se- 
quence. Simulation results for the self-adaptive tree 
search procedures based on Fano, stack and M- 
algorithm are presented. 

I. INTRODUCTION 

Many problems in digital communications can be modeled by 
means of a discrete-time finite-state Markov process repre- 
senting the signal which is observed in independent identically 
distributed noise. We are considering the case when the pro- 
cess parameters are unknown. We are investigating methods 
to exploit the structure and finiteness of the state space of 
the signal to determine the most likely state sequence without 
resorting to a known training sequence. We will refer to this 
approach as self-adaptive MLSE. 

We will focus our attention on the special case of a discrete- 
time finite-state Markov process in which a sequence of equally 
likely symbols Sk drawn from an a discrete and finite alphabet 
A is input to a channel which introduces intersymbol interfer- 
ence in addition to white Gaussian noise. The coefficients 9i, 
I = 0,..., L of the channel impulse response are assumed to 
be unknown but constant. The objective of our work is now to 
determine the most likely input sequence given the observed 
sequence Vk without knowledge of the channel coefficients. 

II. THE SELF-ADAPTIVE MLSE 

In [4] we propose the metric for the self-adaptive MLSE 

(1) d(s) 

where s and v are vectors comprising the input symbols and 
observations, respectively. If S is an (N + L) x (L + 1) matrix 
whose columns are shifted versions of s and Ps is projection 
matrix P3 = S'(S'S)-1S. Among all possible input sequences, 
we are looking for the one which maximizes the metric in (1). 
The optimal sequence is then the one which spans the signal 
sub-space containing the largest portion of the received signal. 

This observation provides the basis for our adaptation of 
sequential tree search algorithms, originally developed for de- 
coding of convolutional codes, to the problem of self-adaptive 
equalization. In particular, we consider adaptations of the 
Fano algorithm [2], the stack algorithm [3], and the M- 
algorithm [1]. 

As an illustrative example for our results, Figure 1 shows 
the results of a series of simulations with sequences of N = 

1000 antipodal bits and channels with L = 3 memory ele- 
ments. The simulations indicate clearly that the proposed 
"self-adaptive" M-algorithm matches closely the performance 
of the optimum (Viterbi) search algorithm with known coef- 
ficients if the number of retained paths is chosen sufficiently 
large. It also demonstrates that at higher signal-to-noise ratios 
the required number of paths to be retained decreases. Sim- 
ilar results are obtained for the other sequential algorithms. 
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tract F30602-92-C-0053. 

Figure 1:   Simulation Results with M-algorithm (N 
1000, L = 3) 
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Abstract.Tn this paper, to improve both bandwidth ef- 
ficiency and error performance, partial response sig- 
nalling (PRS) and trellis coded modulation (TCM) are 
combined together and denoted as Modified/ Quadrature 
Partial Response-Trellis Coded Modulation (M/QPR- 
TCM) for M-PSK. M/6QPR-TCM, M/9QPR-TCM and 
M/33QPR-TCM schemes are introduced for 4-PSK and 
8-PSK respectively. In colored noise environment for ne- 
gative noise correlation coefficient values M/QPR-TCM 
schemes outperform better than the classical structures. 
In fading channel, the proposed schemes are better than 
their counterparts for SNR values greater than a thresh- 
old. In terms of spectral efficiency and bit error rale with 
decreasing fading parameter K values, M/QPR-TCM sys- 
tems appear to be the best choise in the literature. 

Summary 

The block diagram of the M/QPR-TCM scheme con- 
sists of k number unit memory precoders followed by 
k/k + 1 rated convolutional encoder with v units memory 
and (1 + D) PRS with k + 1 units memory which repre- 
sents the binary correspondent of the previous signal. K 
number appropriate precoders are included into the sys- 
tem to prevent the undesired catostrophic nature of the 
partial response block. The precoders do not increase the 
number of trellis states because of equivalence of the sig- 
nals stored simultaneously in the delay cells of the coders 
and PRS. M/QPR-TCM scheme reduces the state num- 
ber of the combined trellis structure from 2*2"2*+1 resul- 
ting from k-number precoder, v unit convolutional enco- 
der and (k+1) units (1+D) PRS memory to only 2"+*. 
In this paper, to give practical examples, M/6QPR-TCM, 
M/9QPR-TCM are introduced for 4-PSK with encoder 
memory v = 1 and u — 2 respectively and M/33QPR- 
TCM for 8-PSK with encoder memory v = 3. 

For many practical trellis coded systems where the no- 
ise is not white, correlation between noise samples affects 
error performance [l]-[2]. M/QPR-TCM systems perform 
better than the related schemes for negative noise corre- 
lation coefficients. 

Under the assumption of ideal channel state informati- 

on and infinite interleaving/deinterleaving [3]-[4], analy- 
tical bit error probability upper bounds of the considered 
schemes are derived and compared to the related modula- 
tion systems in fading channels. M/QPR-TCM structures 
are better than their counterparts for SNR values greater 
than a threshold for small values of fading parameter K. 
In Rayleigh fading (K = 0) M/6QPR-TCM performs bet- 
ter after the SNR values of 9.2 dB . Similarly, error perfor- 
mance improvement of M/6QPR-TCM occurs at 9.5 dB 
for K=5 dB. As K increases, where AWGN starts to domi- 
nate the fading, the performance of the M/6QPR-TCM 
scheme tends to decrease. In Rayleigh fading, M/9QPR- 
TCM outperforms better at SNR values greater than 12 
dB. This improvement begins at 15 dB for Rician (K=5 
dB) fading and diminishes completely for AWGN as usu- 
al. 

M/QPR-TCM systems appear to be the best choice in 
the literature in terms of spectral efficiency and bit error 
rate with decreasing K values. 
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Abstract — Soft decoding of binary codes based 
on algebraic decoding is treated. The algebraic de- 
coder generates all error patterns up to a given weight 
higher than the designed error correcting capability 
e-BCH- The performance of different soft decoders em- 
ploying such algebraic decoding is investigated and 
compared with hard decoding, the Chase second al- 
gorithm and soft maximum likelihood decoding. Fur- 
thermore, we propose an iterative decoder using an 
acceptance criteria to determine if we have found the 
maximum likelihood decision estimate. The accep- 
tance criteria ensures a low average decoding com- 
plexity and by iterative decoding performance close 
to that of maximum likelihood decoding is obtained. 

I. INTRODUCTION 

The type of soft decoders we consider can be described in the 
following way. In the first step, the demodulator outputs an 
estimate on what was received and it may also output relia- 
bility information on that estimate. In the second step, the 
estimate is decoded with an algebraic decoder (with or with- 
out help of reliability information) into a set of tentative code- 
words. Finally, the decoder selects as a decision the codeword 
"closest" to the received sequence with respect to Euclidean 
metric. Two well-known decoders of this type are proposed 
in [1] and [2]. For a given code the performance of the soft 
decoder depends on the reliability information used, the al- 
gebraic decoders efficiency in finding tentative codewords and 
the decision strategy. 

The central problem is how to efficiently generate a set of 
code words such that it contains the maximum likelihood de- 
cision (MLD) estimate of the transmitted codeword with high 
probability. Also, it is desirable to find the MLD estimate of 
the transmitted codeword as soon as possible. When can the 
generation of tentative codewords be stooped? That is, when 
is the codeword corresponding to the maximum likelihood de- 
cision in the set of codewords already found? 

II. THE DECODER 

For a given code let dmin and CBCH denote the minimum 
Hamming distance and the designed error correcting capabil- 
ity respectively. The algebraic decoder we use finds all error 
patterns of weight at most t + e (e > 0), where 2t + 1 = dmirl 

and t = BBCH] see [3]. Our soft algebraic decoder selects as 
decision the "best" codeword, in terms of Euclidean metric, 
among all tentative codewords found. We note that as long 
as the covering radius is less or equal to t + e at least one 
codeword is found. 

III. RESULTS 

We have compared different strong versions of our decoder 
with hard decoding (t error correction), the Chase second al- 
gorithm and a lower bound for soft maximum likelihood de- 
cision (MLD) decoding.   In the evaluation (simulations) we 

consider: binary BCH codes, at most (t + 2)-error correction, 
transmission over the additive white Gaussian noise channel 
(AWGN), and binary antipodal modulation. Our results show 
that decoding up to the covering radius is important, i.e., such 
that at least one codeword is found. Then, at least for the 
cases we have considered, the soft algebraic decoder performs 
better than the Chase second algorithm. 

IV. FURTHER IMPROVEMENTS 

If performance close to that of soft MLD decoding is desired we 
propose to use an iterative decoder employing MLD estimate 
tests. That is, a test which can determine if we have found 
the MLD estimate. From a practical point of view iterative 
decoding is' probably a better option than generating error 
patterns of weight much higher than t. That is, generating 
such error patterns is complicated, very many may exist and 
the decoder has to be designed for the worst case. On the 
other hand, such error patterns seldom have to be considered 
if an MLD estimate test is used. 

The proposed MLD tests are based on comparing with a 
competing word which is "close" to the received word. Related 
tests for t—error correction can be found in the literature. 
However, our tests are developed for a decoder correcting more 
than t errors. This makes the test more efficient. 

When the codeword tested is not the MLD estimate the 
MLD estimate will hopefully be close to the competing word. 
We show that this often is the case. Then as a second de- 
coding attempt, when the MLD estimate test fails, we decode 
the competing word. We can continue and generate a second 
competing word and perform a third decoding attempt and 
so on. Important is that the algebraic decoder corrects up 
to the covering radius in Hamming metric. Such an algebraic 
decoder ensures that at least a fairly good estimate of the 
transmitted codeword is found already in the first decoding 
attempt. 

We have investigated two versions of iterative decoding, 
at most two decoding attempts and at most three decoding 
attempts. In both versions, however, due to the MLD estimate 
tests, the average number of decoding attempts is close to 
one. For the cases we have investigated the iterative decoder 
is much more powerful than the Chase second algorithm and 
its performance is close to that of soft MLD decoding. 
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Abstract — The quaternary Goethals code is a Z4- 
linear code of length 2m which has 22m+1~3m_2 code- 
words and minimum Lee distance 8 for any odd m > 3. 
The Gray map of this code is known to be a nonlinear 

binary (2 m+l   92m+1-3m-2 8) code. The covering radius 
of the ^4-linear Goethals code is 6 and we present a 
complete decoding algorithm for the code. 

I. INTRODUCTION 

Let Zi denote the ring of integers modulo 4 and let R be a 
Galois ring of characteristic 4 with 4m elements. The multi- 
plicative group of units in R contains a unique cyclic subgroup 
of order 2m - 1. Let ß be a generator of this subgroup and let 
T = {0, l,/3, • • • ,/32m"2}. Let fi : Z4 -»• Z2 denote the modulo 
2 reduction map. We can extend y. to R in a natural way and 
it can be shown that /x(T) = F, where F is a finite field of 
order 2m. 

The Gray map 0 is defined by 0(0) = 00, 0(1) = 01, 0(2) = 
11 and 0(3) = 10. Let C be the binary code defined by C = 
0(C), where C is the quaternary code with parity-check matrix 
given by 

H 

In Hammons, Kumar, Calderbank, Sloane and Sole [1], it 
is shown that if m is odd, then C has minimum Lee distance 8 
which is equal to the minimum Hamming distance of C. The 

11      1      1   ■ 1 

0    1        ß     ß2    ■ ß2™-2 

0    2    2ß3    2ß6    ■ .    2/33(2m-2) 

binary (2 m+l   02m + 1-3m-2 , 8) code C has parameters that are 
identical to the (extended) binary Goethals code. 

The purpose of this paper is to give a complete decoding al- 
gorithm for the triple error-correcting ^-linear Goethals code 
C, i.e., an algorithm that for any received vector finds the clos- 
est codeword. 

II. DECODING OF THE GOETHALS CODE 
Let r e Z2™ be the received vector and let e G Z\ be 

the error vector. The syndrome of the received vector is S = 
vHtr =eHtr = (t,A+2B,2C) where < g Z4) A,B,C € T and 
Htr denotes the transpose of H. We index the components 
of a vector e G Z\ by the elements of T, i.e. e = {ex)xer- 
The syndrome equations that have to be solved are 

]T ex   =   t,     tezA 
xer 

J2exX   =   A + 2B,     A,BeT 
X£T 

2^exX3    =    2C,      CeT. 
X£T 

1This work was supported in part by The Norwegian Research 
Council under Grant Numbers 107542/410 and 107623/420 and the 
National Science Foundation under Grant Number NCR-9016077 

Let X, Y, A, B, etc. denote elements in T and x, y, a, b 
their respective projections modulo 2 in F. For any coset it is 
sufficient to find the projections x, y, and z in F of the error 
locations of a coset leader and the corresponding error values 
ex, ey, and ez in Zi which satisfy the syndrome equations. 

We first find the unique coset leader (i.e., a vector of small- 
est Lee weight) of each coset which contains a vector of Lee 
weight < 3. As an example the decoding of cosets corre- 
sponding to syndromes with t = 1 are given below. The cases 
t = 0,2 and 3 are similar. 

Theorem 1 Let S = (1, A + 2B, 2C) denote the syndrome 
of a coset. 

(i) If b = 0 and c = a3, then the coset leader has Lee weight 
1 and is uniquely determined by x = a and ex — 1- 

(ii) If b / 0 and c = a3, then the coset leader has Lee 
weight 3 and is uniquely determined by x = a + b, ex = 2, 
y = a and ey = —1. 

(iii) If 6 ^ 0, c ^ o3 and Tr(b3/{a3 + c)) = 0, then the 
coset leader has Lee weight 3. The coset leader is uniquely 
determined such that x and y are solutions of b2u2 + (a3 + 

c)« + o4+a262+ac + 64 = 0, ex - ey = 1, z = a+^^ and 
ez = —I- 

(iv) If a(u) = u3 + au2 + (a2 + b2)u + ab2 + c has three 
distinct zeros in F then a coset leader has Lee weight 3 and 
is uniquely determined such that x, y, z are the three distinct 
zeros in F of a(u) and ex = ey = ez = —1. 

(v) If none of (i)-(iv) hold, then any coset leader has Lee 
weight > 5. 

III. COMPLETE DECODING 

In the considerably more complicated cases when more than 
3 errors occur we show how to construct a coset leader in any 
coset. In addition we proved the following results. 

Theorem 2 (i) For any coset with syndrome S = (0, A + 
2B,2C), there exists a coset leader of Lee weight < 6. 

(ii) For any coset with syndrome S = (£, A + 2B, 2C) where 
t — 1 or t = 3, there exists a coset leader of weight < 5. 

(iii) Let m > 5, then for any coset with syndrome S = 
(2, A + 2B, 2C) there exists a coset leader of weight < 4. 

Theorem 3 Let A denote the number of cosets with a 
coset leader of weight i in the ^-linear Goethals code. 

(i) If m > 5 then D0 = 1, Di = f*1), D2 = (2m
2
+1), 

2m + 1\      n.    _   o3m+l 1 (2m+1\   _  i^m  _  i\1m+4 r.). ^ 2m+U 
2     ) (2m - 1)- 

Ds = 23-+i - (2";+1) _ (2m
3
+1) and De = (2m - l)2=jti. 

(ii) If m = 3 then Do = 1, Di = 16, D2 = 120, Z>3 = 480, 
D4, = 823, D5 = 528 and As = 80. 
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Abstract — We show that the problems solved by the 
Berlekamp-Massey and Welch-Berlekamp algorithms 
are special instances of a more general problem which 
has been studied (in the characteristic zero case) by 
control theorists. We present an algorithm to solve 
this general problem which can be used to find the 
solutions to both the classical Key Equation and the 
Welch-Berlekamp interpolation problem. 

Summary 

Classically, the decoding of a Reed-Solomon code is carried 

out by calculating power sum syndromes and then using the 
Berlekamp-Massey algorithm to solve the resulting linear re- 
currence problem [2, 4]. A new approach, taken by Welch 

and Berlekamp [5], is to convert the decoding problem into 
a rational interpolation problem which can then be solved by 

the Welch-Berlekamp algorithm. One of the advantages of 
this second approach is that the syndromes do not ha"e to be 
calculated, thus saving decoder computations. 

Both the Berlekamp-Massey and Welch-Berlekamp algo- 

rithms can be thought of as solving special instances of the 
following problem. 
The Problem: Let F be a field. If f(X) = P{X)/Q(X) 
is a rational function of two polynomials with coefficients 
in F, we define the complexity X(f) of / to be the integer 
max{(degP(X)) + 1, degQ(X)}. Let x0,xi,..., Em_i £ F he 
distinct. For each i £ {0, 1,..., m — 1}, let k be a nonnega- 

tive integer and let y«,o,J/»,i, • • ■ ,yi,i; € F. We say that the 
function f(X) := P(X)/Q(X) is a generalised rational inter- 
polation if, for all i g {0,1, ..., m — 1}, the formal power series 
of / at Xi is defined and is of the form 

can regard the problem above as generalising their problem to 
fields of arbitrary characteristic. 

We present a new algorithm (a close analogue of the 
'Welch-Berlekamp' algorithm of Chambers et al [3]) which 

solves the generalised rational interpolation problem. Like 
the Berlekamp-Massey algorithm, the data can be fed into 

our algorithm serially. The algorithm uses 0(n ) field opera- 

tions, where n = X/i=o 0* ~^~ ^)- ^ne algorithm can be used 
in place of the Berlekamp-Massey or Welch-Berlekamp algo- 
rithms, since both problems are special cases of the generalised 
rational interpolation problem. 
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Ylyi'j(X Xi)3 + higher terms. 

The generalised rational interpolation problem asks for 
the generalised rational interpolation / of lowest complexity 

Thus the generalised rational interpolation problem asks for 
the 'smallest' rational function which has specified low order 
terms in its power series expansion at certain points. The 
Welch-Berlekamp interpolation problem is the special case of 
this problem when k = 0 for all i (since y;,o is simply the 
value of / at a:;). The problem solved by the Berlekamp- 
Massey algorithm can be thought of as the case when m = 1 
and xo = 0. 

When F has characteristic zero, there is a close relation- 

ship between formal power series and Taylor series: We may 
regard the generalised rational interpolation problem as ask- 
ing for the lowest complexity rational function with specified 
low order derivatives at certain points. This is a problem in 
control theory studied by Antoulas and Anderson [1].  So we 
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Abstract — We consider the optimal strategy for 
erasing symbols in concatenated coding schemes. This 
erasing strategy uses a posteriori likelihoods of RS sym- 
bols to determine erasures which maximize the prob- 
ability of decoding correctly. Some properties of per- 
formance of this strategy are presented. Erasing rules 
for decoding the same received word more than once 
are also examined. 

I. Introduction 

Various kinds of erasing strategies [1] have been explored 
by many researchers since Forney first presented concatenated 
coding schemes. We are interested in the erasing strategy 
which maximizes the probability of decoding an outer word 
correctly given a posteriori likelihoods of all RS symbols. The 
first stage of the optimal erasing rule [2] is to erase the most 
unreliable symbol if D, the minimum distance of the RS code, 
is even and erase nothing if D is odd. Then symbols should be 
erased in pairs in order of ascending reliability, thus keeping 
the difference between D and the number of erasures odd. 
Let pi, j>2, • • •, PN be the error probabilities of the symbols 
provided by the inner decoder in a RS word, and pi < P2 < 
• • • < PH. Ph(pi) denotes the probability that h errors occur 
in the t most reliable symbols. Given that the most unreliable 
e symbols have been erased in a RS word, erasing the next 
two symbols, with error probabilities pjv-e and p^r_e_i, can 
increase the probability of decoding correctly if and only if 

-Pfe-i(pj) > gj+lgj+2 /^ 
Ph{Pj) Pj+lP>+2 

where j = N — e — 2, h = (D — e — l)/2, and g; = 1 — p, for 
l<i<N. 

However if a decoder erases symbols in pairs until (1) fails 
to hold, the resulting probability of decoding correctly is not 
necessarily the maximum obtainable. Here we present differ- 
ent approaches to simplify the search for the optimal number 
of erasures by exploring bounds on Ph-i(pj)/ Ph(pj)- 

II. The Optimal Number of Erasures 

This first problem encountered is how to evaluate Ph(pj). 
Although it can be calculated exactly, an easily-calculated es- 
timate is preferred. Barbour [3] derived an asymptotic expan- 
sion for Ph(pj). This allows us to have an approximation to 
the left hand side of (1) and a bound on the error of approx- 
imation . However as more accuracy is required, more terms 
in the expansion should be included in the approximation and 
the complexity increases dramatically. 

The RHS of (1) decreases with j while the LHS of (1) is 
not necessarily increasing with j. If the LHS of (1) is in- 
creasing with j, apparently the probability of decoding cor- 
rectly has only one local maximum with respect to numbers 
of erasures. We show that the LHS of (1) increases with j if 
PN-D+1 = PN-D+2 = • • • = PN- Given that there are two dif- 
ferent symbol error probabilities, piow and phigh, among all N 

symbols, we also show that the LHS of (1) increases with j if 
Plow and phigh satisfy an inequality. Basically this inequality 
gives an upper bound on phigh in terms of piow ■ 

The derivative of Ph-i(pj)/Ph(pj) with respect to p; is 
always non-negative, 1 < i < j. This observation enables 
us to find several upper and lower bounds on the optimal 
number of erasures. An upper bound on Ph-i(pj)/Ph{pj) is 

r. Since this bound increases with j, given a fixed in- 
Pi J-h+l ' 
tegerm€S= {N-D + l, N-D + 3, •••, #-2}, the optimal 
number of erasures of the RS word is not more than N — m — 2 
if 3L—^. < h+"-t», Note that if the inequality holds for 

Pl m-h+l   —  pm+ipm+a ^ J 

some m, changing p2, • ■ • ,pm arbitrarily can not increase the 
optimal number of erasures to more than N — m — 2. A draw- 
back of this bound is that it depends solely on p\ and becomes 
very loose when p\ is small compared to other pi's. Two more 
upper bounds can be obtained to fix this problem. One bound 
is based on pj-h+i, ■ ■ ■ ,Pj instead of p\. The other bound is 
based on p\ and pa, the average of p\, • • •, pj. Examples show 
that applying these three upper bounds of Ph-i(pj)/Ph(pj) 
often gives very tight upper bound on the optimal number of 
erasures. Similar approaches can be used to find lower bounds 
also. Experiments show that upper and lower bounds meet 
very often. 

III. Results for Multiple Decodings 

Assume that the first decoding uses the optimal erasing 
strategy described above. If the first decoding fails to de- 
code, we discuss the best erasing rule that the second decod- 
ing should use. Here we show that the probability of decoding 
correctly when e — i symbols are erased is always larger than 
that when e + i symbols are erased, where e is the number 
of erasures of the first decoding and all pi's are less than one 
half. If the second decoding erases less symbols than the first 
decoding and all symbols erased by the first decoding have 
the same error probability, we show that the optimal number 
of erasures for the second decoding is either one or zero no 
matter what e is. Erasing rules for decoding more than twice 
are also discussed. 
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Abstract - A new error-and-erasure decoding procedure that 
decodes cyclic codes up to the actual minimum distance is 
presented. This procedure annihilates erasure effects from a 
syndrome matrices and produces modified syndrome matri- 
ces that can be used to obtain error locations with an error- 
only decoding algorithm. 

I. Introduction 
This paper presents a new error-and-erasure decoding procedure 
that produces erasure masking matrices to annihilate erasure effects 
from original syndrome matrices. 
In general, an error-and-erasure decoding procedure is based on 
error-only decoding algorithms. In [2], Forney, based on Peterson, 
Gorenstein and Zierler's earlier work [8], introduced an error-and- 
erasure decoding procedure that can decode up to the BCH bound. 
Later, in [6], Shahri and Tzeng developed an error-and-erasure 
decoding algorithm to decode cyclic codes up to the HT bound. The 
procedure in [6] uses Feng and Tzeng's algorithm for Multi- 
sequence Shift-Register Synthesis [12]. Then, an error-and-erasure 
decoding procedure up to special cases of the Roos bound was 
given by Shahri, Tzeng and Jensen[10]. 
Recently, Feng and Tzeng introduced algorithms for error-only 
decoding of cyclic codes up to the actual minimum distance[l,9]. 
The algorithm in [1] uses the nonrecurrent syndrome dependence 
relations among the known syndromes. In [9], they determined the 
unknown syndromes by employing a (2t+l) x (2t+l) syndrome 
matrix and majority voting method. The error-and-erasure decoding 
procedure presented in this paper is based on Feng and Tzeng's 
recent work [1,9]. 

II. Decoding Procedure 
The procedure presented in this paper generates erasure masking 
matrices which annihilate all erasure effects in a syndrome matrix. 
Thus, it converts an error-and-erasure decoding problem to an 
error-only decoding problem. Furthermore, since it produces modi- 
fied syndrome matrices which are homomorphic images of the orig- 
inal syndrome matrices, error-only decoding algorithms, ex. Feng 
and Tzeng's algorithms [1,9], can be applied. 

A brief description of our decoding procedure is given below: 
Step 1. Construct a syndrome matrix S just as for any error-only 

decoding case. 
Step 2. Partition the p erasure locations into two arbitrary groups, 

say G1 and G^, where G, = (a'.a2,....^) = (F1( F2,..., Fk) 

and G2 = (a
ktI,akt2....a'p) = (Fk+1, Fk+2,.., Fp), then F, 

are the erasure locations and k =L (p + 1) /2 J 
Step 3. From Gj and G2, construct erasure masking matrices, JJ. and 

A such that \l masks erasures in Gj, and A masks erasures in 
G2 

Step 4. Compute a modified syndrome, U = JlSA= HEA+^FA, 
where E is the error portion of a syndrome matrix and F is 
the erasure portion of a syndrome matrix. Since (i. and A 
matrices mask all erasures, \lFA = 0 and U = }J.SA= JOEA. 

Step 5.Use an error-only decoding algorithm to find an modified 
error locator polynomial y, such that Uy = 0. 

This work was supported in part by the National Science Foun- 
dation under Grant NCR-9016095 and 9406043. 

step 6. Obtain the coefficients for an error locating polynomial 
f(z)from A"^=f. 

Step 7. Use the Chien search to fine the roots of f(z). 
If the number of nth root of unity roots in f(z) is less than 
(d -l)/2, then all the error locations are found. 
If not, go to step 8. 

Step 8. Compute modified unknown syndromes using error-only 
decoding algorithms presented in [1] or [9]. Then, find the 
values of unknown syndromes from the computed modified 
unknown syndromes. 

Step 9. If all unknown syndromes can be found, obtain a codeword 
by means of Inverse Fourier Transformation. 

Step 4 yields a modified syndrome matrix U which is a homomor- 
phic image of the syndrome matrix in step 1. Thus, error-only 
decoding algorithm in step 1 can be applied to matrix U to solve for 
error locations. 

In summary, we developed an efficient systematic error-and-erasure 
decoding procedure using erasure masking matrices |I and A that 
can be applied to any type of syndrome matrix. Therefore, our pro- 
cedure can be used with any error-only decoding algorithm as long 
as it uses a syndrome matrix. 
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Abstract — A common way to deal with bursts in 
data storage systems is to interleave byte-error cor- 
recting codes. In the decoding of each of these byte- 
error correcting codes, one normally does not make 
use of the information obtained from the previous or 
subsequent code, while the bursty character of the 
channel indicates a dependency. 

In [1] such a dependency is exploited to enhance the 
decoding performance. Here a different, but similar 
approach is proposed. 

I. INTRODUCTION 

In order to correct burst errors in a data storage channel, the 
most common procedure is to interleave an error-correcting 
code to a certain depth. This error correcting code is normally 
a byte-error correcting code, like a Reed-Solomon code. The 
depth of interleaving determines the burst correcting power of 
the interleaved scheme. In this way, the bursts are "random- 
ized" into different codewords. Each codeword sees a random 
error event. 

Although interleaving is an efficient approach, it throws 
away information, since it ignores the fact that in a bursty 
channel errors are usually correlated. Ways of exploiting this 
correlation in order to forecast errors were studied in the lit- 
erature [1] with the introduction of the so called "helical" 
interleaves. Here, we introduce a different, but somewhat 
similar technique. Even when the error-correcting capability 
of the error correcting code has been exceeded, one can still, 
by making use of these methods, retrieve the data in many 
cases. 

II.  A GENERAL DESCRIPTION 

In its most basic form, the procedure works as follows: the 
decoder decodes normally using the interleaved scheme. How- 
ever, if a codeword is uncorrectable due to too many errors, 
it is nagged. Then, an attempt to decode it again using the 
previous and/or following codeword is made. To this end, the 
decoder declares erasures in the locations corresponding to er- 
rors in the previous and/or following codeword. If errors have 
occurred in bursts, it is likely that the decoding power will 
be enhanced, since a code can correct roughly twice as many 
erasures as errors. We will present several variations of this 
strategy, that trade reliability with decoding power. We will 
show how to adapt the method to channels that suffer from 
bursts as well as from random errors at the same time. We will 
also introduce a toroidal interleaving method that eliminates 
the lack of symmetry between the first and the last codeword 
in a regular interleaving scheme. 

The toroidal scheme works as follows: if A is the depth of 
interleaving and n is the length of a codeword, such that A and 
n are relatively prime, then symbol <z;,j is followed by symbol 
aj+ij+i, where i + 1 is taken modulo A and j + 1 is taken 

modulo n (in normal interleaving, symbol a;j is followed by 
symbol a;+i,j when 0 < i < A —2 and symbol aA-i,j is followed 
by symbol a,o,j+i )• 

III. AN EXAMPLE 

Below is a simple example of the enhanced interleaved 
scheme when A = 5 and n = 11. Assume that each row 
implements a code with minimum distance d = 4, therefore it 
can correct one error and detect two, as well as an error and 
an erasure. Also, assume the toroidal interleaving described 
above. 

X 

X X 

X 

X 

The x's represent errors in the corresponding symbols. As 
we can see, a burst of length 4 and a random error (in row 
2) have occurred. The decoder detects an uncorrectable error 
pattern in row 2, so it flags that row. By examining row 1, it 
finds that entry (1,2) is in error, and similarly, by examining 
row 3, it finds that entry (3,4) is in error. Therefore, the 
decoder will predict that there was an error in entry (2,3), 
so it will declare an erasure there. Now, row 2 has an error 
and an erasure, which is within its error-correcting capability. 
Finally, the decoder corrects row 2. Notice that this was not 
possible with the traditional scheme. 

Details of the implementation can be found in [2]. 
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Abstract — A decoding algorithm for linear codes 
over Z$ = {0,1,2,3}, the ring of integers modulo 4, is 
given which gives the codewords that is closest to the 
received vector in Lee distance. 

I. INTRODUCTION 
A linear code over Z4 is same as a group code over the 4- 
element cyclic group and can be defined by a check-matrix [1]. 
The algorithm proposed is similar to the one given in [2] for 
soft-decision decoding of binary linear codes. First a trellis is 
cons tructed using the check matrix of the linear code over Z4 

under consideration using Wolf's trellis construction[3]. There 

is one to one correspondence between the set of paths from 
the start node to the goal node and the set of codewords. 

Hence, the pr oblem of decoding is same as finding the path 
in the trellis which is closest to the received vector in Lee 
distance. The search is guided by an evaluating function / = 
g + h defined on each node, where g depends only on the past 
and h(called heuristic func tion) is an estimate on the set of 
possible futures. The nodes with minimum value of f is given 
the first priority for expanding. The most important factor in 
the efnceincy of the algorithm depends on the complexity of 
the heuristic function. We define a heuristic function which 
can be easily computed with the worst case complexity of 4n 

searches over Lee weight distribution , where n is the length 
of the code. 

II. HEURISTIC FUNCTION '/I' AND COST FUNCTION '/' 
Let r = (ro,ri,... ,r„_i) be the received vector. A cost func- 
tion f(m,t) for any node m at level t, (0 < t < n — 1) is 
defined by 

f(m,t) = g(m,t) + h{m,t) (1) 

where g(m,t) and h(m,t) are defined as follows 

g(m, t) = 22 LW(ri - a) (2) 

where LW(x) — Lee weight of x and cp(t) = (co, ci,..., ct) is 
the path leading to that node and 

h(m,t) =   min   I    >     LW(ri — xA 1 (3) 

where 

X(t)={x = (co,ci,...,ct,xt+i,...,xn-i)/xt+i,...,xn-i € 
Zi,LW(x) 6 L,} and L3 is the set of all Lee weights of the 
codewords. The decoding algorithm given below gives the 
codeword which is closest to the received vector in Lee dis- 
tance. 

III. THE DECODING ALGORITHM 
Step 1: Create a list called OPEN and let start node be the 

only element in OPEN. 

Step 2: Select and remove the first node from OPEN and call 
it node m. If m is the goal node exit successfully, and 
the path history of node m is the output of the decoder. 

Step 3: Expand node m, generating next level nodes which 
are successors of the node m. This expanding operation 
consists of 

(a) Obtaining all successor nodes and computing g and 
h values of all the successor nodes. 

(b) For each of the successor storing the path followed 

so far (called path history) from the start node. 

(c) Storing all successors in OPEN. em[(d)] Arranging 
the nodes in OPEN in the increasing order of their 
f value. (For nodes with equal value of f arrange 
them in the decreasing order of the levels of the 

nodes. For nodes with equal values of f and in the 

same level arrange in the increasin g order of their 
gvalue.) 

Step 4:  Go to Step 2. 

IV. A SIMPLE PROCEDURE TO CALCULATE h(m,t) 

The following theorem leads to a simple procedure which gives 
the value of h(m,t) without actually carrying out the mini- 
mization. 

Theorem 1 For a chosen node m, which is say at level t, 
let c± — (co,ci,... ,ct), and lc = LW(ct). Also let rt_ = 

(rt+i,... ,r„_i), and lr = LW(rt). Then, h(m,t) = \h*\, 
(absolute value of h*) wh ere h* is the least integer such that 

lc + lr i h   £ Ls 

For any node m, the possible values for h(m,t) are 
0,1,2,... ,2(n-t-l). From Theorem 1, it follows that one can 
find h(m,t) for each node, by successively assuming values 
from 0 to 2(n-t-l) and matching with elements of Ls to check 
whether lc + lT pmh(m,t) £ Ls and stopping at the first value 
for which lc + lr ± h(m, t) £ L3 Clearly, the worst case for 
matching effort is for the start node for which the number of 

matching efforts may be 2n. The complexity of each search 
for matching depe nds on the Lee weight distribution of the 
code. If the code has codewords of specific weights only then 
the search becomes simple. For instance, for constant Lee 
weight codes the search is to test for that constant weight or 
zero. If minimum Lee weight is known then one checks only 
for zero and all weights starting from minimum Lee weight to 
four times the length of the code. In the absence of any knowl- 
edge of Lee weight distribution one is compelled to check for 

all weights from zero to twice the length of the code. 
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Abstract — We present a new soft-decision decoding 
algorithm, Modified A* (MA*), that conducts heuristic 
search through a code tree for a binary (n, k) linear 
code. MA* improves on the results obtained earlier 
using Algorithm A*. We also describe the applica- 
tion of the simulated annealing (SA) algorithm to the 
decoding problem, transformed into a continuous op- 
timization problem. 

SUMMARY 

In MA*, search is guided by an evaluation function / defined 
to take advantage of the information provided by the received 
vector and the inherent properties of the transmitted code. 
The algorithm maintains a list C of nodes of the code tree 
that are candidates to be expanded. The algorithm selects for 
expansion the node in C with minimum values of function /. 
If it selects a goal node for expansion, it has found an "opti- 
mal" path from the start node to the goal node whose labels 
correspond to a codeword that minimizes the error probability 
when we assume all codewords have equal probability of being 
transmitted. For every node m of the code tree visited by the 
algorithm, MA* keeps two values, f(m) and lowi(m), where 
I is a fixed non-negative integer, whereas A* keeps only one 
value f(m) [1]; lowi{m) is a new lower bound on the cost of 
an optimal path that goes through node m. This algorithm 
keeps an upper bound, UB, on the value of loin for every node 
in an optimal path. If the value of low; for a node is larger 
than or equal to UB, no further search through this node is 
necessary and the node can be discarded. 

If no restriction is placed on the size of list £, then the MA* 
decoding algorithm is an maximum-likelihood soft-decision 
(MLSD) decoding algorithm. In our sub-optimal soft-decision 
(SOSD) decoding algorithm, we limit the size of list C accord- 
ing to the following criterion. If a node m needs to be stored in 
list C when the size of list C has reached a given upper bound 
MB, then we discard the node with larger / value between 
node m and the node in list £ with the maximum / value. 

To verify the performance of our SOSD decoding algorithm, 
we show simulation results for the (104, 52) code and for the 
(256,131) code when these codes are transmitted over AWGN 
channels, with MB = 1000 and / = 4. From Figure 1, for 
the (104, 52) code the performance of our SOSD decoding al- 
gorithm is within 0.15 dB of the lower bound of the perfor- 
mance of the MLSD decoding algorithm. Thus, for the sam- 
ples tried, limiting MB to 1000 introduced only a small degra- 
dation on the performance of the algorithm. In Table 1, for the 
(256,131) code the results were obtained by simulating 35,000 
samples. No decoding error occurred during simulation. For 
the examples tried, the average number of codewords con- 
structed is insignificant compared with the total number of 
codewords. In Table 1, N(r) = number of nodes visited, C(r) 
= number of codewords constructed, M(r) = number of nodes 

stored in list £, max = maximum value among samples tried, 
ave — average value among samples tried, and ~jb = SNR per 
transmitted information bit. 

(104,52) cods 

" 
i L--::.  

0.O1 ""** ^-V-». 

0.001 

"Undacodsd" -•— 
"MA'Suboptlmal* -+--• 

"LowarBoundOnMLSD" -a- 

 ::"s--.->. 

0.0001 

SNR par Iransmfttad Information bit (dB) 

Figure 1: Performance of the MA* SOSD decoding algorithm for 

the (104,52) binary extended quadratic residue code 

7b 6 dB 7 dB 8 dB 
max ave max ave max ave 

N(r) 32275 11 3033 2 112 1 

C(r) 1639 17 135 17 17 17 

M(r) 1000 5 1000 1 112 1 

1This work was partially supported by the NSF under Grant 
NCR-9205422. C. R. Wulff was supported by a Research Experience 
for Undergraduates Supplement of Grant NCR-9205422. 

Table 1: Performance of the MA* SOSD decoding algorithm for 
the (256,131) binary extended BCH code 

When the decoding problem is transformed into a contin- 
uous optimization problem [2], it becomes finding a k dimen- 
sional real vector that minimizes the cost function g. SA, a 
technique that statistically guarantees finding global optima 
for optimization problems, could be applied to solve this prob- 
lem. SA uses a control parameter called temperature (T), 
which is initially high and decreased steadily. At each tem- 
perature, a large number of possible "moves" are generated, 
evaluated, and possibly accepted. Each move effects a small 
change in the current "configuration" (a real vector), and may 
be obtained by perturbing one component of the current vec- 
tor by a small quantity. This move is accepted if it decreases 

cost g. Also, this move is accepted with probability e T 

even if the move results in an increase of Ag in g. This pro- 
vides a mechanism to escape from local (non-global) optima, 
with higher probability at higher temperatures. There is a 
high likelihood that the system state moves to the region of 
the global optimum before the temperature becomes too low. 
When T « 0, the algorithm settles into the current local op- 
timum. Simulation results for the SA decoding algorithm will 
be presented. 
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Abstract— Maximum likelihood decoding (MLD) of 
binary linear block codes is addressed by combining 
the approaches of processing the generator matrix G 
and parity-check matrix H. 

I.  MLD BASED ON ORDERING  IN THE DUAL SPACE 

Consider a binary linear (N,K,(IH) code with generator 
matrix G and check matrix H. For a given received sequence, 

let BK be the most reliable basis (MRB) [2], [3], [4] for the 

column space cs(G) = GF(2f<r) of G and let QN-K be the 
least reliable basis (LRB) [1] for cs(H) = GF(2JV-Jf) of H, 
consisting of the columns of the respective matrices. 

Theorem 1: The complement of the location set of BK is 
the location set offltr-K- a 

An efficient way to perform (nearly) MLD starts with form- 

ing Co, the codeword that agrees with bit-by-bit hard detection 
at the positions of the MRB. Thereafter, search procedures [2], 
[3], [4] examine alternatives to Co- In [2], the alternatives to Co 
are considered in successive stages. At each order i of repro- 
cessing, Qj codewords are processed. A resource test tightly 
related to the reprocessing strategy reduces the number of 
computations at each decoding stage. A similar approach [4] 
utilizes a partial ordering of the information vectors. Syn- 

drome decoding [5] is an alternative approach to accomplish 
MLD. 

By Theorem 1, the resource tests can be related to the 
LRB. Also, those syndrome decoding aspects that are based 

on the LRB may conveniently be incorporated into the decod- 
ing procedure. 

II. SYNDROME DECODING ASPECTS 

Let gi £ UN-K; i = 1, 2, • • •, N — K be indexed in nonde- 
creasing order of reliability. Let s = HTCo be the syndrome 
corresponding to c0. Assuming s # 0, expand s in terms of 

the LRB, i.e., 5 = Yl'jZi VPJ where p\ > p2 > ■ ■ ■ > pw. 

Setting H = [A IN-K], with the N — K rightmost positions 
corresponding to the LRB, w is the Hamming weight, of s. 

By [1], if either   a)  w = 1  or   b) p\ + w < dH  then c0 is 
the most likely codeword.   A stopping rule stronger than b) 
now follows. 
Theorem 2:    If w > 2 and 

max   {pi + 2(1 - 1) + 1} <dH, (1) 

then order-0 reprocessing is optimum. □ 
Generalization of Theorem 2 to higher orders i of repro- 

cessings is also presented. By such extension, we associate to 

either each s or the most likely syndromes a set of columns 
of H to be searched, as in [1]. We provide an efficient algo- 
rithm to preprocess the corresponding table look-up. The size 
of this table can be limited to the most likely error patterns 

1 Supported in part by NSF Grant NCR-94-15374. 
2 Supported in part by the Israel Science Foundation adminis- 

tered by the Israel Academy of Sciences and Humanities. 

using the statistical approach of [2]. Finally, we present an al- 
gorithm which iteratively evaluates the syndrome s each time 

a dimension is added when constructing the LRB. With this 
algorithm, the most likely error patterns are tested without 
completing the construction of the LRB. 

Syndrome-based tests stop the search more effectively for 
some received words (typically when the signal to noise ra- 
tio (SNR) is low). However, most of the syndrome tests are 

code-dedicated, whereas resource tests are more universal. 

III. SIMULATION RESULTS 
For extended Hamming codes of length 2m, m < 7, with 

order-1 reprocessing and table look-up, the maximum number 

of computations Ntot is compared in Table 1 with the worst 
case results of both [2] and [1] (the latter is MLD). We also 

indicate the partial ordering maximum cost Nord- The aver- 

age number of computations Nave rapidly converges to Nord 
as the SNR increases. For the (24,12,8) Golay code our de- 
coding method requires on average 50 and 15 real operations 
to achieve practically optimum error performance at the re- 
spective BER 10~3 and 10~6. 

Finally, a new reprocessing algorithm is analyzed. After the 
ordering has been completed, this algorithm no longer requires 
real value operations. For all simulated codes, a performance 
within 1.5 dB of the optimum bit error performance has been 
achieved, even for long codes. For example, at the BER 10-5, 
with an o(Ki) syndrome computations, a degradation of less 
than a dB with respect to the ML performance is achieved for 

the (128,64,22) extended BCH code. 

Table 1: Computation cost for extended Hamming codes. 

m code Nord Ntot [1] order-1 

3 (8,4,4) 15 27 17 36 
4 (16,11,4) 33 68 60 108 
5 (32,26,4) 63 153 188 290 
6 (64,57,4) 113 330 - 726 
7 (128,120,4) 199 703 - 1,736 
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Abstract — A fast algorithm for the evaluation of 
error magnitudes for Reed-Solomon codes is obtained here 
in terms of the error locations and syndromes. This fast 
algorithm is compared to the Forney algorithm in terms 
of required additions and multiplications and 
implementation speed. 

I. INTRODUCTION 

Assume a t error correcting Reed-Solomon code and 
assume that the error locations have been determined using 
the Berlekamp-Massey algorithm or some other procedure. 
The Forney algorithm [1] is the common algorithm used 
for obtaining the error magnitudes in Reed-Solomon 
decoding. For a codeword with v<t received errors, the 
Forney algorithm calculates the error magnitudes from the 
error locations ßj, i=l,2,-,v and the syndromes S-v 

i=l,2,-,v as [2,3] 

Y^QC^^fjd+ß.ß:1)], i=l,2,...,V        (1) 

where A(X)[1+S(X)]=Q(X) mod(X2v+1), SCX^X 
+S2X2+-+StX

t, and A(X)=(l+ß1X)(l+ß2X) -(1+ßyX) 
=1+A1X+A2X2+- +AVXV. Now Q(X) can be expressed 
as [4] Q(X)=1+(S1+A1)X +(S2+A1S1+A2)X2+- 
+(SV+A1SV.1+A2SV.2+-+AV.1S1+AV)XV. The 
number of required additions is (5v2-v)/2 and the required 
multiplies is (7v2-5v)/2. In addition, there are v(v-l) 
exponentiations. 

In general once the error locations have been 
determined, the error magnitudes, y-v i=l,2,—,v, are 
obtained by solving 

ßx   ß2   -   ßv 
2     2 2 

ßl  ß2   .-   ßv 

V V 

ßx ß2 .- ß 

V V 
\ 

= S2 

Yv _sv_ 

(2) 

II. FAST ALGORITHM 

Since the ß matrix is a Vandermonde matrix it is of full 
rank and standard techniques can be used to diagonalize it. 
Then using back substitution and making full use of the 
structure of a Vandermonde matrix, we developed the 

This work was supported in part by a grant from the US 
Army Research Office under the Focused Research Initiative. 

following iterative algorithm for obtaining the error 
magnitudes 

Sv_j=Sv_j-ßiSv_j_1 j=0,-,v-i-l, i=l,-,v-2 

Sv=(Sv-ßv_1Sv_1)/(ßv-ßv-l) 
Sv_i=Sv_j-Sv_j+j j=l,—,1 

s^ps^i/ciVi-iVi^) r i=i,-,v-2 
sv-i+j=sv-i+j/(ßv-i+J-

ßv-i-l)  J=l.-.i   > 0) 

Si=Si-Sj+i j=l,-,v-l 

SpSj/ßj j=l,-,v 

where the error magnitudes Yi's are contained in the S;'s. 
The number of required additions is 3v(v-l)/2 and the 
required multiplies is v2. 

This fast algorithm for evaluating the error magnitudes 
for Reed-Solomon decoding requires approximately 5/3 
fewer additions and 7/2 fewer multiplications than the 
Forney algorithm without any exponentiations. The total 
number of operations including additions, multiplications, 
and exponentiations for the Forney algorithm is 7v2-4v 
and for the fast algorithm (5v2-3v)/2. Also, the memory 
required for the Forney algorithm and the fast algorithm 
are both small and essentially equal to the number of error 
magnitudes v. Thus, the fast algorithm calculates the 
error magnitudes faster than the Forney algorithm by a 
factor ranging from approximately 1.67 to 3.5. If the 
operations require the same time the speedup factor is 
approximately 2.8. 

A comparison of the execution times for calculating 
the error magnitudes using the Forney algorithm and the 
fast algorithm was performed for a length 1023 Reed- 
Solomon code with v=t=l,2,—,10. It was shown that for 
this case the execution times for the fast algorithm are at 
least a factor of two faster than the Forney algorithm. 

HI. REFERENCES 

[1] G.D. Forney, "On Decoding BCH Codes," IEEE 
Transactions on Information Theory, Vol. IT-11, pp. 
549-547, October 1965. 

[2] R. E. Blahut, Theory and Practice of Error Control 
Codes, Reading, MA: Addison-Wesley, 1988. 

[3] S. B. Wicker, Error Control Systems for Digital 
Communication and Storage, Englewood Cliffs, NJ: 
Prentice-Hall, 1995. 

[4] S. Lin and D. J. Costello Jr., Error Control Coding: 
Fundamentals and Applications, Englewood Cliffs, NJ: 
Prentice-Hall, 1983. 

416 



On Neural Decoding for Some Cyclic Codes 

Yu Jian-ping, Zhao Yu-biao, and Wang Xin-mei 
National Key Lab. of ISN, Xidian University, Xi'an 710071, P.R.China 

Abstract — Based on analysis of the property 
of a class of cyclic codes, an algorithm for neural soft 
decision decoding of those codes is presented. The 
complexity of the new algorithm is much less than 
that of the available algorithms for decoding general 
linear block codes, and its performance is approached 
to that of the maximum likelihood decoding. 

SUMMARY 

The adaptability and parallel computing capabil- 
ity of neural networks make them be specially ade- 
quate for error correcting tasks. Several neural de- 
coding schemes have been proposed. Now, it is well 
known that neural networks can be employed in soft- 
decision(SD) decoding, however, it calls for further 
study on the decoding complexity. 

For an ordinary (n, k) binary linear block codes, 
most available neural decoding implementations per- 
form SD decoding by searching a codeword with 
a minimal distance apart from the received vector 
r = (ri, T2, • • •, rn) in the whole code space C consist- 
ing of 2k elements, the decoding complexity becomes 
large as 2k increases. We can define the decoding 
complexity as the number of elements in the decoder 
searching set. So the complexity of an ordinary neu- 
ral decoder for (n, k) code is 2*. To a class of cyclic 
codes, we trade a slight degradation in performance 
for reducing decoding complexity by using a property 
of these codes. 

Consider   a   systematic   cyclic   code   C(n,k, d), 
whose error-correcting capability is t <   [-^J f°r 

hard-decision (HD) decoder.   Encoding is described 
in the group ({1,-1}, x), the encoding equation is 

k    <?' Ci —   n VJ
J 

wnere {dij} i8 the generator matrix. 

In each codeword, the first k bits are the informa- 
tion bits, which correspond to a set / = {1, 2, • • •, k} 
and the other n — k bits correspond to a set Q = 
{k + 1,k + 2, • • •, n}. Define a weight W,i(e) = £] e,, 

ieA 
where A is a subset of {1,2, •••,»}.  We can prove 
the following theorem: 

Theorem 1    Let r be a received vector of the 

systematic cyclic code, e = c © b be the error vector 
can be corrected by SD decoding, we get W(e) = 
n 
J2 e, < d— 1. Then, the number of error bits in I 

can be always reduced to 

k 

W/(e) = X>, <t (1) 
t=i 

by cyclically shifting the vector r , if and only if 

k      t+1 

Using the above property, we lead a simplified de- 
coding implementation for those codes. The new im- 
plementation is described as the following: 

1) Cyclically shift r m times to get r* , such that 
k 

W/(r*) = J2 rt is minimized ; 
»=i 

2) Determine hard-decision vector b* of r* ; 
3) Encode b^ = {ij, b\,--- ,fc|},get a codeword c*, 

n*f 
t=0 

c* © r* where r. = rjc. t-i > 

where c* 

4)r' 
5) Decode r' to obtain a codeword c' using a neu- 

ral decoder; 
6)c* = c'0c*; 
7) Cyclically shift c* n — m times, get a codeword 

c, which is the result of decoding. 
In the first step, we get r* with a minimum weight 

WJ(T*). An approximate assumption is that r* sat- 
isfies (1). Based on this assumption, the number of 
error bits in / of r* is no more than t, then we get 
Y^i-i ct < t- So, the decoder of the fifth step searches 
the desired codeword only in a subset Su of C consist- 
ing of the codewords c' such that Wj(c') < t rather 
than in the whole codeword space C. This decoder 
is called "narrow sense decoder(NSD)". The number 

i       fa 

of codewords in Su is Nu = £ (      )i so *ne complex- 
i=i   * 

ity of NSD is Nv.   The complexity of new decoder 
is little larger than Nu, so the proposed decoder is 
much simpler than the ordinary decoder. Simulation 
results indicate that the performance is close to that 
of maximum likelihood decoder. 
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Abstract — This paper analyzes excursions of adap- 
tive algorithms. The distribution of the number of 
excursions in n units of time is approximated by a 
Poisson distribution. The mean and distribution of 
the time of the occurrence of the first excursion are 
approximated by those of an exponential distribu- 
tion. Expressions for the error in the approximations 
are derived. The approximations are shown to hold 
asymptotically as the excursion defining set converges 
to the empty set and as the algorithm's step size \i 
converges to zero. The validity of the approximations 
is tested on a variety of examples. 

I. INTRODUCTION 

We study excursions of adaptive algorithms of the form 

Wk+1 =Wk-ßh(Wk,Xk,Dk), (1) 

where Xk and Dk are real valued random variables, ß is a con- 
stant known as the algorithm's step size, and h is a measurable 
function. 

The updates of the error between estimated and optimal 
weights for many adaptive filters (for example The Least Mean 
Square (LMS) algorithm and its "signed" variants) are of the 
form of Eq. (1). When one of these filters is driven by an 
i.i.d. sequence of inputs {Xk} and an independent i.i.d. se- 
quence of disturbances {Dk}, then Eq. (1) defines a discrete 
time Markov chain. The performance of an algorithm is ac- 
ceptable if its corresponding Markov chain spends most of its 
time in a neighborhood of the equilibrium 0 (or preferably at 
0). However, on rare occasions, an excursion (a visit or a clus- 
ter of visits to the set B = [b, co) or the set B = [—6, b]c) will 
occur. 

Denote the time of the beginning of the first excursion by 
TB and the number of excursions in n units of time by Sn. 
We approximate the expectation of TB, the distribution of TB, 

and the distribution of Sn. The distribution and the mean of 
TB are approximated by those of an exponential distribution 
with mean l/ir(B)0 and the distribution of Sn by a Poisson 
distribution with mean X8, where I/o is the mean clump size 
given that there is an excursion, A = TIT(B), and 7r is the 
stationary distribution of the chain. 

II. EXCURSION ANALYSIS AS B —► <f> 

Lattice state space case: Let {Wk}k>o be an irreducible, 
positive recurrent, aperiodic Markov chain with a countable 
state space S (e.g. the even steps of the sgn-sgn variant of the 
LMS algorithm). Define an excursion to be a cluster of visits 
to the set B that is separated by the previous cluster by a visit 
to state 0 or by r visits to Bc for some integer r. Dividing the 
n steps of the chain into independent cycles that start from 
state 0 and end at state 0, calculating an upper bound for the 
probability that a cycle contains more than one cluster, and 

using the law of rare events [1, page 117] produces the desired 
approximation for Sn [2, theorems 3.1 and 3.2]. 

The approximation for the distribution of TB can be derived 
from the fact that P(TB > x) = P(5^j = 0) and the approx- 
imation derived for S„. The approximation for the ETB is 
given in [2, lemma 3.3]. 

The sequence {VFfc} considered so far is a scalar sequence. 
However, the approximations are valid even where {Wk} is a 
sequence of vectors of size m. All that is needed is to map 
the state space ß times Zm into ß times Z and choosing a 
sequence of sets Bn that converges to <j>, for example the sets 
([—bß, bß] X [—bß, bß]x ■■■ X [—bß, bß])c. 

Continuous state space case: The three approximations 
are extended to algorithms with an uncountable state space 
under the assumption that the resulting Markov chain is Har- 
ris recurrent. This assumption will be required in order to 
attach to the chain a generic atom that is visited infinitely 
often and hence may be used as a regeneration state. 

Examples of algorithms with both continuous and lattice 
state space are given to demonstrate these results. One of the 
examples demonstrates the different behavior of clusters for 
the LMS algorithm and three of its signed variants. Another 
example demonstrates the applicability of the approximations 
in the vector case. 

III. EXCURSION ANALYSIS AS \I —>• 0 
Here we assume that the set B that defines excursions is a 
fixed subset of the real line, for example [b, oo), and examine 

excursions as the step size ß —* 0. The results of Section II, 
where B —► </>, analyze excursions of a single Markov chain 
and increase the rarity of excursions by decreasing the set B. 
In contrast, in this section, each value of ß in Eq. (1) defines a 
Markov chain with some stationary distribution, say 7rM, and 
the rarity of excursions is increased by decreasing 7rM(5). 

Our approximations for the mean and distribution of TB 

are still valid in this setting . All that remains to be answered 
is whether these bounds converge to 0 or not as ß —► 0. We 
show that the approximations for the mean and distribution 

of TB hold. The approximation for the distribution of Sn is 
shown to hold after some modification to the definition of an 

excursion. 

[1] 

[2] 
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Abstract — This paper treats the case where Z (t) 
is a continuous wide sense stationary process which 
is sampled at instants tn = n + An, n € Z. The series 
of random gaps An is stationary in the sense weaker 
than strict second order. We present a necessary and 
sufficient condition (NSC) for the exact (mean square) 
linear reconstruction of Z(t). 

I. INTRODUCTION 

Chronological series often stem from random continu- 
ous time processes (t £ R) that we wish to reconstruct. 
The linear reconstruction of the underlying process de- 
pends on the sampling technique and on the information 
we have on this latter. 

In the framework of wide sense stationary processes, 
the case tn = n6 has been completely resolved by 
Lloyd [1]. Concerning the random sampling, the model 
tn = n8 + An is the most frequently used. When the 
gaps An are known or observed, numerous reconstruction 
formulas exist [2] and new ones still appear [3]. 

On the other hand, few attemps have been made in the 
case where the An are not observed and characterized 
only by their statistical properties [4]. In what follows 
we give a NSC for linear reconstruction without (mean 
square) error, of the underlying process, in the case where 
the An sequence is stationary in some sense. 

II. HYPOTHESIS 

The taken hypotheses are marked HQ for the sampled 
process Z = {Z(t),t £ R} (wide sense stationary, mean 
square continuous) and Hi for the sequence A = {An, n £ 
Z} of non degenerated r.v. {Z and A being supposed 
independent): 

Ho 

E[Z(t)} = 0 

E [Z (t) Z* (t r)} 
/ 

eiuTdSz(uj) 

(1) 

Z(t) d$z(u) 

tfl 

i/> (w) = E [eiuA"] (t) 
V<7 e Z, (pq (u) = E [eMA„-A„_„)-|    ^ 
(i) and (ii) do not depend on n 

(2) 
Sz and 3>z are the power spectrum (spectral measure) 
and the Cramer-Loeve representation of Z respectively 
[5]. 

The sequence U = {Un,n £ Z} where Un = Z(tn), 
spans a Hilbert space H(U). The problem is to know if, 
for any t, Z(t) £ H(U) or equivalently H(U) = H(Z) 
(H(Z) is engendered linearly by Z). In this case, the 
observation of the randomly sampled sequence is enough 
to construct the original process Z. 

III. THEOREM 

Let: 

Gn=   f e e"^(w)#z(w) 

Vn — Un — Gn 

Z(t) can be reconstructed linearly without (mean 
square) error from the observation of the series 
U = {Un, n £ Z} where Un = Z (tn), if and only if: 
a) The spectral measures (on [—7r,7r]) of the two se- 
quences G = {Gn,n £ Z} and V = {Vn,n £ Z} are 
mutually singular. 
b) The translated measures S% (w) = Sz (^ + Ink) are 
mutually singular for any k £ Z. 

c) If A = {w; if; (u) ^ 0} then JdSzH E \Z{t)\< 

Remark: 
Condition a) is easily verified in the case where Z has a 
line spectrum and A is a continuous r.v. process. 
The second condition is due to Lloyd [1]. 
Condition c) signifies that ip(u>) is not nul on the support 
of Sz(u). 

IV. CONCLUSION 

In this paper, we obtained a condition necessary and 
sufficient for the exact linear reconstruction of a station- 
ary stochastic process subjected to a random additive 
sampling. 
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Distortion Measures via Parametric Filtering 
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Abstract — Distortion measures are proposed 
on the basis of parametric filtering, a technique 
of signal characterization that combines a para- 
metric filter bank with an analysis of first-order 
autocorrelation. Robustness of the distortion 
measures against narrow-band interference and 
spectral notch filtering is investigated. 

I. INTRODUCTION 

Given a zero-mean stationary signal Xt, consider the 
demodulated first-order autocorrelation as defined by 

also define a distortion measure as 

7«fa) := »{e-'Va)} -1 < 77 < 1), 

where p(a) is the (ordinary) first-order autocorrela- 
tion of the filtered signal Yt(a) :— äYt-i{a) +Xt with 
a := ne~tB. It can be shown [1] [2] that for almost any 
6 the function 79(77) uniquely determines the correla- 
tion structure of Xt and hence forms a characterization 
function of the signal. The parametric filtering (PF) 
method is one that utilizes this characterization prop- 
erty of 79(77) for signal discrimination [1]. In particular, 
distortion measures can be derived from 70(77). 

II. PF-BASED DISTORTION MEASURES 

For any -1 < ?70 < 776 < 1, consider the function 

Pe(v) ■= I b'eiv) + {leint) + l) 6(v ~ Va) 
+ (l-leiVb^öin-Vb)], 

where 7^(77) is the derivative of 79(77) w.r.t. 77 and S(rj) 
is the Dirac delta. Using the results in [1], it can 
be shown that £»9(77) not only is equivalent to 79(77) 
but also forms a generalized pdf in the interval [7?0, »?&]■ 
This latter property gives rise to many possibilities of 
defining distortion measures. For instance, one may 
define the Kullback-Leibler information divergence by 

fib 
«(P§||pj):= /    P0e(v)K{Pl(V)/p0

e(V))dr,, 

where K(u) := u — logu — 1. Since the information di- 
vergence extends to non-probability densities, one may 

*T. H. Li is with the Department of Statistics, 
t J. D. Gibson is with the Dept. of Electrical Engineer- 

ing. He was partly supported by NSF grant NCR-9303805. 

"(pWe) ■■= *{Q'\\PM) 

K{p°e(v)/Pl(v))dv, 

where q*(rj) :— 1 + 6(77 - 77a) + 5(n - 77ft) is the density 
of "uniform" distribution. 

III. ROBUSTNESS 

Suppose the signal is contaminated by a narrow-band 
noise so that Xt has a spectral density of the form 
/i(w) = (1 - e)fo(uj) + eg(oj), where /0 is the noise- 
free spectrum and g is the noise spectrum with g(w) = 
|A_1 for \u> ± wo I < |A and g(uj) = 0 otherwise 
(A < 1). To quantify the robustness of a distortion 
measure against the contamination, we use the second 
derivative of the distortion measure at e = 0, known 
as the local curvature of the distortion measure. 

For the widely used Kullback-Leibler (KL) spectral 
divergence [3], £>KL(/I,/O) := f K(fi(u>)/f0(u))dw, 
it is easy to show [4] that (d2/de2) £>KL(/I, /o)|e=o = 
Ö(A_1). This confirms again that the KL divergence 
is not robust to narrow-band contaminations [3]. 

Compared to the KL spectral divergence, the PF- 
based distortion measures exhibit more robustness to 
narrow-band contaminations. In fact, it is not difficult 
to show that with 1 - max{|77Q|, \r]b\} » A the local 
curvatures of K(P°||PJ) and «(p$;pj) take the form of 
0(1) as A —> 0. Similar results can be obtained for 
distortions due to spectral notch filtering [4]. 
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A Two-Step Markov Point Process* 
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Abstract— Existence and uniqueness are established for a 
translation-invariant Gibbs measure corresponding to a spa- 
tial point process that has, in addition to inhibition and clus- 
tering, the new feature of penalizing isolated points. This 

point process has the so-called two-step Markov property, and 

the associated density function is characterized in terms of 2- 
interaction functions. The asymptotic normality of certain 

statistics of the point process is established when the size of 
the observation window tends to IR2. 

I. A TWO-STEP MARKOV POINT PROCESS ON 

BOUNDED SETS 

Let CIF denote the set of all finite lists of points from IR2. 
A typical point x £ QF has the form x = (xi,..., x„) for some 
n, where each Xi € IR2. For x € £IF, the number of isolated 
points in x is given by I(x) := \{i : \\x, — Xj\\ > d2,\fj ^ i } , 
where d2 > 0 is a specified threshold, || • || is the Euclidean 
norm on IR2, and | • | denotes the cardinality of the indicated 

set. Fix 0 < di < d2, and let ij) : [0, oo) —> [0, oo) be a bounded 
function such that ip{r) = 1 whenever r > d2, and ij>(r) = 0 if 
r < di. Fix 0 < 7 < 1. For x € £IF, consider the density func- 

tion f(x) = ayIf-x^ Y[i< ■ 4>(\\xi—xj\\)> where a is a normalizing 

constant [3, Section 2]. The function ip is responsible for pair- 

wise interaction and may give rise to clustering and inhibition 
[1]. What is new here is the constant 7 which is responsible 
for penalizing realizations with isolated points. We call two 
points neighbors if the distance between them is no more than 
d2. It can be shown [3] that the ratio /(IU({))//(I) depends 
on £, on the points of x that are neighbors of £, and on the 
neighbors' neighbors. If we consider the probability measure 
fdvA, where A is a bounded set and v\ is the measure corre- 
sponding to a Poisson process in A with constant intensity A, 
then the conditional probability of an event in A' C A, given 
what is in A \ A', depends on the points in A', on the points 
in A \ A' that are neighbors of A', and the neighbors' neigh- 
bors. This fact motivates the term "two-step Markov." In 
[3], we extended Ripley and Kelly's [7] characterization theo- 
rem on Markov density functions to m-step Markov densities. 

As a result, we obtain the representation f(x) = a Y[ r ^(.v)> 

where $ is a so-called 2-interaction function, i.e., $(«/) 7^ 1 im- 
plies that every two points in y are either neighbors, or else, 
there is a third point of y which is a neighbor to both points. 
Furthermore, <b(y) = 1 whenever max;,j \\yi — yj\\ > 2d2. 

II. EXISTENCE AND UNIQUENESS OF A GIBBS 

MEASURE ON IR2 

The goal of this section is to define a point process (hav- 
ing the features of the point process in the previous section) 
on the set Q of all lists of points from IR2 whose intersec- 
tions with bounded sets are finite. Note that some of the 
elements of O are infinite lists. Following Preston [6, Chap- 
ter 6], we define the translation-invariant potential function 

V on QF by V(x) := -log(/(z)/a) = -£pCrlog*(»). For 

any subset A in IR2 and s £ fi, let SA denote the restric- 
tion of s to A. Let A be any bounded subset of IR2. If 

1 is a list of points from A, and y is a list of points from 

Ac, define the conditional potential [6, p. 98] V\(x\y) := 
-\imAm2{Y,zCxUyAtZnxit0log$(z)}. For each temperature 

and each A, we can define a conditional probability measure 

corresponding to the above conditional potential. This con- 
ditional measure partially inherits the property of penalizing 

isolated points. The following result is a consequence of [5, 
Theorem 2.2 fe Remark 2.3], [2] and [3, Lemma 3.2]. 

Theorem 1: For every sufficiently large temperature, there 
exists a unique translation-invariant Gibbs measure defined 

on events on Q, and corresponding to the above conditional 
measures. 

III. ASYMPTOTIC NORMALITY 

Assume that ^(r) = ^Zi=1 V1«![!-;_!,T-i)(r)> where 0 = ro < 
di = n < • • • < rM = d2,rM+i = 00, V>i = 0, 4>M+I = 1, and 
M > 1. Observe that the density / now takes the form of 

f(x) = a-fI(-x> Yii=i ^i > wnere Si(x) is the number of pairs 
of points that are r,_i to r; units apart. Let An, n = 1, 2,..., 

be a sequence of bounded subsets of IR2 such that An f IR 
and ra/area(A„) converges to a finite constant asti-t 00. Let 

n be fixed, and define X := (N, Si,..., SM,I), where N is the 
total number of points in a realization of the Gibbs process of 
the previous section, I is the total number of isolated points, 
and Si is the number of pairs of points that are within a 

distance ri_i to r,, all in An. For each j = (j'1,.72) € 2 , let 
Uj := {u = («i,u2) G IR2 : d2j, < u, < d2(ji + l),i = 1,2}. 
Let Jn be the set of indices j for which A„ n Uj is not empty. 
The asymptotic normality of X relies on [4, Theorem 2.2] and 
on [3, Lemma 3.2]. 

Theorem 2: If the temperature is sufficiently large, then as 

n —* 00, (X — E[X])/| Jn| converges in distribution to a 
zero-mean normally distributed IR +2-valued random vari- 
able with a covariance matrix specified in [3, Section 4] 
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Abstract — It is shown that Markov maps when subjected to     reduces to P0 (A\X) as it should. Notice that it is enough to define 
weakly continuous random perturbations have an attractive 
invariant measure that incorporates the dispersive effects of     the function NiA\j at points x e W(X) = Uj/(X) cl. 
perturbations as well as the ordering effects of the mapping. 

I. MARKOV MAPS. 
Are   defined   on   the   basis   of  a   finite   set   of  functions 

f/j| i = l,2...N> on a compact metric space{X,d). Associa- 

ting a probability pt to every function ft, normalized as 

Y.Pii = 1, a probabilistic dynamics on X is defined by the map 

x h» ft(x), with probability />,. This probabilistic dynamics on 

X defines a deterministic dynamics on the set of probability 
measures on X, <P(X) , by the Markov operator, M. For a 

measure v e<P(X) and each measurable set A e X, the action 
of M is defined by 

Mv(A) = !dvP0(A\)=T.Pivofr\A), 

where i^L4m is the usual Markov transition probability and 

<P(X) is endowed with Hutchinson's metric [1]. When the func- 

tions ft have contractivity factors s, < 1, the Markov operator 

M has contractivity factor s = maxta} < 1. The dynamics of a 

Markov map is very simple: for all initial //, M"n converges 
weakly to the invariant measure. Techniques to encode images as 
fractals are based on this fact. 

II. RANDOM PERTURBATIONS. 

An operator  S: <P(X) -> <P(X) describes the stationary random 

perturbations on X. We restrict to random perturbations that are 
specified by their action on atomic measures (for examples, see 
[3])» by giving a function N: B(X) X X -> R such that 

Ar(v4|xj = SSX(A) for every point x e X and any measurable 

subset AczX. The function N\A\j is measurable for each A . 

The action of S on any measure v e <P(X) is then given by 

Sv(A) = \dvN\A\-). The perturbed Markov map is defined by 

the combined operation Rv-SoM and it follows that 

Rve(P(X) whenever v e<p(X). Written in terms of JV, the 

perturbed map is Rv(A) = jP^A^jdv, where we introduced 

PyA\xJ = Y,pjN^A.\xjofx(x), the perturbed transition proba- 

bility. In the unperturbed limit, JVfyl|jc) = SX(A) and -P(^|^) 

III. STABILITY UNDER RANDOM PERTURBATIONS. 
The effects of a random perturbation are the opposite to the 
effects of M. The stability under random perturbations is not 
evident [2]. A Markov map is stable under a given perturbation if 
the corresponding randomly perturbed Markov operator has a 
unique attractive invariant measure. Under a severe random per- 
turbation not every Markov map would be stable. However, we 
have found a class of random perturbations that do not change the 
contractivity of Markov maps. Perturbations in this class we call 

weakly continuous perturbations. A perturbation   A^|x)   is 

weakly continuous if 

\SfdN(-\x)-\fdN(.\y)\<d(x,y), 
for every pair of points x, y in X. Notice that this condition is 
not a restriction on the amplitude of the perturbation, it simply is 
a weak form of continuity on N. 
THEOREM(weak continuity implies stability) Let N be a weakly 
continuous random perturbation. Then R has the same contrac- 
tivity factor s as M. 
The theorem says that under the class of weakly continuos pertur- 
bations, the perturbed Markov operator R has a unique attractive 
fixed point vx . In other words, Markov maps are stable under 
weakly continuous perturbations, in the sense that there exists an 
attractive invariant measure satisfying the equation Rvx = V^, 

for any choice of the set of probabilities, lp\ . 

Weakly continuous perturbations conform a class big enough as to 
include the full class of homogeneous perturbations, i.e., those 
that are introduced with the help of independent identically dis- 
tributed random variables [3]. Hence, under any translational 
invariant perturbation a Markov map always has an attractive 
invariant measure. Interesting features of the noisy invariant mea- 
sure [4] are that it shows details much finer than the length scale 
settled by the noise amplitude and that the self-similar property of 
the unperturbed invariant measure is lost. At small noise amplitu- 
des a degraded self-similarity is retained. 
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I. INTRODUCTION 

Let M. be the collection of probability measures on a measur- 
able space (E,B). Consider the binary decision problem Ho 
vs. Hi where the statistical hypotheses are represented by non- 
parametric families of probability distributions Vi C M,i — 
0,1. Two important special cases are t-contamination and 
total variation families. These families are defined by 

and 

Vi = {Q\Q = (1 - u)Pi + uH, H€M} 

Vi = {Q€ M\ sup \Q(A) - Pi{A)\ < a}, 

respectively, for some Pi € M and 0 < e, < 1. In these cases 
the Vi formalize the possibility of deviations from the nom- 
inal models Pi. We seek Neyman-Pearson and Bayes minimax 
tests between V\ and Vi. 

A pair of distributions (Qo,Qi) € Vo y. V\ is called a 
least favourable pair if Q'0 (qi/qo > t) < Qo (qi/qo > t) and 
Q'x (qi/qo >t)>Qi (q^qo > t) for all t € R and (Q0, Q[) € 
Vo x V\. Here go and q\ denote the Radon-Nikodym derivative 
of Qo and Q\ with respect to a dominating measure \x. As is 
well known, a solution to above minimax problems is provided 
as a threshold test on the least favourable pair likelihood ratio 
[2], [3]. Thus, identification of the least favourable pair is the 
key to solving these nonparametric decision problems. 

In his 1965 paper [2], P. J. Huber gave the construction of 
the least favourable pair for both e-contamination and total 
variation families. This construction is quite general, in par- 
ticular, it works in any measurable space. 

Later, Huber and Strassen proved their celebrated abstract 
minimax theorem in [3] and [4]. Here the authors assume E to 
be a Polish space (i.e., a separable, complete metrizable topo- 
logical space) with associated Borel «r-field B. They consider 
families of the type Vi = {P € M\P < Vi) where Ui are set 
functions defined on B satisfying 

Ui(d>) = Q,Ui(E)^l, (1) 

ACB implies Vi(A) < Ui(B), (2) 

An t A implies u(An) \ v(A), (3) 

Fn | F, Fn closed, implies Ui(Fn) { Ui(F), (4) 

isi(A\JB) + vi(Ar\B)<vi{A) + vi(B). (5) 

A set function satisfying (l)-(4) is called a capacity and a 
set function satisfying (5) called 2-alternating. Their theorem 
establishes the existence of a least favourable pair, but does not 
give constructions [3, Theorem 4.1]. Moreover, the conditions 
(l)-(4) imply the weak compactness of Vi [3, Lemma 2.2]. 

Define v{ by either i/,-(A) = (1 -a)Pi +a for A±%, (called 
e-contamination capacity,) or vi(A) = min(Pi(A) +u,l) for 
A / 0 (called total variation capacity). If E is compact, the 
Ui satisfy (l)-(5) and Vi = {P € M\P < Ui] are either e- 
contamination or total variation families [3, Example 3, Ex- 
ample 4]. However, if E is not compact, the Vi do not satisfy 

(4). 

A related discussion can be found in [5]. The author in- 
troduces a class of capacities, denoted by special capacities, 
containing both e-contamination and total variation. For this 
class, an explicit construction of the least favourable pair is 
given. 

II. SUMMARY 

In this paper we revisit the abstract minimax theorem of Huber 
k. Strassen with the goal of removing the weak compactness 
condition. To do so, we require different topological condi- 
tions: We take E to be a locally compact space for which 
every open set is a Ka (i.e., a countable union of compacts). 
This setting includes RN, N < oo, and "well-behaved" subsets 
of KN with their relative topology. We allow set functions sat- 
isfying (l)-(3), (5) and 

Kn 4- K, A'n compact, implies Ui(K„) \. vi(K) (6) 

instead of (4). Note that both e-contamination and total vari- 
ation capacities satisfy (6). A set function satisfying (l)-(3) 
and (6) will be called a regular Choquet capacity. 

We point out that a regular, 2-alternating Choquet capa- 
city can be extended to the one-point compactification E' of 
E with the point at infinity in such a manner that the Huber- 
Strassen construction of a least favourable pair applies to the 
compactified space. Thus, our work is to construct the appro- 
priate capacity extensions v\. This is done within the setup of 
the theory of capacities as developed by G. Choquet [1]. Then 
the V'o = {P < v'o] vs. V[ = {P < v[} least favourable pair 
on E' must be related to the original problem Vo vs. V\ on 
E. In particular, there is the issue that the V'o vs. V[ least 
favourable pair may put mass at infinity. 

The contributions of this paper are as follows. First, we 
present the extension via one point compactifications as dis- 
cussed above and argue that the Huber-Strassen construc- 
tion of the least favourable pair applies to the compactified 
space. Second, if the Ui satisfy IA(J4) = inf{u;(0)|/l C 
O, E\0 compact in E}, the V'0 vs. V[ least favorable pair will 
not have mass at infinity, and hence, we obtain the desired Vo 
vs. V\ least favorable pair. Both e-contamination and total 
variation do indeed satisfy this condition. 
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The problem of hypothesis testing, which is to de- 
cide between two alternative explanations for the ob- 
served data, is one of the standard problem in statis- 
tics. A discrete memoryless source ( DMS ) is a se- 
quence of i.i.d random variables. The distribution of 
the DMS is either Px or P2. When a sample is emit- 
ted from the source, the observer attempts to decide 
which hypothesis of Hi : Px or H2 : P2 is 
correct. The main concern of this problem is to de- 
termine the best asymptotic exponent of the second 
kind of the error probability when the first kind of the 
error probability is (l) fixed (2) less than 2~nr. These 
are specified by (1) the well-known lemma of Stein (2) 
the theorem of Hoeffding ( [1] ), Blahut ( [2] ), Csiszdr 
and Longo ( [3] ) for hypothesis testing problem with 
exponential-type constraint. 

DMS is an ideal model, A more robust model is 
arbitrarily varying source ( AVS ), where the source 
distribution may vary within a certain set of distribu- 
tion from one time instant to the next. The varying 
behavior of the distribution of AVS is not known ex- 
actly to us, and there are only two alternatives. We 
consider the problem of hypothesis testing for AVS 
in the same way for DMS, and determine the best 
asymptotic exponent of the second kind of the error 
probability when the first kind of the error probability 
is (1) fixed (2) less than 2~nr. These results general- 
ize the well-known lemma of Stein and the theorem 
of Hoeffding, Blahut, Csiszdr and Longo in statistics. 
As a corollary in information theory, The best asymp- 
totic error exponent and Strassen's theorem for AVS 
coding are obtained, furthermore, we determine the 
best asymptotic error exponent and r-optimal rate ( 
the minimum compression rate when the error proba- 
bility is less than 2~nr, r > 0 ) of AVS coding with a 
fidelity criterion. 

Let W = { W(m | s) | s £ S } be a set of prob- 
ability distributions on X. An AVS defined by "W is 
a sequence of random variables {-Xt}^:1 such that 
the distribution of X = (X±, ...,Xn) is an unknown 
element of Wn . 

In the problem of hypothesis testing, W is not ex- 
actly known to statistician. There are only two alter- 
native hypotheses for ~W.   Let   "Wi — {Wi(* \ s)\s G 

S}, i = 1,2 be two sets of probability distributions 
on X. #i : W = 7^ , H2 : W = W2 . When a 
sequence x = (xi,..., xn) is emitted from the source, 
the statistician attempts to decide, by observing the 
data x , which hypothesis of H\ or H2 is correct. 
The decision rule is characterized by a set A C Xn . 
The statistician declares that Hi is true if x e A , 
and that H2 is true if x e Ac . The first kind of error 
probability is 

a= max W?iAe  I s) 

The second kind of error probability is 

ß=^lW2{A | t) 

Given  r > 0 , we denote 

ßn{r) =      inf     ß 
a<2-nr 

When \S\ = 1 , it is the problem of hypothesis testing 
for DMS. for i = 1,2, denote 

^{EWH  S)|0<AS<1, X>a = l} 

Theorem 1 

lim [ log/3„(r)] =  min   min _    min       D(P \\ P) 
n_>°°       n Pelfc Qe1»l P--D(P\\Q)<r 

here the right term is positive. 
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Abstract — In this paper, we present a new formula 
for rate of maxima in the envelope of a normal process. 
In contrast to the Rice formula, our result is simple; and 
also is not limited to a process with even symmetry in its 
one-sided spectrum. 

I. INTRODUCTION 
In the early days of statistical communication theory, pioneering 
works of Rice, Middleton, Lawson, Uhlenbeck, etc. developed 
certain fundamental statistical properties of the Normal Process 
Envelope (NPE). But, still there is a large number of unresolved 
problems about the NPE. One of these unresolved problems is the 
rate of maxima in a NPE having unsymmetrical spectruin. 

II. RICE FORMULA FOR THE RATE OF MAXIMA 
In his classic paper [1], Rice has derived the following formula for 
a NPE with even symmetry in its one-sided spectrum: 

N = 
{a' -I)2, V)l/2y r(n/2 + 5/4) A„ 

(- 
(2a) 5/2    nh ^0T(n/2 + l/4)ar 

(1) 

where: 

b0bA 2m-l 
'    2 (n-m + 1)— (2) 

m=0 
m\ 

have approximated it by the first few terms of its 2D Hermite 
polynomials expansion [2]. 

Using a level-crossing formula developed in [2], and after 
admittedly very cumbersome calculations, the above 
approximation for the bivariate pdf yields the following result: 

_   1 ■ b0b4+3b2 -4bjb3 ,/2 
(4) 

To examine the degree of accuracy of (4), we considered several 
spectra with various mathematical forms. For the cases of 
symmetrical spectra, N was computed using (1). For the cases of 
unsymmetrical spectra, however, there is no closed form formula 
in [1] and in the related literature; so N was computed numerically 
using a very complicated triple integral (This triple integral can be 
derived from [1]). In all cases, the relative error of (4) was found 
to be below 5%!, which is really a great success for this formula. 

Surprisingly, (4) is exactly like the same result that we have 
reported in [3]; which is obtained by a completely different 
approach. 

It should be noted that (4) is really an approximate formula and it 
is not reasonable to determine its accuracy just by several 
numerical examples. However, our recent results, which will be 
reported later, show that (4) can be corrected just by multiplying a 
correction coefficient: 

In the above formulas, bn is the n'th spectral moment: N=KN, aprx (5) 

bn=(2nyjw(f)(f-fc)
ndf 

where K depends on the spectral moments. We observed that for 
(3)     the above examples, K is very close to one. 
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Abstract — In search of a nonparametric indicator 
of deterministic signal complexity, we link the Renyi 
entropies to time-frequency representations. The re- 
sulting measures show promise in several situations 
where concepts like the time-bandwidth product fail. 

I. INTRODUCTION 

The term component is ubiquitous in the signal processing 
literature. Intuitively, a component is a concentration of en- 
ergy in some domain, but this notion is difficult to translate 
into a quantitative concept. In fact, the concept of a signal 
component has never been — and may never be — clearly de- 
fined. In this paper, rather than address the question "what is 
a component?" directly, we investigate a class of quantitative 
measures of deterministic signal complexity and information 
content. While they do not yield direct answers regarding the 
locations and shapes of components, these measures are inti- 
mately related to the concept of a signal component, the con- 
nection being the intuitively reasonable supposition that sig- 
nals of high complexity (and therefore high information con- 
tent) must be constructed from large numbers of elementary 
components. 

Our approach to complexity is based on entropy func- 
tionals and exploits the powerful analogy between determin- 
istic signal energy densities and probability densities. For 
example, the Wigner time-frequency representation (TFR), 
Ws{t, f) = fs(u+%)s*(u- |) e-

j2nTfdr, which indicates 
the joint time-frequency content in a signal s, marginalizes to 
the time and frequency energy densities f Ws(t, f) df = \s(t)\2 

and fWs(t,f)dt = |5(/)|2. The TFRs C,(t,f) of Cohen's 
class form an infinite set of generalizations of the Wigner TFR. 

The probabilistic analogy evoked by the marginals suggests 
the Shannon entropy H(CS) = - JfCs(t, f)log2Cs(t, f) dtdf 
as a natural candidate for estimating the complexity of a sig- 
nal through its TFR: The peaky TFRs of signals comprised 
of small numbers of elementary components would yield small 
entropy values, while the diffuse TFRs of more complicated 
signals would yield large entropy values. Unfortunately, how- 
ever, the negative values taken on by the Wigner distribution 
and most other Cohen's class TFRs prohibit the application 
of the Shannon entropy due to the logarithm. 

II. THE RENYI ENTROPIES 

We propose to sidestep this negativity issue by employing 
the Renyi entropies [1,2] Ha(Cs) = jz^log2 JJ Cf{t, f) dtdf, 

Supported by NSF Grant MIP-9457438, ONR Grant N00014- 
95-1-0849, Texas ATP Grant 003604-002, and URA 1325 CNRS. 

which generalize the Shannon entropy to a family parame- 
terized by a > 0. The resulting time-frequency information 
measure has a number of attractive properties. In addition 
to immunity to the negative TFR values that invalidate the 
Shannon approach [2], the third-order Renyi entropy measures 
signal complexity [1,2]: The information H3(C3) in the TFR 
of the sum s(t) = g(t) + g(t - T) of two separated signal com- 
ponents saturates (as T —► oo) exactly one bit above the value 
H},{Cg) for a single component. 

Our goal has been a detailed study of the properties and 
applications of these promising complexity measures, with em- 
phasis on establishing a firm mathematical foundation. Inter- 
esting properties include the following [2]: 

1. For integer orders a > 1, Ha(C3) is defined for essen- 
tially all key TFRs, including even those distributions 
taking locally negative values. 

2. For odd orders a > 1, Ha(Cs) is asymptotically invari- 
ant to TFR "cross-components" and therefore does not 
count them. 

3. Ha(Ws) exhibits extreme sensitivity to phase differ- 
ences between closely spaced components (ameliorated 
by time-frequency smoothing). 

4. The range of Ha{Ws) values is bounded above and 
below. A single Gaussian pulse attains the lower 
bound, while "deterministic white noise" nears the up- 
per bound. 

5. The value of Ha(Ws) is invariant to arbitrary time and 
frequency shifts, scale changes, and shears and rotations 
in the time-frequency plane. 

In recent work, we have applied the Renyi measures to ran- 
dom signals, introduced the notion of a Renyi dimension, and 
suggested how these measures can be employed to improve 
TFR performance through adaptivity. 

Finally, we have introduced a new "Jensen-like" divergence 
measure [3]. While this quantity promises to be a useful in- 
dicator of the distance between two time-frequency distribu- 
tions, it is currently limited to the analysis of positive defi- 
nite TFRs. In spite of this rather severe limitation, this mea- 
sure could prove useful for time-frequency based detection and 
recognition. 
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Abstract — The covariance and spectral properties 
of the wavelet transform and of the discrete wavelet 
coefficients, in the orthonormal series representation, 
of second-order random fields on Rn are determined. 
Both weakly homogeneous random fields as well as 
random fields with weakly homogeneous increments 
are considered. Weakly isotropic fields and fields 
with weakly isotropic increments are also considered. 
Applications to fractional Brownian fields on Rn are 
given. 

I. INTRODUCTION 

Let X = {X(t, u),t £ Rn} be a possibly complex-valued 
random field which is jointly measurable in t and u>. We con- 
sider second-order random fields with zero mean and covari- 
ance function Cx(t,s) = E[X(t)X*(s)] where * denotes com- 
plex conjugate. Let i/>(t),t G R", be an analyzing wavelet. 
The continuous wavelet transform of the random field X at 
scale a > 0 is defined by 

Wa{t,w) 
JR." 

X(u,w)il>{(u-t)/a))du (1) 

so that {Wa(t,w),t G Rn] is a random field for each scale 
a > 0. 

Let {Vj,j G Z} be a multiresolution approximation of 
■^(■ß") and Wj the orthogonal complement of Vj in VJ-+i. 
Let {<i>i,k(t),k G Z"} be an orthonormal basis for Vi and 
let {Vw,*(l)>P = 1.-,2n - l,fc G Zn] be an orthonor- 
mal basis for Wj [2]. Define the approximation coefficients 
{°i,*> * € Zn} at resolution 2-' by 

a'.*H= /   X(t,u)<f>i,k(t)dt 
JRn 

(2) 

and the detail coefficients {bpjk,k G %"} at detail level 2~' 
by 

W(w) = /    X{t,u)^Pijtk{t)dt. 
JR.» 

(3) 

Under certain integrability conditions (see [1] for details), 
{&i,k,k G Zn} and {bpj,k,k G Zn} are discrete-time second- 
order random fields on Zn. 

Our goal is determine the covariance and spectral proper- 
ties of the random fields {Wa(t),t G R"}, {at,k,k G Zn) and 
{K,i,h'i- £ Zn) a™* *° see whether they inherit the features 
of the input process X (weakly homogeneous, weakly homoge- 
neous increments, weakly isotropic). A representative result 
is given in Section II. 

II. REPRESENTATIVE RESULT 

We suppress the u>-argument in the sequel. Consider a pos- 
sibly complex-valued measurable random field {X(t),t G Rn} 
with weakly homogeneous increments [3]. 

We are concerned with the covariance and spectral prop- 
erties of the wavelet transform and approximation and detail 
coefficients, as defined in (1), (2), and (3), respectively, of the 
random field {X(t),t G Rn] itself ( not of its increments ). 

Theorem 1. Assume that f j>(t)dt = 0. Then the 
wavelet transforms {Wa(t),t G Rn}, o > 0, are jointly 
weakly homogeneous random fields with zero means and 
covariance/cross-covariance function 

CW.^.,0) = E[Wai(t + u)W:3(u)] 

having the spectral representation 

<?vr.liVVo, (1) = (<«i«2)n/2 / e<iA i>*(aiX) i>(a2\) F(d\) 
Jfi»\{0} 

+(aia2)
1+n/2 /     I    (Au) ■ v i/>(u)4>(v)dudv     (4) 

J Rn JRn 

where F(d\) is a measure on Ä"\{0} satisfying 

Lm^T$WFm<°°- (5) 

Än\{0} denotes the Euclidean space Rn minus the vector 0, 
A = [atij] is a nonnegative definite Hermitian matrix, and 
V"(A) is the Fourier transform of i/>(u). 

Remark 1. Note that while the input field X is not weakly 
homogeneous, the wavelet transforms at distinct scales are 
jointly weakly homogeneous. Their spectral and cross-spectral 
distributions can be obtained from (4). When the the first- 
order moments of V> vanish, the second term on the right side 
of (4) is equal to zero. 

Results analogous to Theorem 1 are given for the 
discrete-time second-order random fields {aitk,k G Zn} and 
{bp,j,k,k G Zn}. Applications to fractional Brownian fields on 
Rn are also given. Full details can be found in [1]. 
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Abstract — In this paper, a technique for providing 
unequal error protection is investigated. It relies on 
a transform approach to coding and makes use of the 
wavelet transform over finite fields. 

I. INTRODUCTION 
This paper deals with the application of finite field wavelets to 
build error correcting codes that provide unequal error protec- 

tion to the codewords. Traditional coding theory usually con- 
structs codes providing uniform error protection to all code- 

words. But, many image and speech processing applications 

require some codewords to be more protected than others. 
Examples of this kind include Differential Pulse Code Mod- 

ulation (DPCM), where the effect of an error on the most 

significant bit (MSB) is much more than on the least signifi- 
cant bit (LSB). Similarly, in Linear Predictive Coding (LPC), 
a technique often used for speech transmission, the filter co- 

efficients are much more important than the raw data. One 
way to provide additional error protection to some of the code- 
words is to give all codewords the highest protection required 
for any data, but this is not bandwidth efficient. Additional 
error protection calls for more redundancy, leading to a lower 

rate. 

II. FINITE FIELD WAVELET TRANSFORMS 

A general theory of multiresolution analysis can be developed 
(cf. [l]) over £2(M). In this paper, we will only use finite 
length cyclic wavelet transforms as described in [2], [3] and 
[4]. We will refer to the mother wavelet in such a formulation 
by g and the 2-circulant [5] matrix generated by it to be G. 
Similarly, we have the complementary matrix H. ( See [3] for 
details. ) 

III. DESIGN OF THE CODE 

Transform domain study of codewords have been of great in- 
terest [6]. To use wavelet transforms to design codes, we make 
use of the fact that by choosing a mother wavelet properly, for 
a wide class of codes, codewords that have a zero bandpass co- 
efficient have non-zero lowpass coefficients. In the successive 
transform levels, only a few codewords still yield non-zero co- 
efficients and hence can be protected more. An example of 

this kind of a code is the extended Hamming [8,4] code { i.e. 
a Hamming (7,4) code with a parity bit } with the mother 
wavelet (1-10 0 0 0 0 0). We will call this the Haar wavelet 

transform and call the generated matrix GH- 

IV. REED-MULLER CODES 
Reed-Muller codes can in general be represented as Boolean 
functions completely specified by specifying a set of basis vec- 
tors. A first order Reed-Muller code uses only the first order 
terms, while an re* order code uses product terms up to order 
7i. Of course, if the length of the codewords are 2n, only codes 
of up to order n exist. The matrix GH of appropriate order 

works well for these codes, as do some other wavelets derived 
from a set of codewords. 

This research was supported by the US Office of Naval Research 
under Grant N00014-94-1-0115 

V. CONCATENATED CODES 
Concatenated codes can be dealt with in general. As an ex- 
ample, let C be an (n,k) code. Then, we form a (2ra, 2k) code 

of the form (C, C) by concatenating two codewords, where 

C £ C. It is easy to see that if G is the 2-circulant matrix 
formed from the mother wavelet that works for the code C, 

then G ® I2 will work for the concatenated code. 
As the next level of complexity, let us consider a code C' 

generated from a linear code C in the following manner : Let 

A be the generator matrix for the code C. Then the generator 
matrix for the code C' is given by 

A' = 
A 
0 

A 
A 

Thus, any codeword in C is of the form (ci,ci +02,02), where 
ci, C2 € C. With the assumption that the code C is linear, we 
get ci + C2 £ C. Hence, the matrix G® I3 works for this case. 
It is now obvious how to deal with any concatenated code of 
this form. In fact, depending on applications, we can choose 
a proper transform to achieve the required bit-rate. 

VI. THE DUAL CODE 
Direct sum of two different codewords can be handled by using 

the fact that if C and V are two codes, then (C+X»)-L = C^nV1- 

(see [7]). The idea is to use codes that have as a subcode a 
self-dual code. Then, using the above property, if we can 

find a mother wavelet in the intersection, a description can 
be obtained. Even-weight repetition codes are an example of 
such kind of codes. 

VII. FUTURE DIRECTIONS 
It is thus possible to characterize a large class of codes. The 
next step of complexity is in finding descriptions of codes that 

are direct sums of two other codes. This is useful in finding a 
description for the Golay code. 
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Abstract — Computing the Fast Wavelet Transform 
of rational input sequences using algebraic scaling co- 
efficients affords only a finite extension field K over Q 
rather than the field of complex numbers. We use Ga- 
lois theoretic methods to study this extension field. 

I. INTRODUCTION 

Orthonormal wavelet bases are usually constructed by the 
tools of multiresolution analysis, cf. [2]. At the heart of a 
multiresolution analysis stands a so-called scaling function ip. 
This scaling function satisfies a dilation equation, which can 
be written in Fourier space as <$(w) = rcio(w/2) <p(u/2), where 
m0(u) = ^Th„e~'nu. In what follows, we assume compactly 
supported scaling functions with algebraic coefficients h„, i. e., 
every coefficient h„ is element of an algebraic number field. 
From the multiresolution analysis axioms one derives the sim- 
ple relation | m0(w) |2 + | m0(w + n) |2 = 1. Therefore, it is 
convenient to construct the transfer function rao(w) from its 
squared modulus | m0(w) |2 with the help of the following: 

Theorem 1 (Fejer-Riesz) Let A{u) be a real nonnegative 
even trigonometric polynomial 

3. Choose a zero ZJ from every factor (l/2 - CJZ + l/2z ) , 
1 < j < M, and build a new trigonometric polynomial 
PB(z) - v]\M

=l{z - ZJ), where v € K is just a nor- 
malization factor. The trigonometric polynomial B(w) 
is obtained from PB by S(w) = PB(e~iu). Thus, the 
field K is generated by elementary symmetric functions 
of the zeros Zj. 

Hence, from a field theoretic point of view the situation can 
be summarized by the following diagram: 

D 

T~>M 
A(w) = 2_)m=0 °m COS m W' ith €R. 

Then it is possible to construct a real trigonometric polynomial 
B{u) = ^2^=0bmeirna, with bm € R, of the same order M, 
such thatA[ui) = |S(u>)|2. 

II. ALGEBRAIC SCALING COEFFICIENTS 

In the case of trigonometric polynomials | mo(u) |2 with alge- 
braic coefficients, the following theorem ensures that mo(w) 
has algebraic coefficients, too. 
Theorem 2 ([1]) The coefficients am of the trigonometric 
polynomial A(w) are algebraic if and only if the coefficients 
bm of B(u) are also algebraic. 

Theorem 2 can be proved by extending DAUBECHIES' proof of 
Theorem 1 [2], but using minimal splitting fields instead of 
the algebraically closed field C. The main steps in the proof 
can be sketched as follows: 

1. Rewrite the trigonometric polynomial A(u) as a poly- 
nomial PA in cos u>. The polynomial PA can be factorized 
over a minimal splitting field E as lc(pA) rL=i (c ~~ ci)- 
Here, lc( •) denotes the leading coefficient. 

2. Build a self-reciprocal polynomial PA by substituting 
c := (z + z~1)/2 in pA{c) and multiplying with zM. 
Therefore, the resulting polynomial is of the following 
form PA(W) = \c(pA)f[„=1 (l/2 - c^ + l/2z2) . Fac- 
torize PA{Z) in a minimal splitting field D. 

'This work was supported by DFG under project Be 877/6-2. 

III. GALOIS THEORETIC ANALYSIS 
From the very construction, we see that the fields E and D are 
Galois extensions over F. We discuss some of their properties 
through a sequence of lemmas and corollaries. 

Lemma 1   The   Galois group Gal(D/E)   is  isomorphic  to 
(Z/2Z)m, with m<M. 

From this observation we easily derive the following result 
about the structure of the Galois group. 

Lemma 2 The Galois group Gal(D/F) is the extension of 
the elementary abelian normal 2-subgroup Gal(D/E) by the 
group Gal(£/F). 

As a consequence, we get an upper bound for the order of the 
Galois group Gal(D/F), which is helpful in the estimation of 
this group. 

Corollary 3 We have the following upper bound for the field 
degree of D/F: 

[D : F] < 2M ■ | Gal(F/F) | < M! • 2M. 

By carefully studying the structure of K, we obtain 

Lemma 4 The field D is generated by the composition field 

EK. 

Corollary 5  The field degree [K:F] is at least | Gal(D/F)|. 

The close connection between the fields D and K can be ex- 
emplified by the following 

Lemma 6 // the field degree D/E is maximal, i. e.,[D : E] = 
2M, then the Galois closure of K is the field D. 
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Abstract — In this paper we present a methodology 
to analyze functions in £2 in terms of self-similar 
discrete-time biorthogonal functions at different 
resolution levels. We call these functions discrete-time 
biorthogonal wavelets, and they verify in £2 the same 
properties that biorthogonal wavelets do in L2, in- 
cluding self-similarity. 

I. INTRODUCTION 

One of the most well-known cases of Multiresolution Analysis 
(MA) [1] for functions / € L2(K) is characterized by solutions 
of the equation 

4>(x) = YJafe0(2a: — k) (1) 

with 4>{x) € L2, ak €R, k €Z. 
The family 4>mk{x) = 2~m/2<p(2-mx - k) with k,m eZ, 

is a powerful tool to analyze the behaviour of functions at 
different locations and resolutions. As (j)(x) is defined on L2, 
it is not possible to apply this theory directly on a discrete- 
time signal g £ £2. For discrete functions, it is necessary first 
to build / e L2 from g, and then apply a MA on / to study 
its properties and, from them, extrapolate the properties of g. 
In this paper we overcome these drawbacks developing the 
theory of wavelets directly on £ and giving conditions to ob- 
tain families of discrete-time biorthogonal wavelets. 

II. DISCRETE MULTIRESOLUTION ANALYSIS 

We define a Discrete Multiresolution Analysis (DMA) V 
by a set of closed subspaces Vm C ^2(R), m €N, 
... C V2 C Vi C Vo = £2, where f\mVm = {0}, 
and where each subspace verifies that <f>m € Vm exists so 
that the set of functions {<f>mk}kez is a base for Vm, with 
0mfcM = <pm[n — 2nlfc], n S Z. A direct consequence of 
this definition is the relationship between basis functions from 
adjacent subspaces given by (f>m+i = ^2k a™<f>mk, a™ 6R- 

We introduce the self-similarity criterion among functions 
at different resolutions levels stating that a DMA is self-similar 
(SSDMA) if and only if 

Vm e N, f[n] € Vm+i «*■ f[2n] e V„ (2) 

In [2] we prove that all SSDMA's must be homogeneous 
(am = a°,m > 0) and can be obtained from (f>°,a° € £2 

solutions of 

0oM = \/2^a°0o[2n - k\. 
k 

We will call that equation discrete two-scale equation due to 
its analogy with (1). Under certain conditions of convergence, 
an SSDMA leads to an MA [2]. Techniques appearing in [3] 
for increasing regularity of <j>(x) can be applied to study the 
regularity of the MA generated by an SSDMA. 

III. BlORTHOGONALITY 
Let V and V be two DMA's. We say that V is biorthogonal 
to V if and only if Vm is biorthogonal to Vm for m > 0, 
that is, if and only if 0m is biorthogonal to 0m, with the 
scalar product as the projection operator. A necessary and 
sufficient condition for Vm being biorthogonal to Vm is that 
0i be biorthogonal to 0i, and that am be biorthogonal to a"1. 
If V and V have to be self-similar, they must verify (2). Let 
/ G I , and suppose that / is projected on V. As V and V 
are biorthogonal, / can be reconstructed from V and from the 
projections of / on V. If / must be decomposed in terms of 
self-similar functions, at least V have to be self-similar. If V 
is not forced to be self-similar, there will be more degrees of 
freedom to design the families of biorthogonal discrete-time 
wavelets. 

A special case of discrete-time biorthogonal wavelet can 
be obtained when a0 is an interpolation function. From the 
relationship of this case with filter bank theory, one can obtain 
simple filter bank structures verifying the perfect reconstruc- 
tion property, solving the drawbacks that interpolation filters 
present in this context [4], and pointing interesting applica- 
tions in areas such as multiresolution image and video coding. 

IV. GENERALIZATION OF THE SELF-SIMILARITY 

CRITERION 

The self-similarity condition given in (2) can be extended to 

f[2ß+6n] = 2-6/2g[2ßn],ß £N,6£N+,fe Vm+S,g € Vm. 

The most restrictive case, that is, the case that would imply 
more constrains on discrete-time wavelets due to self- 
similarity, corresponds to ß = 0 and leads to (2). Functions 
in SSDMA's with different ß's will have different grade of self- 
similarity (GSS). An expression that measures this property 
for a given ß results to be GSS = 2~®'. When relaxing the 
self-similarity criterion, the design of families of functions is 
also made more flexible. Constrain (2) can be generalized 
for a integer scaling factors greater than 2. Then, one can 
obtain SSDMA's defined by discrete-time multiwavelets on 
which biorthogonality conditions similar to those given in the 
former section can be imposed. 
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Abstract — Pa is the class of functions with a-th 
derivative bounded in L2-norm, a > 0. Kolmogorov 
and Tichomirov have e-specifled any / € Pa by a 
0(e~1/a) bits length code obtained from the Fourier 
(trigonometric) spectrum of /. We prove that the 
code can be derived from / in linear time. We show 
that wavelets are equivalent to the trigonometric ba- 
sis with respect to both the length of the code and 
the time to get it from the spectrum (to within mul- 
tiplicative constants). On the other hand, some bases 
of wavelets outperform Fourier's, if we want to find 
the value of / at some point given the code of /. 

I. INTRODUCTION 
A.Kolmogorov and V.Tichomirov in collaboration with 

V.Arnold introduced in [1] a compact class Pa of square in- 
tegrable functions, a > 0. A 27r-periodic function /, f € Pa, 

belongs to Pa, if 

/        \f(t)\dt<l, \f(a\t)\2dt<l, 
Jo Jo 

where /(a) is the a-th derivative of /, a > 0. Every / was 
given a binary code through which one can recover / with e- 
accuracy, e —> +0, in L2-norm. The length of the code was 
minimal (to within a multiplicative constant) and equal to the 
e-entropy of Pa, which is 0(e~1/a). A function / was first ex- 
panded in trigonometric (Fourier) series. A partial sum of 
the series is a polynomial differing from / by e in I^norm. 
The set of the coefficients of the polynomial is called the har- 
monic e-spectrum of /. Kolmogorov-Tichomirov's code of / 

is a compressed form of that spectrum. 
With the minimal code known, the next question arises: 

how difficult is it to go from / to its code and back? 
An orthonormal basis is chosen in L2. A function / is 

specified by it's e-spectrum over that basis. There are two 
variants of the above question. The first: we want to know 
the running time of computer's transforming the e-spectrum 
of / to a code of length 0(e-1/")-bits, e-specifying /. We want 
to know also the running time of computer's transforming the 
code back to the e-spectrum. The second: we want to know 
the running time of computer's transforming a code of length 

0(e_1/a)-bits of / and a number x,0 < x < 2TT to f(x). I.e., 
what is the time required to compute a value of / via a code 
of /? Our purpose is to find out which basis is best suited 
for solving that question. We will compare the wavelet bases 

with Fourier's. 

II. MAIN RESULTS 

We give the following answers to those two variants of the 
question. The first variant: we develop a simple algorithm 
that takes an independent on e number of operations with 
bits per an input bit to transform the e-spectrum of a func- 
tion into its code of length O(e"1/o!)-bits. We call the algo- 
rithm simplex, not to be confused with the known Dantzig's 

simplex method. It is optimal to within the constants in O 
and in the number of the operations with bits. The same is 
true for the inverse algorithm. There is a wavelet basis which 
is as good in solving the first variant of the question as the 
Fourier's, although the constant in O is greater for wavelets. 
So, as regards the spectrum-code transformation wavelets are 

equivalent to the trigonometric basis in the sense mentioned. 
As regards the calculation of functions via codes of their 

spectra (second variant of the above question), wavelets out- 
perform the trigonometric basis. Namely, it takes either 

0(e~1/a(logl/e)c), c > 0, or 0((logl/e)3) operations with 

bits to compute f(x) given a 0(e~1/a) code of /, depending 
on which spectrum the code is based on: Fourier's or wavelet's. 

The simplex code plays an important part in our construc- 
tion. First of all it is used to enumerate vectors with integer 
coordinates belonging to a multidimensional simplex. Then 
the code is applied to a ball and to an ellipsoid. Both the 
length and the running time of the simplex code are minimal. 
Moreover, one can recover a sole coordinate Xi,i = 1, ...,p of 
a vector (xi, ...,xp),p > 0 rather quickly. This property of 
the simplex code is combined with the fact that there are not 
so many wavelets not vanishing at a point. As a result, we 
calculate f(x) rapidly if we use the simplex code of a wavelet 
expansion of /. The wavelet basis is selected for the class Pa. 
On the contrary, in the trigonometric case we should use all 
the members of the trigonometric polynomial. 

One of the open questions: what is the tradeoff between 
the length of codes of functions in Pa and the time required 
to compute either the code of / or f(x), 0 < x < 2nx given the 

spectrum of /? 
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Given a pair of random vectors X, Y, we study the prob- 
lem of finding an efficient or optimal estimator of Y given 
X when the range of the estimator is constrained to be a fi- 
nite set of values. A generalized vector quantizer (GVQ), with 

input dimension k, output dimension m, and size N maps in- 

put X £ Tlk, to output V(X) £ Tlm. The output V(X) is 

constrained to be one of the estimation codevectors in the 

codebook, {yu y2, • • •, yN}. The performance of the GVQ is 
measured by the average distortion, D = E[d(Y, V(X))] for 
a suitable output-space distortion measure d(-, •). A GVQ re- 

duces to a conventional vector quantizer in the special case 
where X = Y. The GVQ problem has been approached in 
the information theory literature from many different stand- 
points. In particular, it appears in the context of noisy source 
coding, which is the special case where we quantize X, the 
observable, noisy version of a source, Y. 

A GVQ partitions the input space Tlk into N decision re- 
gions or cells. Each cell is mapped by the GVQ to a partic- 
ular codevector. In principle, a GVQ is fully characterized 
by specifying (a) the input space partition and (b) the code- 

book. Correspondingly, one can view the GVQ operation as 
the composition of two operations, an encoder, £, which as- 
signs an index i to each input vector X, and a decoder, V, 
which is a table-lookup operation that generates y;, given i. 
Thus, £ is a classifier whose performance measure is the dis- 
tortion in Y induced by the classification, and V is the condi- 
tional estimator of Y, given the classification index assigned 

by £. We summarize the necessary conditions and properties 
of the optimal GVQ. However, the optimal encoder has, in 
general, unmanageable complexity since its partition regions 

may be neither convex nor connected. We propose therefore, 
to constrain the complexity of the encoder, £ by restricting 
its structure. Finding the optimal GVQ subject to the struc- 
tural constraint is a hard optimization problem and to address 
it, we apply ideas from statistical physics. Although the ap- 
proach we propose is extendible to a variety of structures, we 
restrict our derivation to the specific structure of the multi- 
ple prototype classifier and we refer to such a GVQ system 

as the multiple-prototype generalized vector quantizer (MP- 
GVQ). In MP-GVQ, a codevector, y, owns M} prototypes, 

{x_,i,Xj2...XjM_,}- The encoding rule finds the nearest pro- 
totype to the input X and maps it to the estimation vector 
associated with that prototype. Thus, the encoder partition 
region R3 is the union of Mj nearest neighbor Voronoi cells. 

The MP-GVQ design problem is to jointly optimize the 
prototypes {xjk} and codevectors {y_,} to minimize the dis- 
tortion, D. The problem cannot be directly solved with a vari- 

ant of Lloyd's algorithm nor by a gradient descent approach, 

due to the discrete nature of the classifier partition. We tackle 
the problem by introducing a probabilistic framework for the 
encoding rule where, for a given input, a probability distribu- 

tion is assigned to the set of prototypes and the estimation 

vector assigned to the input is determined by the class index 

of the randomly chosen prototype. The degree of random- 

ness is measured by the Shannon entropy. Randomization of 
the nearest-neighbor partition subject to a constraint on the 
encoder entropy results in the Gibbs distribution for the en- 

coding rule. The Lagrange parameter, 7 controls the degree 
of randomness , and as 7 —► 00 , the encoding rule approaches 
the (non-random) nearest-neighbor rule and the entropy goes 
to zero. Furthermore, this Lagrangian framework is extended 
to re-formulate the entire MP-GVQ problem as a minimization 
of the expected distortion, D subject to an entropy constraint. 
The corresponding Lagrange multiplier, ß is inversely related 
to the temperature in the physical analogy, as explained be- 
low. 

The method consists of starting with a highly random en- 
coder (large value of the entropy constraint) and gradually 
reducing the entropy while solving the optimization at each 
level. At the limit of zero entropy, we obtain a deterministic 
solution satisfying the structural constraint and minimizing 
the output distortion. 

This is an annealing process corresponding to the physical 
analogy where a system whose energy is the output distortion 
and whose temperature is inversely related to the Lagrange 
multiplier , ß, is gradually cooled down to zero temperature. 
This analogy also explains the ability of the method to avoid 

many local minima that riddle the distortion surface. The 
physical analogy is taken a step further by observing that the 
system undergoes phase transitions in the sequence of solu- 
tions obtained for decreasing values of entropy. These tran- 
sitions correspond to an increase in the effective size of the 
model (the number of distinct codevectors found in the so- 
lution for each entropy value). We provide a result yielding 

the critical temperature (at which a set of codevectors "split" 
into a larger set) as a function of the covariances and cross- 

covariances of X and Y in the respective clusters. The result 
extends the original results for phase transitions of determinis- 
tic annealing process previously studied for conventional vec- 
tor quantizer design. 

We demonstrate the usefulness of our MP-GVQ design pro- 
cedure for a variety of examples from the source coding liter- 
ature. 

•"This work was supported in part by the National Science Foun- 
dation under grant no. NCR-9314335, the University of California 
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Abstract — A new form of trellis coded quantization 
is presented based on uniform quantization thresholds 
and "on-the-fly" codeword training. The universal 
trellis coded quantization (UTCQ) technique requires 
no stored codebooks. UTCQ performance is compa- 
rable with fully optimized ECTCQ for most rates. 

Performance for the memoryless Gaussian source is 
presented. 

TCQ has been shown to be an effective quantizer for mem- 

oryless sources with low to moderate complexity [1]. ECTCQ 
was developed in [2, 3] and achieves MSE performance near 
(within about 0.5 dB) the rate-distortion bound of the mem- 

oryless Gaussian source, at all non-negative encoding rates. 
In [4], the TCQ subset labelling of Figure 1 was introduced. 
This index shift makes the quantizer symmetric with respect 

to codebook supersets (So = -Do U D2 & Si = Di U£>3). With 
the modified labelling, both supersets have access to a zero 

codeword. 

-3A -2A 

-1 

0 A 2A 3A 
0 1 2 

0 1 

In [4] a system similar to UTCQ was presented. There 
all codewords were trained using a training sequence and the 

codebooks stored. Figure (2) gives the relative distortion be- 

tween UTCQ when training four codewords versus training all 
of the codewords. By simply training four codewords, UTCQ 
achieves virtually the same performance and stores no code- 

books. Futhermore, by training on the sequence data itself, 
UTCQ may perform better when the source statistics are not 

precisely known. 

First-order Entropy   (bits) 

Fig. 1: Modified Subset Labels 

The following relationships are evident (assuming a sym- 

metric pdf), W 

CWieSo 

Ps0 [CWX] 

-CW-ieSl 

PSl [CW-i]. 

(1) 

(2)     W 

These relationships allow the use of a single variable-rate code 
for both supersets [5]. The encoder returns the So indices and 
the negative of the Si indices. The decoder may uniquely 
recover the index stream by tracking the trellis state. 

UTCQ uses uniform thresholds and codewords for quan- 
tization. The encoder is completely characterized by A (see 

Figure 1). For CWi, (\i\ > 2), the decoder uses uniform code- 
words. The remaining codewords are trained on the actual 
sequence being encoded,except CW0 = 02. The trained code- 
words, are determined by taking the mean of all samples map- 
ping to i G So and the negative of those mapping to —ig Si. 
These codewords are quantized within their cells using 256 
levels and passed to the decoder. This quantization requires 
a four byte overhead and guarantees that the quantized code- 

words are within 0.4% of their trained values. 

'This work was supported in part by SAIC and by the National 
Science Foundation under Grant No. 9258374. 

2Although suboptimum in an MSE sense, we have found this 
sometimes results in perceptual improvements when used in image 
coding applications. 

[3] 

[4] 

[5] 

Fig. 2: UTCQ Memoryless Gaussian Performance 
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Abstract — A method is proposed for designing a 
maximum mutual information (MMI) vector quan- 
tizer, for applications in which quantization is used 
to extract a set of discrete features for use in classifi- 
cation. 

I. INTRODUCTION 

Vector quantization is commonly used as a feature extraction 
technique for classification. Typically, the vector quantizer for 
feature extraction is designed identically to a vector quantizer 
for coding, that is, to achieve a minimum distortion represen- 
tation of the original data [3]. While this type of quantizer 
has proven successful as a feature extraction technique for 
recognition systems, it seems reasonable to question whether 
such minimum distortion quantizers are actually optimal for 
feature extraction. 

II. MMI VECTOR QUANTIZATION 

We propose a technique for designing a maximum mutual in- 
formation (MMI) quantizer which maximizes the mutual in- 
formation J((X, C); Q) between data X labeled with class C, 
and the quantization rule Q. We consider the case when the 
quantization rule Q(X, C) € {!,...,!{} is a function of the 
data and class label, as well as the case when Q(X) is a func- 
tion of only the data. The quantization rule Q(X, C) or Q(X) 
is based on centroids Yi,..., YA' associated with each quanti- 
zation index. The mutual information I((X,C);Q) between 
the data and the quantizer is given by [l] 

J((X, C); Q) = H(X, C) - H(X, C\Q) (1) 

where H(X, C\Q) is the conditional entropy of X and C given 
the quantization Q. Since -ff (X, C) does not depend on the 
quantization, finding the quantizer to maximize the mutual 
information between (X, C) and Q is equivalent to finding the 
quantizer to minimize H(X,C\Q). 

Now P{X.C\Q) = P{X\Q)P{C\X,Q). We make the sim- 
plifying assumption that P(C\X,Q) = P(C\Q). Thus 

H(X,C\Q) = H(X\Q) + H{C\Q). (2) 

Let P(X\Q) be Gaussian, with mean YQ and identity covari- 
ance. Then the quantizer which maximizes the mutual infor- 
mation between (X, C) and Q can be found by minimizing 

H(X, C\Q) = l-E{{X - YQ)2} - E{\og(P(C\Q))}. (3) 

A class-dependent quantization rule Q(X, C) can be de- 
signed with an MMI criterion by using the standard k-means 
algorithm [2] to find the centroids Yi,...,YA- that minimize 
the MMI distortion 

<*MMI(X, C; Q) = |(X - YQ)
2
 - log(P(C|Q)),        (4) 

averaged over the labeled training data 
(Xi,Ci), ...,(XN,CN)-    The second term in <ZMMI(X, C\Q) 

requires an estimate of P(C\Q), obtained empirically based 
on the class labels of the training data. 

In practice, the class labels of the data are unknown before 
quantization. Thus the quantization rule Q(X) must be a 
function of only the data X. We assume that the form of the 
quantization rule for X is to choose the quantization index of 
the centroid Y* that has minimum Euclidean distance 

</E(X;Q) = I(X-YQ) (5) 

The quantizer design involves finding the centroids {Y*} to 
minimize (3). More precisely, since the expectation is over the 
empirical distribution observed in some labeled training data 
(Xi,Ci),..., (XN,CN), we in fact seek to minimize 

J = E [^X< - Y«x.))2 - kg P(C,-|Q(X,-)) (6) 

Since the criterion for estimating the centroids (Eq. 6) is 
now different from the distortion measure used to assign vec- 
tors to centroids (Eq. 5), the simple k-means algorithm can't 
be used for optimizing the centroids. Instead, we will use a 
gradient descent procedure. Estimating P(C\Q) using simply 
a count of the samples with quantization index Q and class C, 
as in the previous section, yields a function which is piece wise- 
constant with respect to the centroids {Yk}, and thus is not 
amenable to gradient descent. Instead, we use the estimate 

P{C = m\Q = k) 
£L 6c„mP(Q = k\Xi) 

(?) 

where 6c,,m is the Kronecker delta: 8c, 
Ci ^ m. Now 

: 1 if d = m, 0 if 

P(Q = k\Xi) = 
P(Xj\Q = k)P(Q = k) 

P(Xi) (8) 

As before, P(X\Q — k) is Gaussian, with mean Y* and iden- 
tity covariance, and P(Xt) = £f=1 JP(X,-|Q = k)P(Q = k). 
We assume P(Q = k) = 1/K. 

Using these forms for P(Q = k\X() and P(C = m\Q = it) 
in (6), the gradient of J with respect to the cluster centroids 
{Yk} can be computed. A standard gradient descent pro- 
cedure is then applied to minimize J and hence design the 
codebook. 
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Abstract — A robust quantizer is proposed for trans- 
mission over a binary symmetric channel (BSC). The 
quantization scheme combines the Gaussian channel- 
optimized scalar quantizer (COSQ) with an all-pass 
filtering before/after quantizing. For a broad class 
of sources the resulting performance is approximately 
that of the Gaussian COSQ for the memoryless Gaus- 
sian source. 

I. INTRODUCTION 

There are several approaches to designing scalar quantizers 
(SQs) and vector quantizers (VQs) for use over a binary sym- 
metric channel [l]-[8]. A comparison of the performance of 
these methods leads to the following conclusion: For the en- 
coding of memoryless (generalized Gaussian) sources, if the 
channel bit error rate is significant (larger than about 10~3) 

very little improvement over channel optimized scalar quanti- 
zation has been achieved. 

Figure 1 compares the performance of COSQ to the 
distortion-rate function evaluated at the channel capacity 
(termed the optimal performance theoretically attainable 
(OPTA)) for Gaussian, Laplacian, and generalized Gaussian 
(with shape parameter v = 0.5) sources. Two features are 
evident. The first is that there is large potential performance 
gain possible whenever the BSC bit error rate is significant. 
The second is that the general ordering of the COSQ perfor- 
mance curves for Gaussian, Laplacian, and generalized Gaus- 
sian (y = 0.5) sources is exactly opposite to the ordering of 
their respective optimal performance theoretical attainable. 

Quantization Performance for 3 Bit/Sample Encoding ol Memoryless Sources 

3 
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Figure 1: OPTA and COSQ performance. 

II. ROBUST QUANTIZATION 

All-pass filtering can be used to change the marginal distri- 
bution of a source sequence into one that is approximately 
Gaussian [9][10]. Since the transformation is unitary, the 
proper concatenation of all-pass filtering, quantization using 
the Gaussian COSQ, and inverse filtering (at the receiver) 
provides consistent quantization performance, at the level of 

the Gaussian COSQ, for a wide variety of source distributions. 

Table I compares the robust quantization performance to the 
COSQ performance [1] for several sources. The all-pass fil- 
tering was done using the binary phase scrambling method 
[10]. 

e = 0.001 e = 0.010 e = 0.100 
GG 9.18 7.23 2.32 
Lap 12.09 9.18 3.79 

Gaus 13.99 10.57 4.69 
P-GG 13.96 10.57 4.68 
P-Lap 13.98 10.56 4.67 

Table 1: SNR (in dB) for memoryless Gaussian, Lapla- 

cian, and generalized Gaussian (with shape parameter 

v = 0.5) sources for COSQ and the robust quantization 

method (P-GG, P-Lap). 
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SOFT DECODING FOR VECTOR QUANTIZATION IN COMBINATION WITH BLOCK CHANNEL CODING 

Mikael Skoglund and Per Hedelin 

Department of Information Theory, Chalmers University of Technology, S - 412 96 Göteborg, Sweden 

I. INTRODUCTION 

According to the two-step source/channel coding procedure 
introduced by Shannon, the source and the channel codes are 
designed and used separately. Recent research has striven to find 
efficient combined approaches for source/channel coding. Much of 
this research has considered vector quantization (VQ) for noisy 
channels. In this paper we present a method for joint decoding of 
the combination of a vector quantizer and a channel code. Our 
decoder is soft in the sense that no decisions are involved in the 
decoding, and the unquantized channel outputs are utilized (c.f. [ 1, 
2] and [3]). We depart from the traditional way of decoding, in that 
we make the decoding into a one-step procedure, without any 
intermediate channel decoding. A similar approach for scalar 
quantization and a discrete channel was presented in [4]. We will 
also demonstrate that estimates of the transmitted binary data can 
be efficiently obtained in our framework. 

II. BLOCK SOURCE AND CHANNEL ENCODING 

Consider a VQ encoder in tandem with a block channel encoder. 
Assume that the VQ encoder, a, maps Rd onto 
3w = {0,l,...,iV-l), where N = 2k, and that the binary 
representation, b(0 e {+1}\ of the chosen index, i = a(x), for the 
source vector ,xeRrf, is encoded into a channel codeword. Let 
Pt = Pr(a(X) = /))■ The channel encoder is described by the 
mapping ß:ZN-*ZM, where ZM = {0,1,...,M-1), M = 2" and 
n>k, such that i' = ß(i). We take the channel codeword, 
C(J') 6 {+1}", to be the binary representation of the index i'. The 
two mappings of the VQ encoder and the channel encoder can be 
joined into one mapping, e: Rd -> 3W, where £ = ß°a. With this 
mapping we associate the probabilities P/, = ?r(I' = i'), such that 
/>: = PrV), if i'eß(ZN), and /Jf = 0 if i'e%\ß(.%). 
Consequently, the tandem of the original VQ encoder and the 
channel encoder is equivalent to a new VQ encoder, having 
members of a subset of the index probabilities equal to zero. 

III. OPTIMAL SOFT DECODING 
Assume that the channel corrupts the transmitted codeword with 
AWGN. The received vector, R = (Ri,R2,...,R,lf, can then be 
expressed as R = a-c(/') + W, where a is a known amplitude and 
W is Gaussian with covariance matrix c2I. This model is valid for 
binary modulation in AWGN, then R corresponds to samples of 
the matched filter output at the receiver. The main result of this 
paper is a Hadamard-based expression for the MMSE soft decoder 
decoding the source/channel encoder. We use the word soft to 
emphasize that the decoder utilizes the unquantized channel output, 
the vector R. ^ 2 

The decoder function, X, that minimizes £||x - X|| , can easily 
be shown to be X(r) = E[y,.\R = r], where y,. = E[X\I' = i]. This 
expression can be rewritten using a Hadamard-transform approach. 
For this purpose we express the vector y. as y, = T ■ h,, where h, is 
the ith column of an M by M Hadamard matrix H. The matrix T is 
fully specified by the vectors y, (c.f. [3]). Thus the MMSE- 
decoder can be written X(r) = T-h(r) where h(r) = £[h,,|R = r]. 
Using this expression it can be shown that optimal soft decoding 
can be based on estimates, b(rm) = ianh(,arm/a

2), of the individual 
bits of the codeword c(/'). The bit;estimates are used to build a 
vector p(r), according to p(r) = (1, b(rn))T <8> ••■®(1, b(rx))T, where 
® denotes the Kronecker matrix product. It can then be shown that 
the expression for the vector h(r) becomes h(r) = /(r) ■ Rhh • p(r), 
where Rhh = £Thrh[,], and the scalar function /(r) is defined as 

/(r) = {mj'-p(r)r', where m,, = E[hr]. By modifying an 
algorithm given in [5] to the framework of the present study, the 
calculation of h(r), based on the received vector r, can be carried 
out using an order of n ■ 2" operations. 

Traditionally, decoding is based on hard bit-estimates that are 
calculated from the received signal. Our approach performs 
decoding in a single-step procedure, with no hard decisions 
involved. However, for applications where hard bit-values are 
desired, symbol-by-symbol MAP-estimates of the bits can easily be 
obtained from h(r). Since the vector h(r) will have MMSE- 
estimates of the information bits in positions 2"',m = 0,...,k-\ 
(assuming that the channel code is^given in systematic form), we 
obtain the hard bit-estimates ^as bMAP(m) = s\gn(h2«,), where h„ 
denotes the nth component of h(r). In this paper we investigate the 
VQ performance in terms of SNR, but we emphasize that 
transmission of binary data is also easily treated in the soft 
Hadamard-based framework. 

IV. RESULTS 

SI ̂ R(d 3) S 
=- 

, V 
// 

/ 
CSNP: (dB) . 

Figure 1. SNR in dB, as a function of the channel SNR (CSNR). 

A simple example is illustrated in fig. 1. In this example, a 4 bit 4- 
dimensional VQ trained for a first order Gauss-Markov source 
having the correlation 0.9 between samples is used in tandem with 
the Hamming (7,4) block channel code. The simulation shows the 
soft decoder (upper curve), and decoding based on a two-stage 
procedure which first decodes the channel code with soft decision 
ML-decoding, and then uses the decision to perform table-look-up 
VQ decoding (lower curve). As we can see our soft decoder 
performs better than the two-stage procedure, and the difference 
becomes larger for bad channels. This difference is mainly due to 
the fact that knowledge of the CSNR and the source statistics is 
utilized in the soft decoder. Furthermore, soft decoding is favorable 
as a principle since ML detection-based decoding destroys 
information when taking hard decisions. This information can be 
utilized by the soft decoder to enhance the performance of the 
decoding of the VQs. 
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A Fixed-Rate Trellis Source Code for Memoryless Sources 
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Abstract — The trellis-based scalar-vector quantizer 
(TB-SVQ) for memoryless sources was introduced by 
Laroia and Farvardin and outperforms all other rea- 
sonable complexity fixed-rate quantizers. Unfortu- 
nately, the resulting code is catastrophic - a single bit 
error within a block can propagate indefinitely into 
other blocks. This paper presents a new algorithm, 
termed a fixed-rate trellis source code (FRTSC), that 
achieves essentially the same, or in some cases better, 
performance as the TB-SVQ for error-free channels, 
but limits the propagation of channel errors. 

I. INTRODUCTION 

Vector Quantizers can achieve various gains over uniform 
scalar quantizers. These gains are classified into boundary 
(entropy) gain, granular gain and non-uniform density gain 
fl],[5]. The scalar-vector quantizer (SVQ) [4], introduced by 
Laroia and Farvardin, is a structured vector quantizer which 
can achieve both boundary gain and non-uniform density gain 
without infinite error propagation due to transmission bit er- 
rors. The trellis coded quantizers introduced by Marcellin and 
Fischer [2] are effective structured multidimensional quantiz- 
ers that realize a significant portion of the ultimate granular 
gain. Laroia and Farvardin combined the SVQ with TCQ to 
realize these three gains. The resulting quantizer is called the 
trellis- based scalar-vector quantizer (TB-SVQ) [1]. 

II. THE TRELLIS-BASED SCALAR-VECTOR QUANTIZER 

(TB-SVQ) 
Laroia and Farvardin impose two constraints on the TB-SVQ 
design so that the TB-SVQ enumeration encoding is state- 
independent and the SVQ enumeration algorithm can be ap- 
plied directly in the TB-SVQ. This elegant formulation avoids 
the difficulty of state-dependent enumeration, but unfortu- 
nately yields a catastrophic code. 

Lemma 1. Given the same binary SVQ codeword, different 
initial states at the beginning of a block can cause the TB-SVQ 
decoder to produce different TB-SVQ code-sequences with dif- 
ferent ending states at the end of the block. 

Theorem 1. The TB-SVQ is a catastrophic code, whether 
or not a feedback-free encoder is used. 

III. A FIXED-RATE TRELLIS SOURCE CODE 

A new algorithm, termed a fixed-rate trellis source code 
(FRTSC), follows the basic idea of the TB-SVQ for combining 
the SVQ with TCQ, but differs in at least two ways. The first 
is that no constraints are imposed on the SVQ alphabet as 
in TB-SVQ. This more general setting allows a zero level to 
be included easily as a quantization level, and potentially pro- 
vides performance improvement over the TB-SVQ. The second 
difference is that a state-dependent enumeration algorithm is 
used, which is a generalization of the enumeration developed 
for pyramid trellis codes in [3]. This new enumeration explic- 
itly specifies the ending state for each block. 

Let m be the dimension per block, r the bit rate per di- 
mension, and ß the constraint length of the convolutional en- 
coder. Following the notation in [1], let L(s,t) denote the 
length threshold for the m-vectors with initial state s and fi- 
nal state t. L(s, t) are selected so that no more than rm bits 
are used to encode each m-vector. For each block, given initial 
state s, out of the rm available bits, p. bits are used to specify 
the ending state, and the remaining rm — p bits are used to 
code the trellis sequences with initial state a and final state t. 

Infinite error propagation due to channel transmission er- 
rors is avoided in the FRTSC because the ending state is ex- 
plicitly coded and transmitted. Simulation shows that the 
FRTSC achieves similar performance as TB-SVQ for Gaus- 
sian and Laplacian sources at encoding rates of r = 1,2,3 
bits per sample. For sharp-peaked, broad-tailed sources, like 
the generalized Gaussian with shape parameter a = 0.5, some 
performance improvement is achieved. The improvement is as 
large as 0.8 dB for a 4-state trellis and an encoding rate of 
r = 3. 
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ABSTRACT 

Why do vector quantizers outperform scalar quantizers when 
the source is stationary and memoryless? This question is fre- 
quently asked by newcomers to VQ, who recognize that, in this 
case, its ability to exploit correlation is of no use. An 
interesting approach (c.f. [1]) is to a compare k-dimensional 
VQ with rate R to the k-dimensional product quantizer (PQ) 
induced by applying a scalar quantizer (SQ) with rate R to k 
successive source samples. It is then evident that one 
advantage of VQ is that its cells are more spherical than those 
of the PQ, which are rectangular. Another is that the points of 
the VQ are better distributed. Indeed, it is often thought that 
the PQ distributes points in a "cubic" fashion, whereas the VQ 
matches its point distribution to the source; e.g. spherical for a 
Gaussian density. 

Using asymptotic quantization theory, we show that aside 
from the rectangularity of the induced PQ's cells, the shortcom- 
ing of SQ's is not that they are incapable of inducing a PQ with 
an optimal point density. Rather, the structure of the PQ links 
the point density and cell shapes in a way that causes the best 
SQ to be a compromise between that which induces the best 
point density and that which induces the best cell shapes. 
Consequently, the optimum SQ suffers a point density loss and 
a cell shape loss. For large rates, we find formulas for these 
and evaluate them in the Gaussian and Laplacian cases. For 
example, in the Gaussian case, relative to high-dimensional 
VQ, an SQ has a 1.88 dB "point density" loss, a 1.53 dB 
"cubic" loss and a .94 dB "oblongitis" loss. 

SUMARY OF RESULTS 

Applying an SQ with N! points and point density X^X]) to 
k successive source samples induces a k-dimensional PQ with 
Nk points.  Its point density can be shown to be 

XPr(x) = ^(xO-.A^Xk),    where x = (x!,...,xk). 
Its cells are rectangular (cubic on the diagonals), and the effect 
of their shapes on the mean squared error (MSE) is contained in 
the inertial profile mPr, which equals the normalized moment of 
inertia (nmi) of the cells in the vicinity x.  It can be shown that 

pr 1       (\    I 1        VA 1        VI* 
m (x) = S^(Xi)2     B 12 ^k U ^(Xi)

2AM MxO2 

Notice that Xt affects both A.Pr and mPr. In comparison, an 
optimal k-dimensional VQ for a stationary memoryless source 
with first-order density Pi(x0 and kth-order density p(x) has 
point density [2] 

J&x) = cp(x)*2» = cp1(x1)
k/<k+2>...Pi(xk)k/(k+2) 

where c is a constant. Its inertial profile is mk(x) = Mk, where 
Mk is the least nmi of k-dimensional polytopes that tesselate. 

To quantitively assess the suboptimality of the point den- 
sity and inertial profile of a PQ, consider the ratio of its MSE, 
DPr, to the MSE, Dk?N, of an optimal k-dimensional VQ, which 
we call the loss L. Using the vector version of Bennett's 
integral [2] and assuming N! is large, we find 

A   DPr r    mPr(x)     , XJ    n     Mk 
L = —   s      ,pr/.2/k P(x)dx/J -—27k P(x)dx . 

L\,N A,H (x) '      A*(x) 
It is useful to factor this loss into three terms 

L    —  Lnt   X  Lcu  X   L, 

with point density Vr and a constant (e.g. optimal) inertial 
profile to that of a VQ with optimum point density and the 
same inertial profile. The cubic loss, Lcu, is the ratio of the 
MSE of a VQ with cubic cells to one whose cells have nmi equal 
to Mk and the same point density. The oblongitis loss, Lob> is 
the ratio of the MSE of the PQ to that of a VQ with the same 
point density, but cubic cells; i.e. it is due to rectangularity. 
The product of cubic and oblongitis losses is the cell shape 
loss. 

To optimize the PQ, the scalar point density %i must be 
chosen to minimize Lpt Lob. On the one hand, choosing %i to 
be uniform minimizes Lob. On the other hand, choosing \\(x.i) 
= c'p1(x1)

k/(k+2) minimizes Lpt. In this case, XpT = Ak, but there 
is so much "oblongitis" that Lob = °°. The best scalar point 
density, AJtX]) = cp^x^17? is a compromise. It is more uni- 
form than the point density that minimizes Lpt, which reduces 
"oblongitis". The fact that a PQ can have the optimal point 
density is often overlooked, probably due to the "squarish" 
arrangement of its points. 

For the optimal scalar point density, formulas for the point 
density and oblongitis losses can be straightforwardly derived. 
For a Gaussian density these reduce to 

' 3k Y2
( 

k Yk+2)/2 

P'-3 \3k-2j -> 
-2/3 

3 e     as k->» 

-» V¥e -1/3 
as k->°° 

r3k-2^ 
3k . 

which are listed in Table 1, along with Lcu, for various k. For a 
Laplacian density, the point density and cubic losses are the 
squares of those for the Gaussian density. They are larger (by a 
factor of 2 in dB) because the sharper peak and heavier tails 
cause an optimal SQ to be more nonuniform. 

A related analysis shows that for a Gaussian source with 
memory, an optimal transform VQ suffers precisely the same 
losses as in Table 1. 
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k 
cubic 
Lcu 

oblong's 
Lob 

pt dens. 
Lpt 

shape 
LobLpt 

total 
LcuLobLpt 

2 0.1671 0.6247 0.5115 1.1362 1.3033 

4 0.3949 0.8020 1.0721 1.8741 2.2690 

8 0.6572 0.8741 1.4373 2.3113 2.9686 

12 0.8084 0.8962 1.5744 2.4705 3.2789 

24 1.0385 0.9175 1.7203 2.6377 3.6762 
oo 1.5329 0.9380 1.8759 2.8139 4.3468 

ob ■ 

The point density loss, Lpt, is the ratio of the MSE of a VQ 

Table 1: Losses (in dB) for optimal PQ's for a stationary, mem- 
oryless Gaussian source. The "primed" losses are based on a 
conjectured lower bound to Mk [4, pp. 61,62]. 
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Abstract — Vector quantization of spherically in- 
variant random processes (SIRP) is considered. Es- 
pecially, trellis coded quantization (TCQ) and lattice 
vector quantization (LVQ) are investigated. For per- 
formance evaluations a random number generator has 
been developed producing sequences which can be re- 
garded as SIRP realizations. It turns out that in 
most cases the TCQ outperforms all other investi- 
gated quantization methods, even those LVQ schemes 
which are matched to the properties of SIRP sources. 
Comparisons with bounds from rate distortion theory 
are given as well. 

I. INTRODUCTION 

Vector quantization (VQ) plays a key role in lossy data 
compression. The rate distortion bounds of any source can be 
reached in principle by VQ when the vector dimension tends 
to infinity. Unfortunately, with increasing dimension storage 
and computational complexity tend to infinity as well. To 
cope with this problem, it makes sense to consider methods 
which reduce complexity by employment of strongly structured 
codebooks as there are lattice vector quantization (LVQ) and 
trellis coded quantization (TCQ). 

II. SIRP MODEL SOURCE 

A SIRP (in the strict sense) is a random process de- 
fined by the property that every n-variate pdf of random 
variables taken from the process can be written as /(x) = 
T~ fln(x x). The pdf is constant on hyper-spheres centered 
around the origin. 

A representation theorem due to Yao [1] states that ev- 
ery SIRP can be regarded as a variance mixture of Gaussian 
processes. For the density function of a SIRP then holds 

/SIRP(x)=   f 
Jo 

t™s(x,r)U(r)dr. (1) 

Here / auss (x, r) denotes the multivariate density function 
of a Gaussian process with standard deviation r. fa(r) is an 
univariate density function called sigma density which controls 
the distribution of the variance. The resulting source itself is 
non-ergodic, as most natural processes (e.g. image and speech 
processes) are. 

In this contribution the sigma density is modeled in dis- 
crete fashion. Particularly, ja is modeled with two Dirac im- 
pulses with a weight of 0.5 at the locations <j\ and <r2. We 
constructed a random generator, where the sigma density was 
controlled by a finite state machine with two states. The state 
transition probability had been fixed to a value of 0.2. The 
overall variance of the model source was normalized to one 
which is equal to the condition er2 = A/2 — a\. 

The univariate pdf of this particular SIRP is then given by 

fix) 
0.5 

V^F 
7i + 

0.5 

(f\ V^F a2 

(2) 

1 E-mail: mueller@ient.rwth-aachen.de 

Note that in the special case o\ = oi = 1 the SIRP is 
Gaussian and only in this case the samples of the process are 
independent. 

III. SIMULATION RESULTS 

The parameter <TI of the SIRP random generator has been 
varied in the range from 0.3 to 1.0. All data samples obtained 
in this way were encoded by TCQ at a rate R of 1, 2 and 3 
bit/sample using a codebook with 2R+1 codewords. All se- 
quences were also encoded with a Lloyd-Max scalar quantizer 
and with lattice vector quantizers. 

The SNR for a SIRP source with <j\ = 0.3 has been plotted 
in figure 1 for different quantization methods. For comparison, 
the Shannon lower bound for SIRP sources "SLB" (according 
to [2]) and the first order rate-distortion function "RDF" are 
plotted as well. "D24" denotes direct quantization using the 
24 dimensional D-lattice, and "D24Tr" a LVQ scheme due to 
Herbert [3] which is matched to SIRP sources employing a 
companding approach. Lastly, "Lloyd" denotes scalar quanti- 
zation using a Lloyd-Max quantizer. 

'SLB// 
♦ 

15 * //RDF 
X 
A 

10 s^      y 
/          o - 

5 

n 

-       /      *° 

A 

Rate 

TCQ     o 
D24Tr     ° 

D24     x     . 
Lloyd     - 

[bit/sample] 

Fig. 1: Comparison of VQ algorithms for SIRP sources with 
o-! = 0.3 

At rates of 2 and 3 bit/sample the TCQ with optimized 
codebooks outperforms all other investigated quantizers. Only 
at 1 bit/sample the direct Lattice quantization yields a slight 
improvement. A comparison with the Shannon lower bounds 
again demonstrated the good performance of TCQ in the 
SIRP case. 

REFERENCES 
[1] K. Yao, A Representation Theorem and Its Applications to 

Spherically-Invariant Random Processes IEEE Trans. Inform. 
Theory, IT-19, pp. 600-608, 1973 

[2] H. M. Leung und S. Cambanis, "On the rate distortion functions 
of spherically invariant vectors and sequences", IEEE Trans. 
Inform. Theory, IT-24, S. 367-373 (1978) 

[3] M. Herbert, "Lattice quantization of spherically invari- 
ant speech-model signals", Archiv für Elektronik und 
Übertragungstechnik, AEÜ-45, S. 235^244 (1991) 

439 



Optimal Quantization for Distributed Estimation 
via a Multiple Access Channel1 

Tolga M. Duman      Masoud Salehi 

Department of Electrical and Computer Engineering 
Northeastern University, Boston, MA 02115 

Abstract — Quantizer design algorithms for decen- 
tralized estimation are presented. Scalar quantizer 
design for the problem of multiple descriptions over 
a multiple-access channel is also studied. The impor- 
tance of the initial index assignment is explained and 
an algorithm to choose a good initial index assignment 
is derived. 

I. SUMMARY 

In a typical decentralized detection and estimation sys- 
tem, the objective is to estimate a certain random vari- 
able at a fusion center by using the observations of a 
set of sensors. In general, the observations have very 
large entropy rates, and therefore, information reduction 
at the sensors before transmission is necessary. We as- 
sume that this information reduction is accomplished by 
scalar quantization and the quantized values are trans- 
mitted to the fusion center via a multiple-access channel 
(MAC). We derive quantizer design algorithms to min- 
imize the mean squared error (MSE) for both noiseless 
and noisy observations. We will also present a set of nu- 
merical results. 

In the rest of this summary, we study the related prob- 
lem of multiple descriptions over a MAC. 

Consider the two channel diversity system where the 
objective is to transmit a certain source output to a re- 
ceiver. Assume that one of the links may break down 
during the transmission. The problem is to send descrip- 
tions of the source output over both links in such a way 
that the overall distortion is minimized when both links 
are available and at the same time a minimum fidelity is 
guaranteed when one of the links is broken. This setting 
is called the multiple descriptions problem. 

In particular, when the distortion measure is the mean 
squared error, the problem is to minimize 

£>12 = E[(X - X)2|both links available] 

subject to the constraints, 

D, = E[(X - A")2|only Ith link available] < Dhmax 

where / = 1,2. We assume that the transmitter does not 
know whether there is a broken link or not, on the other 
hand, the receiver does. 

El Gamal and Cover [2] studied this problem from 
an information theoretical point of view, and derived an 
achievable rate-distortion region for a memoryless source, 
independent channels and a single letter fidelity criterion. 

In [3], Ozarow proved that the region found in [2] is ac- 
tually the rate distortion region for a Gaussian source 
with mean squared distortion measure. Vaishampayan 
has considered the multiple description scalar quantizer 
design problem for independent noiseless channels [4]. 
Our work here is the generalization of the work in [4] for 
the case of a noisy and possibly dependent transmission 
medium (i.e. a multiple-access channel). 

We assume that the source statistics and the channel 
characteristics are known, and derive a quantizer design 
algorithm to minimize the Lagrangian by employing some 
type of joint source and channel coding. 

It turns out that, even for the case of independent 
noiseless links the initial index assignment is very impor- 
tant. In [4], some good index assignment strategies for 
independent noiseless links are presented. In our setting, 
the index assignment problem is twofold — one due to 
the noisy (asymmetric) nature of the links and the other 
due to the multiple descriptions. Since the transmission 
medium is not fixed, it is not plausible to obtain a fixed in- 
dex assignment strategy. We present an algorithm based 
on simulated annealing to choose a good initial index as- 
signment. 

In order to complete the solution of the problem, one 
has to vary the Lagrange multipliers, apply the design al- 
gorithm, and consider time-sharing of the resulting strate- 
gies. Therefore, the computational requirements of the 
solution of the problem is high, on the other hand the 
computations can be made off-line, and no on-line com- 
putation is necessary. It can also be shown that time- 
sharing of three strategies is always sufficient to obtain 
the optimal performance. A set of numerical examples 
that illustrates the use of the algorithm and the general 
performance improvement by a good initial index assign- 
ment will also be presented. 

[i] 

[2] 

[3] 

[4] 
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Abstract - This paper presents an entropy-constrained version 
of the Modified Pairwise Nearest Neighbor (MPNN) algorithm 
[1] for the design of efficient vector quantizers. We called this 
new algorithm Entropy-Constrained Modified Pairwise Nearest 
Neighbor (ECMPNN). 

I. INTRODUCTION 
The proposed ECMPNN technique follows the idea of the MPNN 
algorithm to design an entropy-constrained codebook. MPNN is 
derived from the well known PNN algorithm [2]. The MPNN 
clustering starts with an initial codebook of the desired size, 
containing vectors from the training set (TS). Each vector in the 
initial codebook is considered a separate cluster. At each step, one 
new cluster is formed by taking a new TS vector. The number of 
clusters is maintained to the desired size by merging the two 
closest clusters. MPNN maintains a superior quality of the 
generated codebooks, and it requires as many multiplications as 
the LBG algorithm [3] needs for two iterations [1]. 

The problem of entropy-constrained vector quantization is to 
choose the clustering and the codebook in such a way as to 
minimize the overall distortion subject to an entropy constraint. 
The solution proposed by the CLG-ECVQ [4] technique uses the 
Lagrangian formulation. The algorithm minimizes the functional 
J=D+XR, where the parameter X is the slope of the distortion-rate 
curve. By varying X, all the distortion/rate pairs on the convex hull 
of the operational distortion-rate curve can be found. 

II. ECMPNN ALGORITHM 

The ECMPNN clustering begins with an initial codebook C0  of 

size   N,    filled-up   with   N    randomly   chosen    TS    vectors 
{X0, XJ,..., XN_[} .    Each    vector   in    the    initial    codebook 

corresponds to one cluster. The initial codebook can be written as 
C0 = {Y0, Ylf.... YN_,} s {X0, Xlf..., XN_!)        (1) 

At each i-th step, one new cluster is formed by a new vector from 
the TS. The N+l clusters are converted into N clusters by merging 
two clusters. The merge is chosen so that it is optimum in the 
distortion-rate sense. The strategy of finding the best merge is 
described   as   follows.   Let   us   denote   by    (D;_i,Rj_i)    the 

distortion/rate pair corresponding to the (i-l)th step of ECMPNN. 
At the i-th step, we can consider each possible merge of two 
clusters and compute the slope to any other distortion/rate pair. To 
find the best merge, it is sufficient to find the merge which yields 
the smallest magnitude slope. If (D;,Rj) is the distortion/rate pair 

that results from the best merge, then, any other merge which 
yields a slope of larger magnitude will necessarily lie above the 
line connecting  (D^j.R;^)  and  (Dj.Rj). Thus, the merge of 

two clusters must be taken so that the ratio of distortion increment 
to entropy decrement induced by the merge to be minimum, that is 

Xi =AD;/AR; =min (2) 

We are now in a position to describe the proposed algorithm. 
At the first step the (N+l) clusters are given by 

1 Correspondence to: 
Dorin Comaniciu, C.P. 16-105, Bucharest 16, Romania 77500 

{{X0}, {X,},..., {XN_,}, {XN}} (3) 

where XN is the new vector from the TS. Let us suppose that the 

vectors   X0   and   Xl   give the minimum ratio (2). Then, the 

algorithm classifies together these two vectors in the same cluster, 
and the resulted N clusters are described by 

{{X0, X,}, {XN}, {X2},..., {XN_!}} (4) 

The codebook is then modified by replacing the first codeword in 
the codebook with the centroid of vectors X0   and  Xj, and the 

second codeword with the vector XN. Note that the remaining 

codewords are unchanged. The resulted codebook is 
C-i. = {Xoi. XN, X2,..., XN-1} (5) 

where X01 signifies the mean of vectors X0 and Xl. At the 

second step, by taking a new vector XN+1 from the TS, the (N+l) 

clusters are given by 
{{X0, X!), {XN}, {X2},..., {XN_,}, {XN+1}}       (6) 

If we further suppose that  X2  and   XN+1   are the closest two 

vectors in the set (6), then, the second step gives N clusters 
{{X0, X!), {XN}, {X2, XN+1},..., {XN_,}} (7) 

and the resulted codebook is 
c2 ={Xoi, XN, X2N+1,..., XN_J (8) 

where X2 N+J is the mean of vectors X2 and XN+1. This process 

is continued until all the training vectors have been considered. 
Since the entropy decrement in (2) depends only of the number of 
vectors in the two considered clusters, its values can be computed 
and stored off-line. Therefore, ECMPNN requires only one 
additional division per step compared to MPNN (see [1] for a 
discussion on MPNN's computational complexity). 

III. COMPUTER SIMULATION RESULTS 

Simulations on a variety of test images showed that the ECMPNN 
algorithm runs significantly faster than CLG-ECVQ, without 
sacrificing performance. A block size of 4 x 4 pixels (or vector size 
16) was used, and the mean value of each training vector was 
removed before the codebook design. With the codebook so 
obtained, each test image was entropy coded. In particular, image 
Lenna (from outside the TS) of 512 x 512 pixels, 256 gray levels, 
was coded at a bit rate of 0.359 bpp with a PSNR of 30.46 dB. 
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Abstract — The minimum average error probability 
achievable by block codes on the two-user multiple- 
access channel is investigated. A new exponential up- 
per bound is found which can be achieved universally 
for all discrete memoryless multiple-access channels 
with given input and output alphabets. It is shown 
that the exponent of this bound is greater than or 
equal to those of previously known bounds. More- 
over, examples are given where the new exponent is 
strictly larger. 

SUMMARY 

One of the central problems in multiuser information theory 
is to determine the minimum average error probability which 
can be achieved on a two-user discrete memoryless multiple- 
access channel using a block code with rate pair (Rx, RY) and 
blocklength n. The most fundamental result of this theory is 
the coding theorem of Ahlswede [1] and Liao [4] which asserts 

that, for any (Rx,Ry) in the interior of a certain set C and 
all sufficiently large n, there exists a multiuser code with an 
error probability arbitrarily close to zero. Conversely, for any 

(RX,RY) outside of C, the error probability is bounded away 
from zero. The set C, which is called the capacity region, is 
the convex closure of the set of rate pairs (Rx, RY) satisfying 

0 < Rx < I(X AZ\Y), 

0 < RY < I{Y A Z\X), 

RX+RY < I(XY A Z) 
(1) 

for some choice of independent input random variables X and 

Y, where Z is the corresponding channel output. 

Over the past twenty years, stronger versions of this cod- 
ing theorem, which give exponential upper bounds on the er- 
ror probability, have been derived by Slepian and Wolf [7], 
Dyachkov [2], Gallager [3], and Pokorny and Wallmeier [6]. 
Pokorny and Wallmeier's coding theorem is particularly strong 
because it asserts the existence of universal multiuser codes. 
By this we mean that a fixed choice of codewords and decoding 
sets achieves the upper bound for all multiple-access channels 

with given input and output alphabets. 

In this work, we derive a new upper bound for the mini- 
mum error probability which can be achieved on the multiple- 

access channel using a block code with rate pair (RX,RY) 

and blocklength n. Like Pokorny and Wallmeier's result, our 
bound is universally achievable for all multiple-access channels 
with given input and output alphabets. The proof involves a 

new multiuser packing lemma and a new universal decoding 

rule which seeks to minimize the empirical equivocation of 

the users' codewords given the channel output. We show that 
the exponent of this bound is always greater than or equal to 

those given in [2, 3, 6, 7]. Moreover, we give examples in which 
the new exponent is strictly larger. Hence, the corresponding 
bound on the minimum error probability is tighter for large 
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Abstract — Pombra and Cover [1] and Thomas [2] 
showed that the maximum achievable throughput 
(sum of rates of all users) of a Gaussian multiple access 
channel with feedback is at most twice that achievable 
without feedback. We prove a stronger result which 
establishes the factor-of-two bound not only for the 
total throughput but for the entire capacity region as 
well. Specifically, we show that the capacity region 
of a Gaussian multiple access channel with feedback 
is contained within twice the capacity region without 

feedback. 

I. INTRODUCTION 

A channel use at time j of a Gaussian multiple access chan- 

nel (MAC) involves m independent users each transmitting a 
real number Xij ,i 6 {1,..., m}. Thus, Xij denotes the trans- 

mission of the i user at time j. A single receiver observes 

Yj = Y^iLi Xij + Zj where Zj is a sample from an arbitrary 

Gaussian noise process with known n-block covariance K% . 
The channel is assumed to operate in one of two modes: with 
or without feedback. In the no-feedback mode, the users base 
their transmissions exclusively on the messages they wish to 
send to the receiver which are assumed random and indepen- 
dent of each other and the noise. With feedback, the users 
can adapt their transmissions based on previously received 
symbols (the Yj's) available to each user over a noiseless and 
delayless feedback link. In both cases the users' transmissions 

must satisfy average power constraints, n_1 5Z"=i-^S — ^>i- 
Since the same feedback signal is observed by all users, they 
can cooperate to some extent and achieve higher reliable trans- 
mission rates than in the absence of feedback. Memory in the 
noise, if it is non-white, can also be exploited for additional 
gains. Therefore, the capacity region of the Gaussian MAC 
with feedback strictly includes the capacity region without 
feedback. The gains with feedback are, however, limited to a 
factor of two, which we prove in the following theorem. 

Theorem 1 (Factor-of-two bound)  If     (i?f , Rm.    ) 
is an achievable rate vector for a Gaussian MAC with 
feedback under power constraints (Pi,...,Pm), then 
(fif B/2,..., Rm /2) is an achievable rate vector with- 

out feedback. 
Figure 1 illustrates the theorem for the case of two users 
(m = 2). The boundary of the capacity region of a two user 
Gaussian MAC with feedback (CFB) lies in the shaded region 
between the boundary of the no-feedback capacity region (C) 
and twice this boundary (2C). 

II. PROOF OUTLINE 

The proof of Theorem 1 relies on two theorems. The first, 
proved by Keilers [3], gives the capacity region of an m user 
Gaussian MAC without feedback. 

Theorem 2 (No-feedback theorem) Rates (Ri,...,Rm) 
are achievable for expected average power constraints 

(Pi,... ,Pm) if end only if for all e > 0 and all n sufficiently 

large, there exist n x n covariance matrices Kx  ,..., K (") An) 

Ri 

CFB —' 

Ä2 

C       2C 
Fig. 1: The factor-of-two bound for two users. 

satisfying 

'(")\ 1 det(i4n, + £._tf^ 

detK 
(n) (1) 

for all S C {1,. .. ,m}, with ^tx&ce{K^ ) < Pi, for all i. 

The second theorem is an extension of a result of Pombra 

and Cover [1] and Thomas [2] and provides an outer bound 
on the capacity region of the Gaussian MAC with feedback. 

Theorem 3 (Feedback theorem)  //   (üf ■ A ) 
an achievable rate vector with feedback for expected aver- 
age power constraints (Pi,...,Pm), then for all t > 0 and 
all n sufficiently large, there exists a joint distribution on 
(Xi,..., XJ;, Zn) with the marginal on Zn equal to the noise 
distribution, and covariance matrices satisfying 

Hn) 

A"(j»0<JLiog 
detÄ", [Z+X(M)-X(McnS)] 

detK («) + e, (2) 

for all pairs of nested subsets M C S C {l,...,m}, with 

Hra,ce{K(£) < Pi, for all i. 

In the above theorems, R{S) = X^igs^' ano- X(S) = 

Y2i s Xi respectively denote rate sums and transmission 
sums over subsets of users. 

We outline the proof of the factor-of-two bound (Theo- 

rem 1) as follows. A vector of rates (R\B,..., RmB) achiev- 
able with feedback satisfies the inequalities of the feed- 
back theorem (Theorem 3) for some covariance structure 
for all n sufficiently large. Using some combinatorial lem- 
mas, we show that this covariance structure also satisfies 
the inequalities of the no-feedback theorem (Theorem 2) for 
(R[B/2,...,R^B/2). This establishes that the rate vector 
{R[B/2,.. .,R™/2) is achievable without feedback. 
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Abstract — We discuss the achievable e-error 
throughput for the uncoordinated (asynchronous) T- 
user M-frequency multiple-access channel without in- 
tensity information. The problem is formulated in 
terms of frequencies, but the results are also appli- 
cable to Pulse Position Modulation (PPM) schemes. 
We show that the achievable sum rate for T users re- 
duces from (M — 1) bits per channel use in the fully 
coordinated multi-access situation to (M — 1) ■ ln(2) 
bits per channel use if we assume no coordination be- 
tween users. In particular, the result shows that for 
multi-tone M-ary frequency shift keying multiple ac- 
cess in asynchronous operation for instance, multiple 
user interference reduces the capacity only by a factor 
ln(2) = 0.695 relative to the ideal TDMA system. 

I. SUMMARY 

Cohen, Heller and Viterbi [l] presented a new approach to 
completely asynchronous multiple access digital communica- 
tions. In asynchronous multiple access one assumes that T 
individual users can access the system independently of the 
other users. Each user transmits by means of on-off signal- 
ing without regard to, or knowledge of the remaining T — 1 
other users. In a synchronized Time-Division Multiple Ac- 
cess (TDMA) system, each user would be assigned 1/T of the 
available dimensions and with on-off signaling the transmis- 
sion rate can be 1 bit/dimension, yielding a capacity per user 
of 1/T bits/dimension. In [1] it has been shown that in the 
asynchronous system, multiple user interference reduces the 
total capacity for T users only by a factor of ln(2) = 0.695 
relative to the ideal TDMA system. This efficiency can be 
achieved by using low-duty-cycle signaling. A practical exam- 
ple of such a signaling is multi-tone (M-tone) frequency shift 
keying, where a specific user transmits one out of M orthogo- 
nal frequencies. For PPM, the signaling interval is partitioned 
into M sub-intervals or time slots. During a signaling interval, 
only one of the M sub-intervals is used to transmit a pulse. 

Chang and Wolf [2] considered the synchronous T-user M- 
frequency noiseless multiple access channel where only one 
receiver decodes all users simultaneously. For a large number 
of users, the channel capacity approaches (M — 1) bits per 
signaling interval of M frequencies. The results were arrived 
at by a computer search. 

We derive an achievable rate for the asynchronous T-user 
M-frequency noiseless multiple access channel and show that 
the achievable rate reduces from (M—1) bits per channel use in 
the fully coordinated multi-access situation to (M — 1) • ln(2) 
bits per channel use if we assume no coordination between 
users, or one-to-one communication. We start with 2-tone 
signaling and show the nature of the detection problem. For 
each individual user, the 2-tone multiple access channel is, 
from a capacity point of view, equivalent to the binary input- 

binary output Z-channel. Although the 2-tone multiple access 
channel has a ternary output, capacity is the same as if we 
make a hard decision in case of an ambiguous reception of 
two frequencies. The asymptotic optimizing input distribution 
is highly asymmetric, indicating that each of the users must 
transmit a low duty-cycle signal. 

We extend the system to M > 3 frequencies and give an 
input distribution from which it follows that the channel ca- 
pacity is upper bounded by M • ln(2) and lower bounded by 
(M — 1) • ln(2) bits per frequency interval. Since the channel 
transition probabilities are functions of the input distribution, 
we cannot use the Kuhn-Tucker conditions for a candidate (ca- 
pacity achieving) input distribution as given above. Instead, 
we prove that the achievable rate C(T, M) for the channel 
with M frequencies and T users, asymptotically approaches 
C(T, M) -* (M - 1) • ln(2), M > 2 fixed and 7 -> oo. 

II. CONCLUSIONS 

We summarize the results as follows: 
1. The capacity for the asynchronous T-user M-frequency 

noiseless multiple access channel approaches ln(2) bits 
per frequency (dimension); 

2. The capacity achieving distribution puts all mass on one 
frequency and divides the remaining probability mass 
equally on the remaining M — 1 frequencies; 

3. Instead of using one out of 2M — 1 combinations of fre- 
quencies from a given frequency interval with M orthog- 
onal frequencies, capacity can be achieved by using only 
a single frequency from an M-frequency interval, which 
is the advantage of the M-tone frequency shift keying 
systems. 

4. The cut-off rate RCOmp approaches (M —1)-0.413 bit per 
signaling interval for the same type of input probability 
distribution as given in 2. 

5. A practical coding scheme achieving (1 — t) ■ ln(2) bits 
per dimension with vanishing decoding error probability 
is given. The coding method is equivalent to Frequency 
Hopping MFSK and extends and modifies the strategy 
as given in [1]. 
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Abstract — A new region TZ of achievable rate pairs 
(R\,R2) € 7e is established for the binary multiplying 
channel. The new region TZ has an equal rate point of 
Ri = R2 = 0.63072 bit per transmission. 

I. DEFINITIONS 

This paper is concerned with the binary multiplying chan- 
nel (BMC) [1]. The capacity region of the BMC is bounded 
by the Shannon inner bound region Gi, and the Shannon outer 
bound region Q0. These regions are plotted in Fig. 1. 

Communication over the BMC by two distant terminals 
is modeled as follows. A message Qt at terminal t, t = 
1,2, is encoded into the channel input sequence Xt = 
(Xt,i, Xt,2,..., Xt,n)- The common channel output sequence 
Yi = Y2 = Y = (Y1,Y2,...,Yn) is formed such that 
Yj = Xi,jX2j, Xt,j £ {0,1}, j = 1,2, ...,n. Note that the 
first channel input Xt,i is based on the message Qt only, 
while the A>th channel input Xt,k, k = 2,3, ...,n is based on 
both the local message Qt, and the previous channel outputs 
{Y\,Y2,...,Yk~\). The decoder at terminal t estimates the 
other terminal's message 93_f from both the channel output 
sequence Y, and the local message Qt. 

A coding strategy for the BMC is described as a progressive 
subdivision of the [0,1) x [0,1) square. Therefore, the proba- 
bility of each resolution product that occurs in this progressive 
subdivision of the unit square is equal to its area. 

II. SCHALKWIJK'S 1983 CODING STRATEGY 

The 1983 coding strategy is composed of alternating so- 
called inner and outer bound transmissions. Let Pr [i] and 
Pr [o] denote the average code word length of the inner and 
outer bound transmissions, respectively. Of course, Pr [i] = 1. 
Let 7(Gt;y|e3-t,i) and I (Qt; Y\Q3-t, o) denote the infor- 
mation rate of an inner and an outer bound transmission from 
encoder t to decoder 3 - t, respectively. The achievable rate 
region of the 1983 coding strategy satisfies TZ' = {(Ri, R2) : 

n<R   < Pr H / (0t; y|Q3-t, Q + Pr [o] I (6t; Y\Q3.t,o), 
"    ' S Pr[i]+Pr[o] }' 

The region TZ' has an equal rate point of Ri = R2 = 0.63056 
bit per transmission and includes the region Gi- In the unit 
square, a message pair (6i,02) is always situated in a sub- 
rectangle after an inner bound transmission and a subsequent 
outer bound transmission. Thus, the inner and outer bound 
transmissions can be repeated ad infinitum in all these sub- 
rectangles. 

III. THE NEW CODING STRATEGY 

The new coding strategy consists of a structure of inner 
bound transmissions of average code word length 3Pr [i], such 
that (i) an efficient resolution product is generated, and (ii) 
an unlimited number of repetitions of this resolution prod- 
uct is generated. The subdivision of these efficient resolution 

products is completed by (i) outer bound transmissions of av- 
erage code word length 3Pr[o] - L[loss], and (ii) three new 
transmissions of average code word length L [gain]. In fact, 
the new coding strategy, see [3], is a modification of the 1983 
coding strategy that results in both a loss and a gain with 
respect to its original. Let lt [gain] denote the average mu- 
tual information of the three new transmissions from encoder 
t to decoder 3 — t, then the achievable rate region of the new 
strategy satisfies 7Z = {(Ri, R2) : 

3Pr[»]/(et;y|e3-t,o 
-    ' " 3 Pr [i] + 3 Pr [o] - L [loss] + L [gain] 

(3Pr [o] - L [loss]) I (6t; Y\e3-t,o) + It [gain] 
3 Pr [i] + 3 Pr [o] - L [loss] + L [gain] 

+ 

}■ 

The new region 11 has an equal rate point of Ri = R2 = 
0.63072 bit per transmission and includes the region H'. The 
results of van Overveld [4] prove that all rate pairs (Ri,R2) £ 
H are operationally achievable. The new region TZ is also 
plotted in Fig. 1. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.10.20.30.40.50.60.70.80.9 1 

Fig. 1: The new region 1Z of achievable rate pairs. 
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I. INTRODUCTION 

Consider a multi-user white noise channel of bandwidth W 
Hz, white noise spectral density j*, with M users all received 
at power P, all requiring the same rate R bits/sec. It is well 
known that that there is a Shannon capacity for the channel 
and that it is achievable by FDMA. It is well known that the 
capacity can also be achieved by an interference cancellation 
procedure that involves M cancellations, and Rimoldi and 
Urbanke [3] have recently shown that it is achievable with at 
most 2M cancellation steps. In the present paper we show 
that we can achieve rates arbitrarily close to capacity with 
0(1) cancellation steps in the particular case of equal pow- 
ers and equal rates. The results in the present paper first 
appeared in Hanly [1]. 

II. INTERFERENCE CANCELLATION 

It is well known that the equal rate Shannon capacity can 
be achieved by a combination of time sharing and interference 
cancellation (Wyner [4]). It can equally well be achieved by 
a combination of frequency sharing and interference cancella- 
tion. In such a scheme there are M subchannels of bandwidth 
jj and all users send in all sub-bands. In sub-band 1 we might 
decode user 1 first, subtract its signal, then decode user 2, and 
so on. We choose the orderings of the users in the sub-bands 
in such a way that each user is decoded in the jth position 
precisely once out of all the sub-bands. This is really exactly 
the same as time sharing, except that we do not require time 
synchronization. 

Both time-sharing and frequency sharing cancellations re- 
quire M cancellation steps in each sub-band, for a total of M 
cancellation steps. In the present paper we consider a scheme 
with O(l) cancellation steps. 

III. INTERFERENCE CANCELLATION OF GROUPS 

Let us partition the bandwidth into J subchannels, each of 
bandwidth ^j- and partition the users into J groups. We order 
the groups among the subchannels, just as in the frequency 
sharing interference cancellation scheme. 

Without loss of generality, assume that the groups in sub- 
channel 1 are decoded in the order Qj, Qj-\,..., Q\. In the 
first cancellation step we decode all the users in Qj in paral- 
lel. The decoder of a Qj user treats the interference from all 
other users in Qj, as well as Qj-\,..., Q\ (ie all other users) as 
random noise. The decoded signals of the Qj users are passed 
to an adder, the sum Qj signal reconstituted, and this is then 
subtracted from the total received signal. Users in Qj-\ are 
then decoded in parallel. A Qj-\ decoder treats the interfer- 
ence from all other Qj-\ users, and the users in Q\,..., Qj-2 
as random noise. Note that the interference from Qj users 
has been subtracted out. This process continues and requires 
a total of J cancellation steps. Finally, the decoder of a Q\ 
user only has to contend with interference from other Gi users. 

We are interested in the limiting regime in which M, the 
number of users, grows large. We scale the bandwidth linearly 

with M, W = W0M, but the common received power P is 
fixed. The number of groups, J, is also fixed, so the number 
of users in each group is M/J. Let R^   ' be the bit rate of a 
Qj user in subchannel 1. 
Result 1  Let a = -^- be fixed. Then 

1 In 2 1+ ja IJ 
y(M) _ 

(M)   hits/sec- 

and the common bit rate RS    ' is given by 

In 2^> 1 + ia J 
3 = 1 

The Shannon capacity of the channel is independent of M 
and is given by C = Wo log2 (1 + rf^-)    bits/sec. Moreover, 

Result 2  C = & Y.U TTW7 + 0(1/J) bits/sec. 

Sketch Proof: We write C  =   ^ |0 

a Riemann sum approximation. 

l + Q 
7x~ du and then take 

IV. CONCLUSIONS 
Our interference cancellation scheme involves J2 cancellation 
steps. Suppose we wish to achieve a rate (1 — e)C for each 
user. We can first choose a J sufficiently large so that 

C- 
W0 v^      a/J 

Er In 2 £-/ 1 + ja/J 
< e 

This J will then work for all sufficiently large M, in the sense 
that for sufficiently large M, C-Ä(M' < e. We conclude that 
to be arbitrarily close to Shannon capacity, we do not need 
more than O(l) cancellation steps, as the number of users 
increases. 

The results of the present paper are extended to the multi- 
receiver radio network context, and to the case of multiple 
power levels, in Hanly [1] and Hanly and Whiting [2]. Rimoldi 
and Urbanke [3] give a scheme that can actually achieve Shan- 
non capacity with at most 2M cancellation steps, and this is 
for any set of received powers, and any point in the feasible 
rate region. We suggest that the complexity of their scheme, 
at least for the equal rate and equal powers case, may be 
further reduced, at a small price in terms of bit rate, by incor- 
porating our group cancellation approach in their procedure. 
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Abstract — The multiterminal estimation theory 
discuss the maximum Fisher information under the 
Shannon information restriction. In the single- 
terminal case, it is trivial problem because the max- 
imum Fisher information can be attained at asymp- 
totically O-rate. Han and Amari[l] discuss about this 
problem generally and give the lower bound of the 
maximum Fisher information under rate restriction. 
Its approach is based on Slepian-Wolf type rate re- 
gion. In this paper, we give an example, binary sym- 
metric case, which represents that sufficient statis- 
tics can be sent at the rate outside of SW-region us- 
ing Körner and Morton's method[2], and show that 
it gives a better bound than the one of Han and 
Amari[l]. Finally we give the general form of such 
parametric family of which sufficient statistics can be 
sent at the rate in KM type region. 

I. INTRODUCTION 

Let X and Y be discrete i.i.d. source which have a joint 

probability distribution PXY [9), where xn and yn are encoded 
at rate R independently. The encoded messages are denoted 

by un = /"(a;") and vn = fy[yn)- The estimator <^> estimates 
0 by u„, vn. In this paper, we discuss about the minimum rate 
at which we can estimate 0 by un, vn as same estimation error 
as by xn, vn. 

An encoder fn and an estimator 9n must have following 
property. 

• Rate restriction:    i log ||/"|| < R. 

• Asymptotically efficient:    limn_,oo Se[ö„] = 6. 

Here, we consider the variance of the estimator Vn, and it's 
inverse 7„. 

Vn(0;U,fy) = Ee[(9n-9)2} = 
In(9;fx,fyY 

Our aim is to maximize the In under rate restriction. Let I* 
be defined by 

I*[0;R) =  lim  —   max   In(9; fx,fy)- 
n—>oo n /",/",e 

For simpleness, we consider binary symmetric case that 
PXY is given by the following. 

PXY (9) = 
0/2 (1 - 0)/2 

[1-0)12 9/2 (1) 

Han and Amari[l] gives the lower bound of the Fisher in- 
formation lHan[9,R) at rate R as the following. 

IHan[9;R) 
64a4 

4-16(20-l)a2(l-2a2)' 

where 

R = 1 — h(a), a = a + —. 

II. MAIN RESULT 

Theorem 1 
We assume that the parametric family PXY[0) is defined in the 
region 0 < 9 < 0' or 1 - 0' < 0 < 1, where 0 < 0' < \. If R > 
H(9'), 9 can be estimated without loss of information, that is, 
attain same variance as when xn and yn can be observed. 

This Theorem can be proven by the following technic. 

• Minimum entropy decoding for universal coding. 

• The   method  to   send  binary  addition   (Körner   and 

Marton[2]). 

This Theorem implies that the sufficient statistics of 9 can 

be sent at rate H(0'). In the other hand, Han and Amari[l] 

needs rate (1 + H[0'))/2 to attain same variance as when xn 

and yn can be observed. 
Corollary 1 

By simple time sharing method, I*[0\R) is bounded as the 
following. 

J*(0;A) >A 
1 R 

0(1-0) tf(0') 

0(1-0) 

R<H[9') 

otherwise (2) 

This bound is tighter than IHO.™ especially when 9' is close 
to 0 or 1, and R is close to H[9'). 

These results is obtained by considering alphabet on GF(2), 
and we can easily extend these results to GF(pfc), where p is 
a prime number. For example, on GF(22), we consider the 
following parametric family. 

/       fli/8 (l-0i)/8         02/8 (l-02)/8 \ 
(l-0i)/8 fli/8 (l-02)/8         02/8 

6>2/8 (l-02)/8         0i/8 (l-0i)/8 
V (l-0i)/8 0i/8 (l-02)/8         02/8       / 

(3) 

In general, we consider such a parametric family on GF(p ) 

that, 

• X and Y has p   alphabets respectively, 

• (p — l)p ~   parameters, 

• ifx + y = x'+y' (on GF(pfc)) then Pi{X = x,Y = y} = 
Pr{X = x',Y = y'}. 

Theorem 2 
About the parametric families above, It needs less rate to send 
sufficient statistics of parameters than to send xn ,yn. 

The detail and proof of this theorem will be shown in the 

full paper. 
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Abstract — We show that the coding problem of any 
m-user asynchronous discrete multiple access channel 
can be reduced to at most 2m — 1 single user coding 

problems. This extends previous results for the Gaus- 
sian channel. 

I. INTRODUCTION 

Consider an m-user discrete memoryless channel. This is 
defined in terms of m finite input alphabets X,, i = 1, • • •, m, 

an output alphabet y and a transition probability matrix 
p(y\x\, • • ■, Xm). It is well known [1] that the capacity region 
is the convex hull of the union of rate regions that are achiev- 

able for a fixed set of input distributions, JPC^^^;), such 

that Yli€jzRi < I(Xiec;Y\Xiec), V£ C {T,---,m}. Hui 
and Humblet have shown [2] that without the convex hull op- 

eration, the remaining region describes the rate-tuples which 
can be achieved without time synchronization. The proposed 
scheme is for such asynchronous channels. 

Although the theoretical limits of discrete memoryless mul- 
tiple access channels are well understood, there are few exam- 
ples of multiple access channels for which explicit and efficient 

codes are known. By contrast, significant progress has been 
made for single user channels of practical interest, most no- 
tably the Gaussian channel at low and high signal-to-noise 

ratios. It is to be expected that the single user problem will 
always be better understood and techniques to its solution will 
be more numerous and efficient than for the multiple access 
problem. The key contribution of this paper is to translate the 
problem of finding coding schemes for a given discrete mem- 
oryless multiple access channel into the one of finding such 
schemes for an appropriately defined single user channel. 

Vertices of the capacity region can be achieved by successive 
cancellation [1] of m single user codes. We show that any 

point in an m-dimensional asynchronous capacity region can 
be viewed as a vertex in an appropriately defined (2m — 1)- 
dimensional asynchronous capacity region. This extends the 
result in [3] for the Gaussian case. 

II. THE RESULT AND PROOF FOR Two USER CASE 

Theorem 1 Any rate tuple in the asynchronous capacity re- 

gion of a discrete m-user multiple access channel can be 
achieved by means of single-user decoding of at most 2m — 1 
users. 

This work was supported in part by Telecom Australia under 
Contract No.7368 and by the Commonwealth of Australia under 
International S &; T Grant No.56 as well as by National Science 
Foundation Grant NCR-9357689 and NCR-9304763. 

I{Xi;Y\X2), Ä2 < I{X2\Y\X\). Assume it is possible to 
write X\ = f(U,V) for some function / and random variables 
U and V which are mutually independent and independent of 
Xi. Then 

R1 + R2 = I(XltX2;Y) = I{U,V,Xr,Y) 

= I(U; Y) + J(Xr, Y\U) + I(V; Y\U, X2).    (1) 

If we can choose the distribution on U and V such that 

i?2 = I{X2',Y\U), then (1) shows that single user decoding 
can be employed, decoding first the input corresponding to 
U then the input corresponding to X2, and finally the input 
corresponding to V, i.e., (1) describes a vertex. 

Let U and V have the same alphabet as X\ € {1, • • •, J] 
and let f(u,v) = max{s,»). Let the distributions on U, V, 

and Xi be pu, pv, and pxx, respectively. Define pu(e) = 
epx! + (1 — e)e, e € [0,1], where e is the distribution with all 
its weight on the first element. It can be verified that for any 

1 £ [0,1] a well defined pv exists such that X\ = f(U,V). 
Furthermore, if e = 0 then I(Xr,Y\U) = I(X2;Y) whereas 
if e = 1 then I(X2;Y\U) = J(X2;Y|Xi). Since I{X2;Y) < 

R2 < I(X2',Y\X\) the claim then follows by continuity.        O 
Note that f(u, v) = max{«, v} is not the only possible func- 

tion, but this particular choice leads to a simple proof. 

III. AN EXAMPLE 

Consider the binary multiplier channel, where the channel in- 

puts Xi and X2 as well as the channel output W = X1X2 
are elements of {0, 1}. The capacity region of the binary mul- 
tiplier channel is well known [1, p. 390] and is characterized 

by the set of rate tuples (Ri, R2) such that R-y + R2 < 1. To 
achieve the rate tuple (Ri, R2) = (0.5, 0.5) we may choose the 

input distributions to be px1 = px2 = (1 — 1/V?, 1/V%) and 
let f(u,v) = ma,x{u,v}. The appropriate input distributions 
for U and V are pv = (0.57,0.43) and pv = (0.51,0.49). It 
follows that {Rv,Rx2,Ru) = (0.41,0.5,0.09) is a single-user 
decodable rate triple for the new channel. 

[1] 

[2] 

Proof for m = 2.    Without loss of generality  [4] assume a     t3] 

rate-tuple (R1,R2) such that Ri + R2 = I{X1,X2;W), Rt < 

[4] 
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Abstract — The admissible rate-distortion region 
is determined for a triangular communication system 
shown in Fig. 1. 

I. SUMMARY 

Consider a triangular communication system (TCS) shown 
in Fig. 1, where the source outputs X and Y are i.i.d. but mu- 
tually correlated random variables, which take values in finite 
sets X and y, respectively. The decoder's outputs X g X and 
Y g y are allowed distortion, which is measured by distortion 
measures, dx{X, X) < oo and dy(Y, Y) < oo, respectively. 
We consider block coding. Hence, for XK — (Xi, X2, ■ ■ ■, XK) 

and Y v = (Yi, y2, • ■ ■, YK), the encoder / and the decoders 
gx and gy are defined as the following mappings. 

wx     /" 

Wy         \^ 

A 

A   YA 

7 

' 

/ V 

VA" Y 

Figure 1: Triangular Communication System 

xA' = (Xl 

(Wx,Wy) 

,X2,---,XK) 

Y    = (Y1,Y2,---,YK) 

/(XA,YA), 

gx(Wx,V), 

9Y(WY,U), 

where Wx and Wy are sent to decoders gx and gy, 
respectively, and U = (U^, U[2], ■ ■ ■, <7[L]) and V = 
(V[i], V[2], • • • > ^L]) are codewords to communicate between 
two decoders gx and gy, and they are defined by 

-    „M UW    =    9VuWx,Vm,V{2h---, V[e_1}),   1=1,2, ,L, 

V[e]    =    jj?^,^,^],-,^,,),   £=1,2,---,L. 

Letting Wx g I{MX), Wy g 1(MY), U[t] g l(Mu„,), and 

V[e]  g I(M; [()) 

of each channel is defined as 

Rx = j- loS M*' 

vhere 1(M) = {0,1, 2, • • ■, M - 1}, the rate 

RY = -^ log My, 

Ri 
A    1 -5>gMf [*]' R\ 

A    1 
-^logMv 

= JcELi^(Xk,Xk), d^\Y' ,YK) = 

For    (XJ\X   )    and    (YA',YV),    each   distortion   is   mea- 
sured   by   the   averaged   single   letter   distortion   measure, 

i.e. ^(x^x1"; 

Rate-distortion tuple (Rx, Ry, Ru, Rv, Dx,Dy) is called 
admissible if for any e > 0, sufficiently large K, and some 
finite L, there exists a code (/, gx,9Y,gu> 9v'> ^— 1> 2, • ■ ■ , i) 
that satisfies 

Ed 

x 
(A) 

(xA", xA'; 
(YA', YA'; 

< Dx+e, 

< DY + e. 

The admissible rate-distortion region 11 for the TCS is defined 

Tl    =    {{RX,RY,RU,RV,DX,DY): 

(Rx, Ry, Ru, Rv, Dx, Dy) is admissible}. 

This admissible region H is determined by the following 
theorem. 
Theorem 1 

Tl = {(Rx,Ry, Ru, Rv, Dx, Dy) -. 

Rx > Rx\s{Dx)     Ry > Ry\s(Dy) 

Rx+Rv >Rx\s(Dx)+I(XY;S) 

Ry + Ru> Ry\s(DY) + I(XY; S) 

Ru + Rv >I(XY;S) 

Rx+Ry> Rx\s(Dx) + Ry\s(Dy) + I(XY; S), 

for some auxiliary random variable S g 5 

such that \S\ < |A||^| + 2}, 

lohere Rx\s(Dx)   and RY\s(Dy)   are  the  conditional rate- 
distortion functions. 

Although the proof of the converse part is complicated, the 
direct part can easily be proved by using the code of the Gray- 
Wyner system [1]. From the proof of the direct part, the 
admissible region can be attained with L = 1. Hence, the it- 
erative communication between the decoders is not necessary. 

It is also worth noticing that when Rx + Ry = H(XY) 
in the distortionless case, the minimum of Ru + Rv is equal 
to the Wyner's common information [2]. Hence, the Wyner's 
common information can be explained as the minimum rate 
necessary to communicate between the decoders in the TCS 
under the conditions that 

• the total rate sent from the encoder to the decoders is 
minimum, 

• X and Y must be reproduced with arbitrarily small error 
probability. 
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Abstract — Extension of Shannon's inequality for 
discrete probability distribution with an infinite num- 
ber of elements is considered. As an application, the 
asymptotic capacity of T-user binary adder channel is 

exactly determined. Previously known asymptotically 
good (but not very) T-user code of Chang and Weldon 

is shown to be far from asymptotically very good. It is 
thus concluded that the achievability problem of the 
asymptotic capacity remains open. 

I. EXTENDED SHANNON'S INEQUALITY 

Denote the set of 7V-D positive real-valued vectors by R+. 

Let X(N) = {(xux2, • • ■,XJV) e R? : £Li xk = 1}. 

Theorem 1   (I) For any integer N  G   [2,oo],   and for all 
p  G   X(N)  and q  £   R+,   define the function /W(p,g)   — 

Ef=iP«=log(p*790>then 

fit(p,q)>0 ifELi9k<l, (1) 

fN(P,q)<0 tf££LiP*/»<l- (2) 

(II) For N G [2, oo), if ]T\ =1 <?fc < 1, the necessary and suffi- 
cient condition for /jv(p,g) — 0 is 

or equivalently, 

ELi?*/9fc = 1> 

Pk =qk for k = 1,2,- ,N. 

Remarks: (i) The base of the logarithmic function in the 
definition of /JV is arbitrary provided it is greater than 1. (ii) 
The condition (4) in part II is in fact a classical form of Shan- 

non's inequality [1],[4]. The extension actually refers to part I. 

(iii) In part II, if the hypothesis is replaced by £fc_, p\/qk < 1 

and (3) by £fc=1 <Zfc = 1, the result is still valid, (iv) (3) is a 
sufficient condition for infinite N, and we conjecture that it is 
also a necessary condition, as it is for every finite N. 

II. ASYMPTOTIC CAPACITY OF T-USER BINARY 

ADDER CHANNEL 

As an application of Part I of Theorem 1, we now con- 
sider the asymptotic capacity of T-user binary adder channel. 
We refer the reader to [2],[3] for the background of this topic. 

The (sum) capacity is defined by CSum(T) = — £i=0 c, log2 ct, 

where c; = (A/2 . Wolf [5] observed that the maximal 

achievable rate sum is about | log2(7reT/2) for such channel. 

Chang and Weldon [3] proved that 

Uo^<C,„(T)<\   j'°^/2) It even T, 
log2(7re(T + l)/2)    odd T. 

(5) 

1This work was supported by the Croucher Foundation Fellow- 
ship 1994/95. 

They also conjectured that | log2 (7reT/2) is an upper bound 
for odd T. Recently, Blake [2] observed that 1+ § log2(T) is a 
much tighter lower bound, and that | log2(7reT/2), as an up- 

per bound, is very tight (c.f. [2, Table 1]). These observations 
motivated our work. 

In [3], a T-user code is said to be asymptotically good if its 
rate sum satisfies 

lim 
•Rsum(T) 

lim .(T) 
T-«.   |l0g2T        T^oo   §log2T 

1, (6) 

where the last equality follows from (5).    Constructions of 

asymptotically good T-user codes were also given in [3]. 
Our next theorem, whose proof invokes Part I of Theorem 

1, determines the exact asymptotic value of Csum(T). 

Theorem 2 

*So(C„m(T)--]oSa-rj 
ireT> 

0. (7) 

In view of Theorem 2, a T-user code is said to be asymp- 
totically very good if its rate sum satisfies 

lim(Äsum(T)4log2^f:)=0. (8) 

*■ ' The asymptotically good T-user code of Chang and Weldon 
[3] is not asymptotically very good. (In fact, the r.h.s. of 

(8) is oo instead of 0!)   Hence, the achievability problem of 
(4) the asymptotic capacity of T-user binary adder channel, or 

equivalently, the existence problem of the asymptotically very 

good T-user code remains open. 
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Abstract 
A sender communicates with a receiver who wishes to 

reliably evaluate a function of their combined data. We 
show that if only the sender can transmit, the number 
of bits required is a conditional entropy of a naturally 
defined graph. We also determine the number of bits 
needed when the communicators exchange two messages. 

I    Introduction 

/ is a function of two random variables X and Y. A 
sender Px knows X, a receiver Py knows Y, and both 
want Py to reliably determine f(X,Y). How many bits 
must Px transmit? 

Embedding this communication-complexity scenario 
(Yao [6]) in the standard information-theoretic setting 
(Shannon [4]), we assume that (1) f(X, Y) must be deter- 
mined for a block of many independent (X, Y)-instances, 
(2) Px transmits after observing the whole block of X- 
instances, (3) a vanishing block error probability is al- 
lowed, and (4) the problem's rate Lf(X\Y) is the number 
of bits transmitted for the block, normalized by the num- 
ber of instances. 

Two naive bounds are easily established. Lf(X\Y) > 
H(f(X,Y)\Y), the number of bits required when Px 
knows Y in advance, and by a simple application of the 
Slepian-Wolf Theorem, Lf(X\Y) < mm{H(g(X)\Y) : 
g(X) and Y determine f(X, Y)}. Both bounds are tight 
in special cases, but not in general. 

Drawing on rate-distortion results, we show that for 
every X, Y, and /, 

Lf(X\Y) = HG(X\Y). (1) 

G is a simply-defined characteristic graph of X, Y, and 
/. HG(X\Y) is the conditional G-entropy of X given 
Y. It extends HG(X), the G-entropy of X, defined by 
Körner [3], also called the graph entropy of G and X. 
Graph entropy has recently been used to derive an alter- 
native characterization of perfect graphs, lower bounds on 
perfect hashing, lower bounds for Boolean formula size, 
and algorithms for sorting. 

The lower bound (>) in (1) is proven via an analogy 
between HG{X\Y) and rate-distortion results of Wyner 
and Ziv [5] and their extension in Csiszär and Körner [1]. 
The upper bound (<) strengthens these rate-distortion 
results, showing that in certain application the same rate 
suffices to achieve small block- and not just bit-error prob- 
ability. The proof uses robust typicality, a more restrictive 
form of the asymptotic equi-partition property. 

We also consider the more general scenario in which the 
communicators can exchange two messages. Py sends a 
message based on the block of Y instances, and Px re- 
sponds with a message based on Py's message and the 
block of X instances. Again, Py must accurately eval- 
uate all f(X, Y)'s. P^'s transmission rate rx, and Py's 
transmission rate ry, are the number of bits they trans- 
mit, normalized by the block length. We determine the 
region Rf(X\Y) of possible rate pairs for all X, Y, and 

/• 
Two random variables U and V are admissible if (1) 

U-Y-X, (2) V-UX-Y, and (2) U, V and Y determine 
f(X,Y). We show that for every (X, Y) and /, 

Rf(X\Y) = {(rx,ry)  : rx > I(V;X\UY) and 

ry > I(U;Y\X) for some admissible U and V\. 

The inner bound is derived by generalizing the one- 
way achievability results. To prove the (matching) outer 
bound, we extend results of Kaspi and Berger [2] to a 
larger class of distortion measures. 
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Abstract — Let the input to a computation prob- 
lem be split between two processors connected by a 
communication link; and let an interactive protocol 7r 
be known, by which on any input, the processors can 
solve the problem using no more than T transmissions 
of bits between them, provided the channel is noise- 
less. We study the following question: If in fact there 
is some noise on the channel, what is the effect upon 
the number of transmissions needed in order to solve 
the communication problem reliably? 

I. INTRODUCTION 
Shannon, in his seminal study of communication [3], studied 

the effect of noise upon "one-way" communication problems, 
i.e. data transmission. His fundamental observation was that 
coding schemes which did not treat each bit separately, but 

jointly encoded large blocks of data into long codewords, could 
achieve very small error probability (exponentially small in 
T), while slowing down by only a constant factor relative to 

the T transmissions required by the noiseless-channel protocol 
(which can simply send the bits one by one). The constant 
(ratio of noiseless to noisy communication time) is a property 
of the channel, known as its Shannon capacity. 

The improvement in communication rate provided by Shan- 
non's insight is dramatic: if the channel is memoryless, the 

naive protocol which repeates each bit several times can only 

achieve the same error probability by repeating each bit a 
number of times proportional to the length of the entire orig- 
inal protocol. (For a total of T2 communications.) Moreover 

in order to achieve any communication on "adversarial" or 
"worst-case" channels in which any set of a given number of 

transmissions may be garbled, such error-correcting codes are 
necessary. A precise statement of Shannon's coding theorem 
(for the special case of binary symmetric channels, BSCs) fol- 

lows. With some loss in the capacity, a similar statement can 
be made for "adversarial" channels. 

Theorem 1 (Shannon) Let a BSC of capacity C be given. 
For every T and every j > 0 there exists a code x ■ {0,1}T ->■ 
{0,1}

T
*(

1+
T> and a decoding map X' ■ {0, l}T*(1+"'> -> 

{0,1} such that every codeword transmitted across the chan- 
nel is decoded correctly with probability 1 — e_n'T'. 

Recently, in computer science, communication has come 
to be critical to distributed computing, parallel computing, 
and the performance of VLSI chips. In these contexts in- 
teraction is an essential part of the communication process, 
and its role has been extensively studied through the "com- 
munication complexity" model initiated by of A. C. Yao [4] 

(see [1] for a survey). Noise afflicts interactive communica- 
tions just as it does the one-way communications considered 
by Shannon, and for much the same reasons: physical devices 

are by nature noisy, and there is often a significant cost as- 
sociated with making them so reliable that the noise can be 

'Supported in part by an NSF Postdoctoral Fellowship. 
schulman@cc.gatech.edu 

ignored. (By providing very strong transmitters, cooled cir- 
cuits, etc.) To mitigate such costs we can design our systems 

to operate reliably even in the presence of some noise. The 

ability to transmit data in the presence of noise, the subject 
of Shannon's and subsequent work, is a necessary but far from 

sufficient condition for sustained interaction and computation. 
Observe that in the case of an interactive protocol, the 

processors generally do not know what they want to transmit 

more than one bit ahead, and therefore cannot use a block 

code as in the one-way case. Another difficulty that arises 
in our situation but not for data transmission, is that once 

an error has occurred, subsequent exchanges on the channel 

are affected. Such exchanges cannot be counted on to be of 
any use either to the simulation of the original protocol, or to 

the detection of the error condition. Yet the processors must 

be able to recover, and resume synchronized execution of the 
intended protocol, following any sequence of errors, although 

these may cause them to have very different records of the 
history of their interaction. In spite of these new difficulties 
we have: 

Theorem 2 In each direction between a pair of processors let a 
BSC of capacity C be given. There is a deterministic commu- 

nication protocol which, given any noiseless channel protocol 
n of length (duration) T, simulates n on the noisy channel in 
time 6{T/C) and with error probability e~n'T'. 

In all but a constant factor in the rate, this is an exact ana- 

log, for the general case of interactive communication prob- 
lems, of the Shannon coding theorem. A similar statement 

can be shown also for the case of "adversarial" channels. 
As part of our work we introduce and show the existence of 

a new class of codes, "explicit" tree codes. (These are different 

from, though in part inspired by, the random tree codes of 
the sequential decoding literature.) Computationally effective 
(e.g. polynomial-time) construction of these codes is an open 

problem. We show that if these codes can be implemented 
with polynomial-time computation, then so can the encoding 
and decoding procedures of the protocol. To be precise: Given 
an oracle for a tree code, the expected computation time of 

each of the processors implementing our protocol, when the 
communication channels are BSCs, is polynomial in T. 

Our results are described more fully in reference [2]. 
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Abstract — We show that any distributed protocol 
which runs on a noiseless network in time T, can be 
simulated on an identical noisy network with a slow- 
down factor proportional to \og(d + 1), where d is the 
maximum degree in the network, and with exponen- 
tially small probability of error. 

I. INTRODUCTION: A CODING THEOREM 

Shannon's coding theorem [2] can be stated as follows: The 
number of transmissions sufficient to send a T bit message 
over a noisy channel with reliability 1 — e~cl<-T> is asymptotic 

to ^T where 0 < C < 1 is the "channel capacity", a function 
only of the noise characteristics of the channel. In addition, 
Shannon proves the converse - that this many transmissions 

are required. 
Can we extend the theory to networks, with a number of 

links available for simultaneous use? In his work, Schulman[l] 
shows an analog of the Shannon coding theorem for a pair of 

processors running an interactive protocol in a model intro- 
duced by Yao[3] in his work in communication complexity. 

The main theorem in our work (stated most simply in the 
case of a noisy network in which each connection is made via 

a binary symmetric channel of capacity at least C > 0) is the 
following: 
Theorem 1.1 Any protocol II which runs in time T on a 
noiseless N-processor network of maximum degree d can be 
simulated on that network if it is noisy, in time 0(T °s'c—'•). 

The probability that the simulation fails is at most Ne~ ^  '. 

The simulation is said to fail if any processor terminates in 

a state other than that which it would have arrived at in the 

absence of noise. 
Model: Consider a network Af with maximum degree d. We 
make the following assumptions. First, all noise in our system 

occurs only in the communication links between processors. 
Second, we look only at the number of communication bits 
and ignore the computational cost of the protocol. Third, 
we require that our protocol be event driven and therefore 
implementable in the asynchronous setting but we analyze its 
correctness and efficiency in the synchronous setting. We do 
this so that the notion of the trajectory of the system and 
thus the notion of simulation is well defined. 

II. METHOD 

On every channel of our network we will implement commu- 
nications using tree codes, introduced by Schulman in [1]. 
The noiseless protocol will be embedded within a simulation 
that uses locally initiated (hence asynchronous) "backups", 
followed by renewed transmissions, in response to perceived 

errors in the simulation. 
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III. ANALYSIS 

We will have in mind a "space-time" diagram, where space 

corresponds to the topology of the network. By a path in 
space-time we mean a sequence of nodes {pT} in the network 

such that for each T, pT and pT+i are adjacent1 in the network. 
For a protocol II, denote by II (t) the state (i.e. the combined 
state of all the processors) after t time steps. We show that 

there is a c such that for each noiseless network protocol II 

there is a protocol E simulating II on the same network A/", so 
that in the presence of noise, E(T) fails to reproduce IT(t) only 

if there is a space-time path on which there are at least T — ct 
corrupted bit transmissions. This follows from an (slightly in- 
volved) argument relating the delay of the simulation, which 

is only defined locally due to the asynchronous nature of the 
simulation, to a space-time path containing a corresponding 
number of errors. The argument uses the combinatorial prop- 
erties of both the protocol and tree codes. The probability 
of having that many transmission errors is then bounded in 

standard fashion by using the channel model. 
From these steps we obtain theorem 1.1. Similar results 

can be derived for more general channel models which require 
only a replacement of the last segment of the argument. 

IV. DISCUSSION 

Our results are non-constructive: though we can show the 
existence of a simulation E, we are unable to produce E ex- 
plicitly. The impediment is exactly that explicit algorithmic 
constructions for tree codes are not known. Moreover, the 
problem of decoding tree codes is solvable given a "coding 
oracle." Resolving the computational complexity of coding 
and decoding tree codes is the most critical open issue at the 

conclusion of our work. 
Second, there is a storage space overhead which is separate 

from that incurred due to the cost of coding and decoding. 
This comes from the need, in our simulation E, for proces- 
sors to be able to roll back computation; so in our protocol 
processors keep a record of all their past states. 

If one is willing to tolerate error probabilities of the order 
of JV/poly(T), then the above problems can be addressed: the 
storage overhead can be greatly reduced, and a sufficiently 
good tree code can be constructed. 

We conjecture that the log(d + l) slowdown in our theorem 
is necessary. 
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Abstract — A representation technique is presented 
allowing for quick access of individual records from 
a static compressed dataset. Given a collection of 
key-record pairs, the representation allows the ap- 
propriate short record to be returned for any given 
key. The approach is a generalization of Perfect Address 
Hashing. The new approach, called Perfect Value Hash- 
ing, uses a carefully chosen pseudo-random number 
generator to directly produce the correct record for 
any key in the dataset. This contrasts with Address 
Hashing where the random number provides an ad- 
dress which is then used to recover the record from a 
separate table. Value Hashing doesn't have the theo- 
retical limitations of Address Hashing, and in practice 
is more space efficient for records of size less than 36 
bits. Value Hashing has the added benefit (important 
when the records are encoded for compression) that 
variable length records can be represented without an 
increase in the size of the encoded records. This new 
technique was used to provide random access from a 
highly compressed spelling dictionary. 

I. BACKGROUND OF THE PROBLEM 

Given a dataset of key-record pairs, the general problem is to 
represent the dataset so that a record can be recovered with- 
out a slow search. A well known solution is to sort the keys 
and store them with each fixed length record. This, for ex- 
ample, is the method used to organize a conventional phone 
book. Lookup requires a search logarithmic in the number of 

records. A faster lookup can be performed by storing with 
the dictionary a pseudo-random number generator called an 
Address Hash. This function takes any key and returns a 

number which is used to tell where the associated record is 
stored. The equivalent example with a phone book is where 

an Address Hash would convert a name (the key), into a page 

(the address) where the phone number (the record) is stored. 
This allows for faster access because the search is now limited 

to one page of the phone book, and so the speed of access 
is independent of the total size of the book. It is possible 
to represent this information much more space efficiently by 

not storing the key at all. A Perfect Address Hash is a spe- 
cially created Address Hash for a particular dataset which 
produces a different address for every record (i.e. every page 
in the example phone book has exactly one phone number). It 

provides for time efficient access because no search is needed 
among the records at a given address. An important result of 
Perfect Address Hashing by Melhorn [l] is that an overhead 

of approximately (1/n) ln(nn/n!)/ln(2) ss 1.44bits is required 
to map n keys to n unique addresses (additional overhead is 

required if the records do not have a fixed length). Practi- 
cal algorithms for finding Perfect Address Hash functions for 
large number of records (106) have been reported with a cost 

of 3.6 bits per record [2]. For small variable length compressed 
records, the size of the Perfect Address Hash function may be 
unacceptably large compared to the size of the compressed 
records. 

II. SOLUTION 
Value Hashing is the method of using a pseudo-random num- 
ber generator to calculate information about the record itself. 
For the phone book example a pseudo-random number gener- 
ator would be created so that the number it returns for a given 
name is that person's phone number (or the bits of a prefix 

encoded representation of the phone number). This approach 
overcomes Melhorn's theoretical bound on overhead because 

each key does not map to a unique address. The achievability 
of the Slepian-Wolf [3] bound for broadcast channels [4] shows 
that the size of the Value Hash function (at least in theory) can 

be made independent of n (and so the overhead goes to zero 

for large n). This is obvious if you consider that a random se- 
quence of bits will duplicate the records of a database of size n 

with probability (l/2)n. In principle you could create Perfect 

Value Hashes by evaluating approximately 2n hash parame- 
ters to see if they happen to regenerate the desired records for 

the keys in the dataset, and then encoding the index of the 
first successful mapping of keys to records. Using the entropy 
of the waiting time for first success (assuming each hash func- 
tion is an independent trial producing all bit sequences of a 
given length equiprobably) it is easily shown that this index 
encoding requires approximately n + l/ln(2) bits on average. 
By breaking down the search for hash functions into groups 

of k bits it is possible to do small combinatoric searches on 
subsets of k bits from n, so that the total overhead is approx- 
imately (n/k)(k + l/ln(2)). (Ramakrishna noted that brute 
force is effective in finding Perfect Address Hash functions 
and proposed a composition scheme for minimizing worse case 

evaluation time [5-6].) With current computer speeds k = 16 
is easily achievable which implies .09 bits per binary record. 
A practical algorithm has been developed for finding Perfect 

Value Hash functions with an overhead of .1 bits per binary 

record. The average time required to evaluate the hash func- 
tion is independent of n. The same technique can be used for 
non-binary records for increased speed in evaluation. This has 

been used to provide random access by key of any 4-bits from 
a highly compressed spelling dictionary. 
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Abstract — This study further investigates and gen- 
eralizes the database model introduced in [1] by ap- 
plying new techniques to the problem of data re- 
trieval. The problems analyzed are representative 
of important issues involved in storing data for con- 
text dependent retrieval from databases. They arise 
when simple storage devices such as tapes and disks 
are used to store relatively more complex data struc- 
tures such as large multi-dimensional images. The 
mismatch between the physical nature of the stor- 
age device and the data structure, i.e., the manner in 
which its elements are requested, prevents some re- 
quests from being instantaneously accessible on the 
database. Hence, we have the non-trivial problem of 
designing the database so as to minimize the expected 
access time EA. 

I. Introduction 
The basic model in [1] is generalized to a large multi- 

dimensional image stored onto a lower dimensional tape where 
the sequence of user requests is modelled as a random walk 
on the image. It is found that careful use of redundancy in 
the storage scheme can reduce access time significantly over 
the no-redundancy case. As an interesting information theory 
problem, we examine what is the minimum expected access 
time that can be achieved under any system using redundancy, 
a cache, and multiple tapes (possibly implementing erasure- 
correcting codes). 

II. Expected Access Time, EA 
Under a linear cost function and no redundancy, we find 

that the minimum access time, EA*, is dependent on the func- 
tion ip which we define as the absolute central moment of 
a graph. For a graph B, ip(B) = J2b£B^'c^' where c is 

the center of B and d(b, c) is the graph distance between the 
points b and c. It is found that when storing a d-dimensional 
toroidal image I onto a ^-dimensional toroidal tape T of equal 
volume under a linear cost function without redundancy, the 
minimum access time EA* is bounded by 

EA*>-Ws 

cost function, EA* = |(^+ 1). It is then demonstrated that 
redundancy can be used to improve EA* significantly under 
a capped cost function, EA* < \pll. On the other hand, we 
find simple counter examples where redundancy only makes 
performance worse. In fact it is conjectured that redundancy 
can not improve performance under the linear cost function 
for this model. This is found to be an interesting question in 
its own right and can be modelled in a game theory context . 

III. Caching and Multiple Tapes 
When storing a one-dimensional image without redun- 

dancy, a cache of size C can be shown to reduce access time 
by a factor of at least C + 1. On the other hand EA* cannot 
be reduced by more than | f_^3Sn + 1 where n is the size of 
the image. We then examine how a cache and redundancy can 
be applied together to further improve performance. In cases 
where exact reconstructions are not required to satisfy user 
requests, we model the problem in a rate-distortion context 
and explore achievable distortion-access time pairs and plan 
to relate this work to that described in [3]. 

The cache problem is extended to utilizing multiple 
tapes/heads to improve performance. Using T tapes under 
a block/file segmentation scheme, the access1 time is reduced 
by a factor of T. [4] [2] demonstrate problems where Reed- 
Solomon codes can be used to achieve a significant improve- 
ment over file segementation. Using such erasure-correcting 
codes for the multiple tape problem, it is found that accessed 
data elements that would incur high retrieval costs can be 
treated as erasures. Then using data from the other tape 
heads the erasure can be reconstructed using the code. 

IV. Conclusions 
The preliminary results from analyzing the representative 

models discussed suggest that the most effective means for im- 
proving EA* is to use redundancy in the storage device. It is 
demonstrated however that this has to be done very carefully 
otherwise performance degrades. Deciding whether to use a 
cache or multiple tape heads is less significant and the relative 
importance of the two depends on the model used. 

where each pixel/block of the image is represented as a node 
in the graph.   In particular, the above bound is found to be 
tight when storing rectangular images onto 1-dimensional tape     r.-, 
loops, i.e., EA* = 2-^- + 0(nd~2) where n is the length of 
the sides of a cube image. 

We also introduce a slight variation to the problem where     [3] 
the tape is a loop and the read head is restricted to moving 
in only one direction. We begin with expressions for the mini- 
mum achievable access time for storing images onto the unidi-     [4] 
rectional tape under a linear cost, EA* = |vol(I) and capped 
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We report on two types of results. The first is a study of 
the rate of decay of information carried by a signal which is 
being propagated over a noisy channel. The second is a series 
of lower bounds on the depth, size, and component reliability 

of noisy logic circuits which are required to compute some 
function reliably. The arguments used for the circuit results 

are information-theoretic, and in particular, the signal decay 

result is essential to the depth lower bound. 

Our first result can be viewed as a quantified version of 

the data processing lemma, for the case of Boolean random 

variables. 

Theorem 1 (Signal Decay)  // X, Y are Boolean random 
[l-o   a   ] 

variables and Z is the output of the channel   L    6    1 — 6J 
I(X' Z\ 

on input Y then    ^    '       < sin  9, where 9 is the angle in the 

plane between the vectors (y/1 — a, i/o) and (v6, \Jl — b). 

It is worth emphasizing that the bound holds regardless of 
the distribution on X and Y, and is a property of the chan- 
nel alone. The bound is tight in that for any such channel, 
one can describe a joint distribution for X and Y so that 

I(X; Z)/I(X; Y) is arbitrarily close to sin  9. 
The previous theorem is a general result about mutual in- 

formation. The remaining theorems concern the noisy circuit 
model of Von Neumann [7]. The signal decay theorem is use- 
ful in proving lower bounds on the structure of such circuits 
whose components (i.e. individual logic gates) fail with some 
probability. These results improve and simplify all previous 
lower bounds in this model. 

Theorem 2 (Noisy Circuit Depth) Let f be a Boolean 
function which depends on n inputs. Let C be a circuit of 

depth c using gates with at most k inputs, where each gate 
fails independently with probability (1 — £)/2. Suppose C com- 
putes the function f correctly on all inputs with probability at 

least 1-6 where 6 < 1/2. Let A = l+6log6+(l-6)log(l-6). 

.  J/£2>l/fciÄenc>{2*[=$ 

•  Ift2 < 1/k thenn< 1/A 

To prove this theorem, we analyze the mutual information 

between the input to the noisy circuit and its output. This 
information must be large since the circuit reliably computes 
the function /; yet, according to the signal decay theorem, 
each noisy gate in the circuit, when viewed as a noisy channel, 
decreases information. Together, these observations imply the 
lower bound on circuit depth. This improves on the lower 
bounds of Pippenger [5] and Feder [1]. 

A similar technique, using a different measure of correlation 
than mutual information, provides a lower bound on noisy 
circuit size. 

Theorem 3 (Noisy Circuit Size) Let f be a Boolean func- 
tion with sensitivity s. Let C be a circuit using gates with at 
most k inputs, where each gate fails independently with proba- 
bility (1 — £)/2. Suppose C computes the function f correctly 

on all inputs with probability at least 1 — 6 where 6 < 1/2, then 

the number of gates in C is at least     °g      f ,°g'. '    —"■ where 

• 3 + (l-u,)3 

and to ~ 2 

k log t 

Previously, Gal [3], Reischuk and Schmeltz [6], and Gäcs and 

Gäl [2] proved an fi(slog s) bound on reliable circuit size. Our 

improvement is in the bound's dependence on component re- 
liability. 

Finally, we establish a threshold for component reliability 
below which one cannot reliably compute all functions. 

Theorem 4 (Component Reliability) For k odd there ex- 

ists 6 < 1/2 such that for all Boolean functions f there exists 
a formula (using gates with at most k inputs, where each gate 
fails independently with probability e) which computes f cor- 
rectly on all inputs with probability at least 1 — 6 if and only 

if 
1        2k~2 

e<2 k( fc—l-i 

2 

This extends work done by Hajek and Weiler  [4],  who 
showed the result for k = 3. 
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Abstract — It is shown that for a suitable choice of 
the parameters, multiple repetition feedback coding 
achieves a rate close to capacity for an arbitrary dis- 
crete memoryless channel. For wide- sense symmetric 
channels the difference between the rate of a multiple 
repetition feedback strategy and the channel capacity 
can be written as an informational divergence. 

I. MULTIPLE REPETITION FEEDBACK CODING 

Consider a discrete memoryless channel with input symbols 
0,..., m — 1 and output symbols 0,.. ., rh — 1. We assume 
w.l.o.g. [2] rh > m. The output symbols j, m < j < rh can be 
seen as erasure symbols. The channel error probabilities are 
denoted by pij (0 < i < m, 0 < j < rh). The idea of repetition 
coding is the following: suppose during transmission of a mes- 
sage an i —> j error occurs. The sender can detect this because 
of the feedback link and 'corrects' the error by repeating the 
symbol i a fixed number kij of times. The receiver scans the 
received sequence from right to left and replaces each subse- 
quence ji '■' by i. A consequence of repetition coding is that 
messages have to be precoded, since no subsequence ji ij may 
occur. Foi asymmetric channels precoding is also used to fix a 
symbol precoding distribution q = (go, • • • ,<}m-i). This leads 
to a precoding rate Rp(q). The expected number of trans- 
missions to send symbol i such that all occuring transmission 
errors are corrected is c; = 1/(1 — ]T\ kijpij). The rate of 
a repetition feedback strategy with repetition parameters kij 
(0 < i < m, 0 < j < rh) as a function of the symbol precoding 
distribution q is 

The rate R is the maximum of R(q) over all symbol precoding 
distributions q. 

II. WIDE-SENSE SYMMETRIC CHANNELS 

A discrete memoryless channel is called wide-sense symmet- 
ric if the channel considered as a graph with labeled edges 
satisfies: 

1. All input nodes have the same bag of outgoing edge 
labels. 

2. All output nodes j, 0 < j < m have the same bag of 
incoming edge labels. 

3. All output nodes j, m < j < rh have the same bag of 
incoming edge labels. 

Note that a bag is a set where elements can occur more than 
once. The labels of the edges that come in at output nodes j, 
0 < j < m, are (in arbitrary order) denoted by p; (0 < i < m). 
The labels of the edges that come in at output nodes j, m < 
j < rh, are (in arbitrary order) denoted by p; (m < i < rh). A 
wide-sense symmetric channel has the property that capacity 
is achieved for a uniform input distribution. 

Suppose a multiple repetition feedback strategy is used for 
such a channel. Each label pi (0 < i < rh) will correspond to 
a repetition parameter ki.  Note that ki = 1 for m < i < rh. 

For reasons of symmetry the symbol precoding distribution 
is no langer fixed during precoding, i.e. all messages without 
forbidden subsequences are allowed. The rate of the repetition 
strategy satisfies R = (1 — J2o< <m ^iVj) l°gm x, where x > m 

is the solution of Y^o<i<mx~k' ~ mx~l■ From [1] follows 
that this rate is equal to the capacity of the channel when the 
channel error probabilities satisfy p; = ij;1"1, X^o< • Pi 

for 0 < i < m, and p; = . 1 Y] . . p,- for m < i < 
rh. Denote the solution of these equations by pi (0 < i < 
rh). The following theorem shows how close the repetition 
strategy approaches channel capacity for an arbitrary wide- 
sense symmetric channel. 

Theorem 1 Consider an arbitrary wide-sense symmetric 
channel with characteristic channel error probabilities pi (0 < 
i < rh) and capacity C. Let R be the rate of the multi- 
ple repetition feedback strategy with repetition parameters ki 
(0 < i < rh).  Then 

C - R= JDm((pO,.-.,Pm-l)||(po,--.,Pm-l)) 

Here Dm denotes the m-ary informational divergence. 

III. ARBITRARY CHANNELS 

For arbitrary channels it is difficult to obtain a simple ex- 
pression indicating the exact distance between the rate of a 
multiple repetition feedback strategy and the channel capac- 
ity. However, it is possible to show that for a suitable choice 
of the repetition parameters, the rate will be close to capacity. 
When analysing the wide-sense symmetric case, it follows that 
the optimal channel error probabilities p; (0 < i < m) satisfy 
ki + loSm(Pi/Y/o<j<mPi) ~ 0 for large repetition parame- 
ters. Therefore, for arbitrary discrete memoryless channels 
with channel error probabilities p^ (0 < i < m,0 < j < rh), 
we suggest to use repetition parameters kij such that kij « 
— logm(pf,/ X^o<s<m P*5) f°r 0 < j < m. Note that kij should 
be equal to 1 for m < j < rh. 

The rate of this suitably chosen multiple repetition feed- 
back strategy as a function of the channel is denoted by 
R{{pij)ij)- The following theorem indicates how close this 
rate approaches the channel capacity. 
Theorem 2 Consider an arbitrary discrete memoryless 
channel with channel error probabilities pij (0 < i < m, 0 < 
j < rh) and capacity C. If pij —* 0 for 0 < i ^ j < m, then 

c-R = o(   Y^   py) 

From Theorem 1 follows that the order of approximation in 
Theorem 2 is tight. 
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SUMMARY 
The unnormalized finite autocorrelation function C(r) 

of the sequence A = {ajt}£=1 of complex numbers on 

the unit circle is denned by C(T) = YlkZl afcafc+r> w*tn 

C(0) = n,C(-r) = C*(T), and \C(n - 1)| = 1, where z* 
denotes the complex conjugate of z. We seek the sequence 
of length n, for each n > 3, which minimizes the value of 

max 
l<T<n- 

,\C(r)\, 

and the value 

Tn =       min max     |C(r)| 
all sequences 1 < r < n—2 

of this minimizing sequence. 
As shown in [1], {|C(T)|}^1TA''_1) is the same sequence 

for A, for A* = {a£}JJ=1, for A' = {a„+i_t}^=1, and 
for each Aap = {aßkak}k=1 where a and ß are complex 
numbers with \a\ = \ß\ = 1. 

A sequence A with maxi < T < „_2 |C(r)| < 1 is called a 
generalized Barker sequence [1]. A clever hill-climbing 
program is described in [2], which reported empirical 
values of T„ for 3 < n < 25, with the sequences at- 
taining these values. In particular, generalized Barker 
sequences are claimed for all n < 25 except for n = 
20. (A few of these examples are erroneous, although 
some or all of these errors may be typesetting mistakes.) 
No effort was made in [2] to describe the extremal se- 
quences algebraically nor to make use of the group G of 
correlation-magnitude-preserving transformations to sim- 

plify the presentation of the data (as done in [1]). Here 
are best sequences An = {ajfc}£=i, and the corresponding 
correlation sequences {^(r)!}!?-!, for n = 3,4, and 6, 
expressed algebraically. 

n Oi 02 03 04 0.5 ae 
3 1 1 -1 
4 1 1 -e'f _e3i7 

5 
6 1 1 e"'/3 -1 1 e4*i/3 

(Here, 7 = cos"1 (1/4) = 75°.52248781 • • •.) 

n |C(1)| |C(2)| |C(3)|     |C(4)|     |C(5)| T„ 
3 
4 
5 
6 

0 
1/2 

1 

(1) 
1/2 

1 

(1) 

1            1           (1) 

0 
1/2 

1 
The uniqueness (modulo the group G) of the sequence 

of length 6 was shown in [3]. It is believed that the meth- 
ods used to obtain these results can be extended to other 
values of n. 

REFERENCES 

[1] S.W. Golomb and R.A. Scholtz, "Generalized Barker Se- 
quences," IEEE Trans. Info. Theory, vol. IT-11, no. 4, October, 
1965, 533-537. 

[2] L. Bömer and M. Antweiler, "Polyphase Barker Se- 
quences," Electronic Letters, vol. 25, no. 23, 9 November, 1989, 
1577-1579. 

[3] N. Zhang and S.W. Golomb, "Uniqueness of the Generalized 
Barker Sequence of Length 6," IEEE Trans. Info. Theory, vol. 
IT-35, no. 5, September, 1990, 1167-1170. 

458 



A Unified Construction of Perfect Polyphase Sequences 
Wai Ho Mow1 

Dept. of Elect. & Comp. Eng., Univ. of Waterloo, Waterloo, Ontario, CANADA N2L 3G1 

Polyphase sequences over JV-th complex roots of unity are 
considered. A sequence is perfect if all its out-of-phase periodic 
autocorrelation equal zero. Over the past 30 years, numer- 
ous constructions of perfect polyphase sequences (PPS) have 
been proposed due to their importance in various applications 
such as pulse compression radars, fast-startup equalization 

and channel estimation, and spread spectrum multiple access 
systems. We show that all previous PPS constructions, known 
to us, can be classified into four classes (c.f. [6]): (i) Gener- 
alized Frank sequences due to Kumar, Scholtz and Welch [4, 
Thm.3], (ii) Generalized chirp-like polyphase sequences due 
to Popovic [7], (iii) Milewski sequences [5], (iv) PPS associ- 
ated with the general construction of generalized bent function 
due to Chung and Kumar [1]. The key result here is a unified 
construction of PPS which includes the above four classes as 
special cases. Note, however, that only explicit constructions 
of PPS are considered in this work, since PPS obtainable by 
applying appropriate transformations to one or more previ- 
ously explicitly constructed PPS are always obtainable from 
the unified construction in the same manner. Many useful 
transformations of this kind can be found in [1, Thm.l],[2],[3, 

Thm.2],[4]. 
For a polyphase sequence {exp(2n^:lh(k)/L)}k=0, we 

call {h(k)}^~Q its index sequence, whose components need 

not be an integer. 

Theorem 1  Let L = sm2, for s,m g Z+.    The polyphase 

sequence of length L defined by its index sequence 

bound on the number of PPS for a given L and JV. A com- 
puter program, which finds all PPS derivable from (1) proves 
that Theorem 1 in fact generates all possible PPS in the above 

search range [6]. 
We conjecture a simple relationship between the length and 

the minimum alphabet size. 

Conjecture 1 Let L = sm2, for s,m g Z+ and s is square- 
free. A perfect polyphase sequence of length L exists if and only 

if its alphabet size N is an integer multiple of JVm;n where JVmin 

is the minimum alphabet size given by 

f(km + l)     = 
m2(s + l) (      ,       1(1 + 1) 
—2  ^o + no-y- 

+m(nn(l) +m)k + f(l) 

v/ezm,vfcg zs (1) 

where ro is any integer in Zs coprime to s, no is any integer in 
Zs such that (s + l)n0 is even and r0 + n0l(l +1)/2 is coprime 
to s for all I G Zm, ri is any integer in Z5m coprime to m, 
m is any integer in Zsm, 7r is an arbitrary permutation of the 
elements ofZm, and /(/),VJ 6 Zm, is an arbitrary rational- 

valued function, is perfect. 

The number of distinct PPS for a large subset of (1) is 

determined below. 

Theorem 2 For the construction (1), the number of perfect 

polyphase sequences of length L = sm2 and alphabet size N 
is m\Nm for s = 1; and sm(m\)d>(s)Nm for s > 1, n0 = 0 
and n = 1, where the Euler's function 4>(u) is the number of 

integers in {1,2, • • •, u — 1} coprime to u. 

Comparing with exhaustive search results for all PPS sat- 

isfying JV < 15, L < 20 and NL < ll11 (c.f. [6]), Theo- 
rem 2 predicts the exact numbers of all PPS found except for 
(L,JV) = (12,6).  Hence, Theorem 2 gives an excellent lower 

J*min — ■{ 
2sm    for even s and odd m, 

sm       else. 
(2) 

This conjecture is closely related to some famous open 
problems such as the nonexistence of Barker sequences, cir- 
culant Hadamard matrices, and one-dimensional generalized 

bent functions [6]. 
With the unified construction (1), it is not difficult to build 

optimal sequence sets, with respect to the Sarwate bound 
[8], that generalizes all previously known constructions of this 

kind. 

Theorem 3 Denote the smallest prime divisor of L by p. 
Then the set of p - 1 perfect polyphase sequences of length 
L as defined in Theorem 1 with no = 0, it the identity map 
andr0 = n an element of {1, 2, • • • ,p-l}, m an arbitrary in- 
teger, and f(l),Vl £ Zm an arbitrary rational-valued function, 

is optimal with respect to the Sarwate bound. 

xThis work was supported by the Croucher Foundation Fellow- 
ship 1994/95. 

REFERENCES 

[1] H. Chung and P. V. Kumar, "A new general construction for 
generalized bent functions," IEEE Trans. Inform. Theory, vol. 
IT-35, pp. 206-209, 1989. 

[2] E. M. Gabidulin, "Further results on perfect auto-correlation 
PSK sequences," Proceedings of the 1st International Sympo- 
sium on Communication and Applications, UK, 1991. 

[3] E. M. Gabidulin, "Non-binary sequences with the perfect 
periodic auto-correlation and with optimal periodic cross- 
correlation," in 1993 IEEE International Symposium on In- 
formation Theory (ISIT' 93), pp. 412, Jan. 1993. 

[4] P. V. Kumar, R. A. Scholtz and L. R. Welch, "Generalized bent 
functions and their properties," J. Combin. Theory, Series A, 
vol. 40, pp. 90-107, 1985. 

[5] A. Milewski, "Periodic sequences with optimal properties for 
channel estimation and fast start-up equalization," IBM J. Res. 
Develop., vol. 27, pp. 426-431, 1983. 

[6] W. H. Mow, "A Study of Correlation of Sequences," PhD The- 
sis, Dept. of Information Engineering, the Chinese University of 
Hong Kong, Shatin, Hong Kong, May 1993. 

[7] B. M. Popovic, "Generalized chirp-like polyphase sequences 
with optimum correlation properties," IEEE Trans. Inform. 
Theory, vol. IT-38, pp. 1406-1409, 1992. 

[8]  D. V. Sarwate, "Bounds on crosscorrelation and autocorrelation 
of sequences," IEEE Trans. Inform. Theory, vol. IT-25, pp.720- 
724, 1979. 

459 



Asymptotic Autocorrelation of Golomb Sequences 

E. M. Gabidulin P. Z. Fan and M. Darnell 
Moscow Institute of Physics and Technology Department of Electronic and Electrical Engineering 
Institutskii per. 9, 141700 Dolgoprudnyi Leeds University, Leeds LS2 9JT 
Russia, E-mail:gab@ippi.msk.su UK. Email: p.fan@ieee.org 

Abstract — Golomb sequences of length L form a class 
of polyphase sequences which have a perfect periodic 
autocorrelation. Given certain constraints, they also 
have a favorable aperiodic autocorrelation. This pa- 
per presents a comprehensive study of the asymptotic 
behavior of the aperiodic autocorrelation function of 
Golomb sequences. 

I. INTRODUCTION 

In 1953, R. H. Barker [1] introduced binary sequences 
with particularly favorable aperiodic autocorrelation functions 
(ACFs). In 1965, Golomb and Scholtz [2] proposed a class of 
generalized polyphase Barker sequences which satisfy the orig- 
inal Barker constraint on aperiodic autocorrelation. In order 
to obtain a larger number of sequences with favourable aperi- 
odic correlation, Golomb [3] defined a class of infinite classes 
of sequences. For Golomb sequences of arbitrary length L, 

ßr.fc  — e 
irr(k-l)k 

,   l<k<L, (r,i) = l, (1) 

Zhang and Golomb [3] proved that the maximum out-of-phase 
aperiodic autocorrelation value with r = 1 (and r = L — 1) is 
bounded by A/Z/4.438. When L is odd, r = ijp., Fan, Darnell 
and Honary [4] further showed that the out-of phase aperiodic 
autocorrelation value of Golomb sequences is asymptotically 
bounded by -y/Z/2.174. In this paper, we study the general 
asymptotic behavior of Golomb sequences. 

II. BASIC PROPERTIES OF GOLOMB SEQUENCES 

The maximum out-of-phase autocorrelation value of the se- 
quence aTtk is given by 

Br 
^=1?.^-!  |Cr(r)l = Ia(/m(i))l' ^ 

where Cr(r) = J2j=i ar,ja*,j+T, Im(L) is the value of r(0 < 
T < L) which maximizes |C(r)|. 

For Golomb sequences, it is simple to show that 

Lemma 1 
oir,   ELT

2 

Cr(r) = - (3) 

Cr (r) = (-1)^-^+1 Cr {L_Th     CT (r) = CL_T (r) _  (4) 

Thus we need only consider the values of Cr (r) in the range 
of 1 < r < [f ] and 1 < r < [^fi] . 

III. ASYMPTOTIC BEHAVIOR OF THE APERIODIC ACF 
OF GOLOMB SEQUENCES 

Based on Lemma 1, we have the following asymptotic bound: 

Theorem 1 

Br(b) 

0.48^/f L, 

L    •      /TT6\ 

Im(L) = Ü^Üia, 
r > 2, 0 < £ < 0.37, 

Im(L) = ^, 
r > 2, 0.5 > £ > 0.37. 

(5) 

where bL = ±1 mod r,    1   <  b <   [|],    s0  =  \ß^ and 
2o = 1.1655. 

When r = 1, which is excluded from above derivation, we 
have the following result which is the same as in [3] but the 
derivation is simpler. 

Theorem 2 

Bt = \/l/4.34,   Im(L) = V^/2-68. (6) 

The result given in [4] can be obtained directly from Eqn 5. 

Corollary 1  If L is odd and r = ^—-, then 

BL^_ = x/1/2.17,   Im{L) = v/l/1.34. (7) 

IV. SUMMARY 

In conclusion, we have considered the asymptotic maximum 
out-of-phase ACF of Golomb sequences of arbitrary length L 
and order r. It is shown that the Br is bounded by ^/£/4.34if 

r = 1; or OAZ^/bJrL, if r > 2, b/r < 0.37 ; or L/T sin 7r6/r, 
if r > 2, b/r > 0.37. 
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Abstract — New classes of multi-level and complex 
sequences with perfect periodic autocorrelations are 
presented. The sequences are derived directly from 
certain m-sequences over rational and Gaussian inte- 
gers. 

I. QUASI-PERFECT MULTI-LEVEL SEQUENCES 

In their basic form, p-level m-sequences comprise the rational 
integers 0,1, 2, • • •, (/>—1), where p is a prime. To derive a prac- 
tical bipolar sequence from such an m-sequence, integer and 
sinusoidal level transformations can be used [1]. Both these 
transformations yield bipolar signals with useful periodic ACF 
properties. For p = 3 and 5, the integer level transformation 
gives bipolar IR sequences A = {aj} of length L = 2N with 
quasi-perfect periodic ACFs of the form: 

C   P,        1 = 0 
i(0 = <^   -P,    l = N, _ 

(^   0, otherwise. 
(1) 

II. QUASI-PERFECT COMPLEX SEQUENCES 

Let h(x) = xn + hn-ix
n~1-\ hfox + ho, hj € G„, denote a 

primitive polynomial of degree n over residue class of Gaussian 
integer, Gn. A maximal length sequence A — {aj} over Gn 

can be obtained. It is shown that most of the properties of the 
complex m-sequences are similar to those of maximal length 
sequence over Galois fields; however, there are some particular 
properties which are distinct [2]. Specifically, two sub-classes 
of complex m-sequences of length L = 4N with the following 
quasi-perfect autocorrelation function have been obtained by 
letting T = 2 + i and rr = 3i, which correspond to p = 5 and 
p = 3 respectively. 

MO = 22aka*k+l = * 

( P, 1 = 0; 
i P, l=N; 
-P, I = 2N; 
-i P, l = 3N; 
0, otherwise. 

(2) 

the inverse-repeat (IR) format of A, the digit-by-digit mul- 
tiplication process yields a multi-level perfect sequence C of 
period N: C" = (co, ci, • • •, cjv-i). 

If the two component complex sequences A = {aj} of period 
L = AN and sequence B = {(*')''} °f Period 4 are combined 
using digit-by-digit multiplication, the periodic ACF of the 
resulting composite sequence C is given by 

III. SYNTHESIS OF PERFECT MULTILEVEL AND 

COMPLEX SEQUENCES 

If two component multi-level sequences A = {aj} of period 
L = 2N and B = {(—1)J'} of period 2 are combined using 
digit-by-digit multiplication, the periodic ACF of the resulting 
composite sequence C, 6c(J), is given by 

8c(t) = (-i)'MO 
6A{1),       I = 0 mod 2 
-6A(l),    1 = 1 mod 2 (3) 

If sequence A is chosen as a transformed p-level m-sequence 
with quasi-perfect ACF, and the length of this sequence A is 
exactly divisible by 2 to give an odd integer N, then due to 

ec(i) = (-o'MO = { 
8A(1), / = 0 mod 4 

-MA{1), I = 1 mod 4 

-MO. I = 2 mod 4 

»MO. I = 3 mod 4 

(4) 

Similarly, if the complex sequence A is a quasi-perfect se- 
quence of period L = 4N, where N is an odd number, 
then the sequence C synthesised has a perfect ACF. Let 
C' = (co, ci, • • ■, CJV-I), then C" is a perfect sequence of period 
N. 

IV. SYNTHESIS EXAMPLES 

Firstly, consider the ternary m-sequence obtained using the 
integer level transformation. Given the values p = 3, n = 3 
and pn — 1 = 26, a perfect sequence of length 13 can be ob- 
tained: C' = (0,-1,1,-1, 0,0,-1,0,-1,-1,-1,1,1), Bc> = 
(9,0,0,0,0,0,0,0,0,0,0,0,0) 

Secondly, consider a complex m-sequence of length L = 
53 — 1 = 124 generated by primitive polynomial 
h(x)     =     i3   +   ix2   +  x   -   i    over    G2+i- Then    a 
new perfect sequence C can then be derived as fol- 
lows: C = (0,0, —1,-1,*, 1,*, —*, 1,1, —1,1,1, l,*,0, —1,—», 
1,-«',0,i,0,«', 1,-1,», i, 0,1,-1), Bci = (25,0,0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0, 0,0,0,0, 0, 0, 0, 0, 0, 0, 0) 
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Abstract — Given any prime p = 1 mod4 and any 
positive integer m, a class of balanced quadriphase 
sequences of length pm - 1 with near-ideal periodic 
autocorrelation properties is constructed. The quad- 
riphase sequences are optimal under the condition of 
balanced sequence elements. 

I. INTRODUCTION 

In 1977, Lempel, Cohn and Eastman describe a class of bal- 
anced binary sequences with optimal periodic autocorrelation 
properties [1]. Their work is related to the construction of 
orthogonal matrices [2, 3]. Given any odd prime p and any 
positive integer m, a balanced (±1) binary sequence of length 
pm — 1 whose out-of-phase autocorrelation function R(r) sat- 
isfies C(T) = +2 or -2 for (pm - l)/2 odd, and R(T) = 0 
or -4 for (pm - l)/2 even is obtained. It is shown that ev- 
ery balanced binary sequence must have at least two distinct 
out-of-phase correlation values which are at least as high as 
those obtained by Lempel et al. It is in this sense that their 
sequences are optimal. 

In this paper we describe a generalization of balanced binary 
sequences to quadriphase sequences. It is shown that for any 
prime p — 1 mod4 and any positive integer m, a class of 
balanced quadriphase sequences of length pm — 1 with near- 
ideal periodic autocorrelation properties can be constructed. 
The quadriphase sequences obtained are also optimal under 
the condition of balanced sequence elements. 

II. MAIN RESULT 

Consider a finite field F = GF(pm), where p = 1 mod 4 and 
m is a positive integer: let G denote the multiplicative group 
of F and a be any primitive element of F, i.e., a is a generator 
of the cyclic group G. Consider also the subset Si of G defined 
by 

S« = {«4,'+'-l}*:0
1,     1 = 1,2,3;* = (1) 

f(at) = il,     if a'£ Si,   0<t<4k = pm-l        (4) 

Based on the above, we can prove the following result: 

Theorem 1   The periodic autocorrelation function R(T)  of 
the quadriphase sequence a = oo,oi, • • • ,04fc_i,  where at = 
f(at),   0   <   t   <   4k - 1,   satisfies R(0)   =   4k   and, for 
0 < T <4k-l, 

(  0 or ±2 or±2i or  ±2±2i,     k = odd 
R(r) = 1   0 or ± 2 or ± 2i or  ± 2 ± 2i (5) 

L  or ± 4 or ± 4i or ±4± 4i,        k = even 

Moreover, a is balanced and R(T) is optimal, given the condi- 
tion of balance. 

III. EXAMPLES 

Example 1: p = 13, m = 1, k = ^f^ = 3, and a = 2. For 
this set of parameters we obtain 

a': 1,2,4,8,3,6,12,11,9,5,10,7} 

/(«') :     1. ~h 1> -*. h -1, ~i, i, i, 1, -1, -1 } 
{R(T) :       12, -2, -2, -2i, -2 + 2i, 2», 0, -2i, -2 - 2i, 2«, 

-2,-2} 

Example 2: p = 5, m = 2, k = !~± = 6, and a = x = (0,1). 
For this set of parameters we obtain 

{a' : (1, 0), (0,1), (2, 2), (4,1), (2,1), (2, 4), (3, 0), (0, 3), 
(1,1), (2,3), (1,3), (1,2), (4,0), (0,4), (3, 3), (1,4), 
(3,4), (3,1), (2, 0), (0, 2), (4,4), (3, 2), (4, 2), (4, 3) } 

{/(a') :     i, —i, 1,1,1, — i, —i, i, —i, i, 1, j, — i, —1, —1,1, — i, 
-l,t,-l,l,i,-l,-l } 

{R(T) :       24, -2 + 2i, 2z, -2 - 2», 0, -2 + 2», 0, 0, 
-2, -2 + 2i, 2i, 0, -4., 0, -2i, -2 - 2i, -2, 
0, 0, -2 - 2i, 0, -2 + 2i, -24, -2 - 2» } 

Si =G\(5iU52U53) (2) 

Note that each Si contains exactly one quarter of the elements 
of G and that every element of Si is equal to some power of 
a. 

Let / denote the mapping from G onto {1, t, —1, —4} denned 
by 

/(«') = < 

1, if a* € Si 
*. if «' 6 S2 

-1, if a* e S3 

-i, if a' € S4 

, 0 < t < 4k = pm - 1      (3) 
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Abstract — The use of quasi-linear synchroniza- 
tion (QLS) codes to provide synchronization of frames 
with fixed length n offers many advantages relative 
to comma-free codes and prefix synchronized codes. 
Easy frame location and the absence of data conver- 
sion enable a QLS-code to be implemented with very 
low complexity independent of the frame length. An- 
other important aspect is the ability of error control in 
the presence of substitution errors. A list of optimal 
QLS-codes of length up to 40 obtained with elabo- 
rate computer search is presented. Several families of 
perfect and (sub) optimal QLS-codes with large word 
length n have been constructed, and also new upper 
bounds on the redundancy of the codes have been es- 
tablished. 

I. INTRODUCTION 

A quasi-linear synchronization (QLS) code [l], being a coset of 
a linear code, allows easy encoding and decoding, easy frame 
location, and error control. Consider a code C of length n, 
being a subset of Aq, where Aq denotes the g-ary alphabet 
{0,1,..., q — 1}. The synchronization and error control prop- 
erties of a code C C Aq are determined by the code distance 
d(C) (i.e. the minimal Hamming distance of the code), and by 
the code separation p(C), denned by 

p{C)=    min    d(T,(X,Y),Z) , (1) 
0<t<n 

X,Y,Z£C 

with shift operator Ti(X, Y) = XiXi+\ ... xn-\ J/oJ/i • • • yi-i ■ 

The code C C Aq is called a quasi-linear synchronization 
code of length n and separation p, if for each code word X £ 
C, a fixed set P of positions is used, establishing separation 
p(C) > p irrespective of the actual value of the other (data) 
positions. In this way, an arbitrary data word D € A™ of 
length m = n — \P\ can be easily inserted at the data positions. 
A q-ary QLS-code of length n and separation p is called a 
QLS(<7, n, p) code. 

The use of distinct synchronization positions and uncon- 
strained data positions allows easy encoding and decoding for 
any separation. QLS-codes with separation p > 1 can be used 
for error control coding. Correct synchronization and error 
correction can be guaranteed in the presence of no more than 
t substitution errors in n successive symbols for a code C with 
d(C) > (2t + 1) and p(C) > (2t + 1). 

II. BOUNDS AND CODE CONSTRUCTIONS 
The redundancy R of a <?-ary QLS-code of length n and 
separation p is, according to Levenshtein [1], bounded by 
R > Rm\n{q,n,p), with 

Rmm(q,n,p) qp(n ~ 1) 
(2) 

The construction of g-ary QLS-codes with arbitrary code 
separation is in general difficult, especially the construction of 
QLS-codes with minimal redundancy, so called optimal codes. 

Using constructions proposed by Levenshtein [1], optimal bi- 
nary QLS-codes with separation p < 2 and redundancy ßmin 
can always be obtained for any length n. For p > 2, two new 
upper bounds on the redundancy have been obtained for bi- 
nary codes, based on construction methods. Firstly, a binary 
QLS-code can be constructed with redundancy Ri(2,n, p), 
bounded by Ri(2, n, p) < flmin(2, n, p)+<p(p), for which p—2 < 
v{p) < 3/9 — 2. The term ip(p) is independent of the length 
n, therefore the constructed codes are asymptotically optimal 
for n —> oo and p/n -> 0. Secondly, for n > p(2p2 + 2p + 
1), a binary QLS-code can be constructed with redundancy 
fl2(2, n, p), bounded by #2(2, n, p) < Rm\n{2, n, p) + p - 1. 

Several search methods can be used to find optimal codes 
with larger separation (p > 2). In this way optimal QLS-codes 
with length n up to 40 have been found. 

III. COMBINATORIAL CONSTRUCTION METHODS 

The theory of difference sets [3] is sometimes applicable for the 
construction of QLS-codes. It is convenient to use the follow- 
ing combinatorial description of a g-ary QLS-code of length n 
and separation p. The index position set P is partitioned into 
q subsets Po,P\,..., Pq~\ in such a manner that for each num- 
ber d ^ 0 (mod n) there are at least p pairs (a;,-, yj), Xi £ Pi, 
Vi € Pj, i T^ i, satisfying xi — yj = d (mod n). If there are 
exactly p pairs for each d, the code is called perfect. 

It is apparently very difficult to construct perfect codes 
with arbitrary parameters n and p. Using the theory of dif- 
ference sets, two families of perfect QLS-codes can be directly 
constructed. Firstly, for length n = At2 + 1, t being an odd 
positive integer and n being prime, perfect QLS-codes with 
separation p = (t2 + l)/2 can be constructed. Secondly, for 
any length n, n prime, perfect QLS-codes with separation 
p = (n — l)/2 can be constructed. The redundancy is equal 
to 2t2 + 1 and n — 1 respectively. Both perfect codes turn 
out to be unique, i.e. there are no solutions with the same 
parameters which do not belong to this family. It is expected 
that several other families of perfect codes will be found for 
binary as well as g-ary codes. 

IV. CONCLUSION 
It has been shown that for binary QLS-codes of arbitrary 
length and separation constructions can be obtained which 
are close to optimal. For a large variety of QLS-codes, es- 
pecially for the important category of small codes, optimal 
codes have been found. Using combinatorial methods, various 
families of perfect QLS-codes have been obtained as well. 
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Abstract — Sonar as well as other related sequences 
were introduced by Golomb and Taylor in [2]. Fol- 
lowing a similar approach,we introduce the concept 
of an extended sonar sequence. It is similar to that 
of a sonar sequence but blank columns are permitted. 
Several constructions of extended sonars are given. 
Our constructions are very close to ordinary sonar se- 
quences. However they provide good improvements 
to the list of the best known constructions for sonar 
sequences up to 100 symbols given in [3]. 

wave) time slots, then we would call it an (n, TO, k) extended 
sonar. 

The case when k = 0 is that of a sonar, and the case of 
n = 1 reduces to what has been studied previously under the 
name of rulers, which have other applications besides radar 
and sonar to synchronization, crystallography, etc (see [1]). 
In other words extended sonar sequences are a natural gen- 
eralization of sonars and also of rulers. The main point of 
the present talk is to give several constructions of extended 
sonars. 

I. INTRODUCTION 

Sonar sequences were introduced in [2] to deal with the 
following problem: "You have an object which is moving to- 
wards (or away) from you, and you want to know effectively 
your distance and velocity of the object." 

The solution to the problem comes from using the Doppler 
effect: when a wave hits a moving object its frequency changes 
in direct proportion to the velocity of the object. In other 
words you send a wave, wait until it returns and from the 
time it takes you know the distance, from the new frequency 
you know the velocity. On the other hand since the world is 
noisy you might send out a wave that does not return. Conse- 
quently you send out TO waves with frequencies ranging from 
1 to n. Waves are sent out at times ranging from 1 to TO. 

Once the whole pattern of waves returns, from the change in 
frequency you determine the velocity of your object and from 
the time change the distance. On the other hand if not all the 
frequencies return there might be some ambiguities as to what 
is the whole pattern. Sonars are those patterns for which you 
send out exactly one wave at every time and also for which 
even if only two waves return you can reconstruct the whole 
pattern. This last point means that there is no ambiguity. 
The problem for sonars is, given n frequencies, construct an 
n by m sonar sequence for TO as large as possible. 

II. EXTENDED SONAR SEQUENCES 
The point of this talk is that for the sonar application an 

alternative to sending exactly one wave at every time (the 
sonar case) is that of sending at most one wave, or in other 
words, choose not to send any wave in some time slots. This is 
done to achieve a larger number of waves sent for a given num- 
ber of frequencies, while increasing the probability of receiving 
at least the two frequencies needed to reconstruct the whole 
sequence. Because of the similarity with the common sonar 
sequences, our sequences will be using the same equipment, in 
other words, it will be more cost effective than common sonar 
sequences. Again we would send m waves with frequencies 
ranging from 1 ton, and let us say that there are k blank (no 

III. THE CONSTRUCTIONS 
We will show how some of the constructions used in [3] to 

generate Costas and Sonar sequences, have a circular periodic- 
ity property that is the basis of our constructions of extended 
sonar sequences, namely the Extended Logarithmic Welch, the 
Extended Shift Sequence and the Extended Lempel-Golomb. 
This three constructions with k = 1, are very similar to ordi- 
nary sonars but for which the table of our constructions for 
n up to 100, outperforms the corresponding table of the best 
known construction for sonars given in [3]. For example for 
n = 46 and n = 75' it fills 7 more slots that common sonar 
sequences. 

Also we have tested the performance of this constructions 
comparing them with the best possible extended sonar se- 
quences obtained doing an extensive search. The problem 
of generating extended sonar sequences exhaustively with the 
computer resides in the fact that the time of computation 
increases exponentially. The only practical way to obtain a 
sonar or extended sonar sequence for large lengths is there- 
fore by generating it with some particular construction. At the 
moment we have done the extensive search for up to TO = 10. 
The constructions obtained the best possible value 60% of the 
time. 

We will define the Circular extended sonar sequences and 
then we will prove that the Logarithmic Welch, the Shift Se- 
quences and the Lempel-Golomb constructions give us a cir- 
cular extended sonar sequences. We will show then that from 
any circular extended sonar sequences, we can obtain n ex- 
tended sonar sequences. 

Then we will apply a series of transformations to the re- 
sulting extended sonar sequence to obtain a sequence with 
a reduced number of symbols obtaining the best known ex- 
tended sonar sequences. 

'Work partially supported by NSF grants RII-9014056, compo- 
nent IV of the EPSCoR of Puerto Rico Grant and the ARO grant 
for Cornell MSI. 
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Abstract — A new synchronization code construc- 
tion technique is presented which uses a so called ex- 
tended prefix containing positions with fixed symbols 
and unconstrained data positions, followed by a con- 
strained data sequence. In this way a set of prefixes is 
used to identify the frame, instead of only one prefix, 
as for normal prefix synchronized (PS) codes. This 
enlarges the code size, while the advantages of PS- 
codes, i.e. easy frame recognition and the availability 
of data mapping procedures, are maintained. 

I. INTRODUCTION 

Synchronization of fixed length frames can be performed us- 
ing comma-free codes [1]. Several maximal comma-free codes 
can be constructed [1], but both frame recognition and data 
mapping tend to be very complex. One solution is to use so- 
called prefix synchronized (PS) codes, introduced by Gilbert 
[2], and further analyzed by Guibas and Odlyzko [3]. A PS- 
code Cp(k + m) is defined as a set of code words of length 
n = k + m with g-ary symbols of the alphabet Aq, with the 
property that for any code word p\p2 ■ ■ -PkC\C2 ... cm the pre- 
fix P — P1P2 ■ ■ -Pk does not appear anywhere in the sequence 
p2 .. .pfcCi .. .CmPl ...pk-1- 

We will modify the marker by lifting the condition to use 
consecutive fixed symbols. The modified marker is called an 
extended prefix. After a formal definition of extended prefix 
synchronized (EPS) codes, the construction of extended pre- 
fixes will be described, and expressions for the cardinality will 
be derived in order to compare the EPS-codes with PS-codes. 
Finally, a data mapping procedure will be presented. 

II. CODE DESCRIPTION 

Prior to giving an exact definition of prefix synchronized 
codes, the correlation between two sequences will be defined. 
For two sequences X and Y of length n the correlation X over 
V, denoted by X o Y, is a binary vector rir2 ... rn, with r; is 
1 if the subsequence XiXi+i ... xn equals yij/2 ... yn-i, and 0 
otherwise. 

For g-ary PS-codes with q < 4, prefixes P of size k with 
correlation PoP = 10 _1 maximize the code set [3]. These PS- 
codes have the following form: Cp(k + m) = P Tp(m), where 
Tp(m) denotes the set of constrained sequences c\...cm in 
which P does not appear as a subsequence. 

As an example of extended prefixes, let us consider the set 
of two patterns 11000 and 11010, denoted by 110*0. The code 
set Ciio»o(5 + m) is the union of the sets 11000^"110*0(^1) and 
11010fuo,o(m), where Jruo*o(m) = ^rnooo(m) n ^noio("i). 
We notice that each code word in Cno*o(5 + rn) belongs to a 
PS-code of prefix 11000 or to a PS-code of prefix 11010. The 
advantage of this extended marker is to obtain one uncon- 
strained position (fourth position) while the disadvantage is 
to force the remaining part of each code word to be more con- 
strained, since neither 11000 nor 11010 are allowed to occur 
in the constrained sequence. The cardinality of Cno»o(5 + m) 

is equal to 2\Jruooo{m) n -^noio^) |. According to Gilbert 
[2], prefixes of length 4, e.g. 1100, have the maximal code size 
among PS-codes of length 11 upto 21. In this range the in- 
equality |Cno»o(")| > |Cnoo(n)| always holds, e.g. for n = 13, 
EPS-code Ciio»o(13) with 384 code words is 17.8% larger than 
PS-code Cnoo(13) with 326 code words. 

An extended prefix synchronization code uses an extended 
marker V of length h with k fixed positions and h — k uncon- 
strained data positions. In fact, V is a set of q ~~' different 
prefixes. For every pair of prefixes Pi,P3 € V the correlation 
Pi o Pj is equal to 10h_1 if i = j, and 0h otherwise. In this 
case the code C-p (h + m) with extended prefix V is defined by 

Cv{h + m) = VTv{m) =   (J  I Pi I   f] TPl{m) I I 
PiZV   I IP;6P J  J 

We will show that for each Pi € V, C-p(h + m) is a PS-code 
with prefix P,. The cardinality of an EPS-code, Cv(h + rn), 
equals qh~k F-p(m), where Fv{m) denotes the size of T-p(m). 

Theorem 1 An extended prefix synchronized code C-p (h-\-m) 
with extended marker V of length h and k fixed positions, has 
generating function 

Fv(z) = l_gz + qh-kzh> W 

which provides the following recursive formula for F-p(m): 

Fv{r 
qm 0<m<h 
qFv{m-l)-qh-kFv(m-h)     m>h. 

We found that, for given k, binary EPS-codes having an 
extended prefix of the form P = le0 (*t_1 0)*_t_1 with t = 
[fc/2] have maximal cardinality. Mapping procedures have 
been developed which associate each number x in the range 
0 < x < F-p(m) with a unique word of the set Tv{rn) and vice 
versa. 

III. CONCLUSION 

A new, so called extended prefix synchronized code has been 
presented, as well as methods to construct extended prefixes, 
an expression to exactly determine the cardinality of an arbi- 
trary g-ary EPS-code, and a mapping procedure to generate 
codes with maximal code size. EPS-codes allow easy frame de- 
tection and have a coding complexity which is roughly equiv- 
alent to PS-codes, and prove to have a larger code size com- 
pared to the traditional PS-codes. 
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Abstract — A systematic procedure for mapping 
data sequences into code words of a binary maximal 
prefix synchronized (MPS) code as well for the in- 
verse mapping is presented. The complexity of the 
proposed scheme is proportional to the code word 
length. In order to be able to choose another pre- 
fix, e.g. a Barker sequence, methods will be presented 
which convert an MPS code into other MPS code with 
a different prefix. Both the mapping algorithm and 
the conversion algorithm can be generalized for g-ary 
prefix synchronized codes. 

I. INTRODUCTION 

A prefix-synchronized (PS) code, introduced by Gilbert [1] and 
further analyzed by Guibas and Odlyzko[2], is a collection of 
code words of length k + n over an alphabet Aq of size q whose 
first k symbols equal the prefix P = p\p-± .. .pk, and in addi- 
tion, any code word pi .. .pkci ...cn satisfies the constraint 
that P does not appear as a block of k consecutive symbols 
anywhere in p2 ...pkCi . ..cnpi .. .pk-i- Let g^**") be a max- 
imal PS (MPS) code which maximizes the code size among all 
PS codes with the same parameters n and P of length it. 

The advantage of PS codes relative to maximal comma- 
free codes [3] is easy word synchronization recovery, since the 
decoder only has to search for the appearance of P in the in- 
coming stream symbols. In this paper, we propose simple en- 
coding and decoding algorithms for an MPS code </p+n^ with 
self-uncorrelated prefix P such that no prefix of P matches 
any suffix of P. 

II. RECURSIVE SUBDIVISION OF MPS-CODES 

For a prefix P of length k > 1, let Tpn) denote the set of 
sequences of length n such that no P appears at any position 
as a string of k consecutive symbols. The autocorrelation of a 
sequence X = x\X2 ■ ■ ■ xm of length m is defined as a binary 
sequence Y of length m, satisfying the property that ?/; = 1 if 
the prefix x\ ... xm_t+i of X and the suffix x, ... xm of X are 
identical, otherwise zero. The autocorrelation of X is denoted 
by X o X. As an example, if P = 1110, then PoP = 1000. 
Note that P o P = 10fc_1 iff P is self-uncorrelated. For two 
strings X and Y, let XY be the concatenation of X and Y. 
Moreover, for a string X and a set of strings T, let X T be 
{XY|Y g T). The followings are main results we obtained. 
Theorem 1 For a prefix P of length k, PTpn) is an MPS 

code Qp   n> if and only if P is self-uncorrelated. 

Theorem 2   Let PG be 1*_10.  Then it follows that 

k-l 

j*£> = {in} u (J ji'-'o.^-') j. 
i=i 

Note that the recursion on the size of Th' obtained from G 

theorem 2 gives us a strictly larger code than Mandelbaum's 
code [4] in which Fibonacci recursions [5] are used. 

III. MAPPING ALGORITHM FOR MPS-CODES 

Theorem 2 shows the division of Ty' into k distinct subsets. 
By recursively applying the theorem to each subset except 
the singleton set (consisting of only one element), Tp

n* can be 
represented as a collection of Gk,n singleton sets where Gk,n 

is the cardinality of GP '. We present an algorithm to find a 
singleton set corresponding to an input x with 0 < x < Gk,n 

and the inverse algorithm as well. The scheme is based on 
enumerative coding [6]. 

IV. MPS-CODE CONVERSION 

In practical situations, one might use another prefix than 
Pa — 1 _10, e.g. a Barker sequence [7]. We show an algo- 
rithm to transform a code word in gp

k+n> to another in on+"' 

if Q o Q = 10*-1 holds: Scanning V € Gp
k+n) from the left 

to the right, replace Q with PG when Q is found on V. Then 
the sequence obtained must belong to GQ 

+n^ if the last sym- 
bol qk of Q is 0. In case qk = 1, negating V and replacing 
Pa with the negation of Pa, the above conversion procedure 
transforms V G GP

k*n) to a code word in GQ 
+n). 

V. CONCLUSION 

In conclusion of his paper [4], Mandelbaum makes comment 
on his codes as follows: "These codes seem to have the best 
efficiency of all comma-free codes that can be constructed sys- 
tematically (no table lookup)." We disprove his statement. A 
systematic procedure for mapping data sequences into code 
words of a binary MPS code of prefix Pa as well for the in- 
verse mapping is presented. The complexity of the proposed 
scheme is proportional to the code word length n. In order 
to enable the choice of another prefix, methods are presented 
which transform Gp*n' into any QQ 

+n) of self-uncorrelated 
prefix Q. The mapping procedure and the conversion method 
can be generalized for g-ary prefix synchronized codes. 
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Abstract — Complex valued sequences of length n 
are considered. A sequence is said to be a perfect se- 
quence if all the out-of-phase periodic autocorrelation 
coefficients are equal to zero. A sequence is said to be 
a phase shift keyed (PSK) sequence if all the coordi- 
nates are on the unit circle. A sequence is said to be 
a polyphase sequence if all the coordinates are ra'th 
roots of unity. For the case n is a power of a prime 
integer, the partial classification of perfect PSK"se- 
quences is given. As a consequence, the full classifica- 
tion of one dimensional bent functions is presented. 

I. INTRODUCTION 
Let x = (zo,xi,... ,in-i) be a complex valued sequence of 
length n containing at least one non-zero component. The pe- 
riodic cross-correlation function of sequences x and y is given 
by -Rx.y(r) = £"~0

l x,yl+T, T = 0, l,...,n- 1, where all 
the indices are calculated mod n and x' denotes the com- 
plex conjugation of x. The periodic autocorrelation function 
(PAF) of x is defined by Äx(r) := flx,x(r). The "energy" of 
the sequence x is given by Rx(0) = Yl"Zo \Xs\2 > ®- • 

Consider a set of sequences M = {xi,x2,... ,XM}, 

where x* = (zj,0,£i,i,... ,Xi,n~i). Let Tl(M) := 
{\R*i,xi(T)\,T = 0,l,...,n-l, i,j = 1,2,...,M} be the 
set of absolute values of periodic auto and cross correlation 
coefficients. 

The following simultaneous linear transformations of the 
Xj's do not change the set TZ(M): 1) Projectivity: Zi = 
ax;, i = 0,1,2,... ,M, where |a| = 1 is a complex number 
on the unit circle. 2) Cyclic shift: ztj = Zi.j+i, i = 
0,1, 2,..., M; j = 0,1,2,..., n - 1. 3) Permutation group: 
Zi,j = if,*) (mod n), * = 1,2,...,M; j = 0,l,...,n-l, 
where gcd(fc, n) = 1. 4) "Linear frequency modulation": 
z',j = Xi.iC3. * = 0,1,2,..., M; j = 0,1,2,..., n - 1, where s 
is an integer, £ is a primitive root of unity of degree n. 5) Con- 
jugation: Zi,j = x'j, i = 0,1, 2,..., M; j = 0,1,2,..., n - 1. 

We refer to sequences z and x as equivalent sequences if 
the sequence z can be obtained from the sequence x using a 
number of these transformations. 

II. PERFECT SEQUENCES 
Let P = {l/y/n) [Cj] , i, j = 0,1,... ,n - 1 be the matrix of 
the Discrete Fourier Transform (DFT) of dimension n. Let 
y =xP be the DFT of a sequence x = (xo,xi,... ,a;„-i). 
Theorem 1 [1] A sequence x is a perfect sequence if and 
only if all the Fourier components, i.e., the components ofy, 
have the same magnitude . 

Theorem 1 gives the complete description of the set of all gen- 
eral perfect sequences. An important problem in the theory of 
perfect sequences is finding non-equivalent sequences or find- 
ing the dimension of a set of perfect sequences. 

Theorem 2 [1] dimT'n = n — 1, where Vn denotes the set of 
non-equivalent perfect sequences of energy n. 

Theorem 3 [2] The number of non-equivalent perfect PSK 
sequences of length n = pip2---pm, where pi's are distinct 
primes, is finite. 

The situation is quite different when n is not square free. In 
this case, there are infinitely many non-equivalent perfect PSK 
sequences. 

Theorem 4 The maximal dimension of a set of perfect PSK 
sequences of lenght n = p2m or n = p2m+1 is equal to k = 
pm — 1. Such sets can be constructed in the explicit form. 

III. PERFECT POLYPHASE SEQUENCES 

Polyphase sequences is a special subset of PSK sequences. 
An index function f{x) is known as a one-dimensional 

bent function if and only if the corresponding sequence 
x = (C"0', C/(1),. ■ •, C*—1')« perfect. 

The number of different bent functions is finite. A general 
construction of bent functions is given in [3]. Nevertheless, 
this construction does not describe all the bent functions. We 
give the full classification of bent functions. 
Theorem 5Ifn = 2m, m odd, then a bent function does not 
exist. 

Theorem 6 Let n = p, p > 3 is a prime. All the bent func- 
tions are quadratic polynomials f(x) = ax2 + bx + c, a,b,c e 
Zp, a#0. 

Theorem 7 Let n = p2k. Let xo and xi be the unique repre- 
sentation ofx given by x = xo +xipk, where 0 < xo <pk — l, 
0 < x\ < p — 1. Then all the bent functions of length n are 
given by 

f(x) = F(xQ) + x1G{xo)p" (1) 
where F(xo) is a function taking values in Zn and G(xo) is 
a function taking values in Zpk such that G(a) / G(b), if 
a # b, a, 6 e Zpk. 

'This work was supported by Grant NKF 000 

For the case n = p2k+1, there exists a similar theorem. 
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I. INTRODUCTION 

Until recently, most known decoding procedures for error- 
correcting codes were based either on algebraically calculating 
the error pattern or on some sort of tree or trellis search. With 
the advent of turbo coding [1], a third decoding principle has 
finally had its breakthrough: iterative decoding. 

(Iterative decoding is not a new idea, though: most of 
the key ideas were already present in Gallager's work on low- 
density parity-check codes [2].) 

With respect to Viterbi decoding, a code is most naturally 
described by means of a trellis diagram. The main thesis of 
the present paper is that, with respect to iterative decoding, 
the natural way of describing a code is by means of a Tanner 
graph [3], which may be viewed as a generalized trellis. More 
precisely, it is the "time axis" of a trellis that is generalized 
to a Tanner graph. 

Trellises yield Tanner graphs of the type shown in Fig. 1; 
in particular, the graph has no cycles. The complexity re- 
duction in turbo codes (and low-density parity-check codes, 
and many new codes to be discovered) comes from allowing 
Tanner graphs with cycles, cf. Fig. 2. 

II. DECODING 

Both Viterbi decoding and BCJR decoding [4] are easily 
generalized to arbitrary Tanner graphs without cycles, where 
these algorithms are still optimal (in the same sense as for 
trellises). The basic idea of iterative decoding is simply to 
apply these algorithms even to Tanner graphs with cycles, 
ignoring the fact that the algorithms are no longer optimal. 
The empirical success of turbo coding (as well as our own 
experiments with other types of codes) confirm the validity of 
this approach. 

Of course, analytical understanding of the decoder opera- 
tion is also desirable. Our main result here applies to "cy- 
cle codes" (a subclass of low-density parity-check codes): we 
give a complete algebraic characterization of all error patterns 
that are corrected by the generalized Viterbi algorithm after 
infinitely many iterations. 

III. REALIZATION THEORY ON GENERAL GRAPHS 

Much recent work was devoted to finding, and bounding the 
size of, the "smallest" trellis for a given code. This problem is 
significantly generalized by considering general Tanner graphs. 

In the traditional setting, the only degree of freedom (for 
a given code) was the ordering of the "time axis". For a 
given ordering, every linear code has a well-defined unique 
minimal trellis, and every other trellis for the same code may 
be collapsed to the minimal trellis by state merging. 

In our more general setting, the "time axis" need not be or- 
dered, but may be an arbitrary Tanner graph. Even for a fixed 

Tanner graph, there is, in general, no unique minimal trellis. 
(The simplest example are tail-biting trellises.) Nevertheless, 
bounds on the "size" of the realization may be obtained from 
the ("abstract") state spaces of the code. 

IV. A PRIORI PROBABILITIES 

Our careful derivation of the two basic iterative decoding 
algorithms clarifies, in particular, what a priori distributions 
are admissible and how they are properly dealt with. As it 
turns out, these distributions are closely related to Markov 
Random fields. 
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Abstract — We describe a concatenated coding system with 
iterated sequential inner decoding. The system uses convolutional 
codes of very long constraint length and operates on iterations be- 
tween an inner Fano decoder and an outer Reed-Solomon decoder. 

I. INTRODUCTION 

We consider a concatenated system with a convolutional inner code, 
a block interleaver of degree I, and I outer RS codes of the same 
length, but with different redundancies/error correcting capabilities. 
After encoding by the outer codes and interleaving, the frame is split 
into a number of subframes. These are encoded by a memory M con- 
volutional code, which is terminated by M input zeroes. The decoding 
for the inner code is performed by a number of sequential Fano deco- 
ders, which perform forward and backward (i. e. starting from the end 
of the subframe) decoding simultaneously, and on all the subframes 
in parallel. The process is monitored such that decoded symbols from 
the inner code in each of the RS words are counted. The non-decoded 
symbols are treated as erasures. 

In a chosen implementation we use 1=8, the error correctional 
profile for the outer code [16 50 16 6 6 16 6 6], and M=23. The three 
first decoders, and the 6th RS decoders are errors-and-erasure decod- 
ers which can correct e erasures as long as e + 2t £ 100 and e £ 68, 
respectively e + 2t £ 32 and e £ 16. The other RS words are errors- 
only decoders. 

The first RS decoding attempt is then performed on the second 
RS word when 187 decoded symbols in this word are available from 
the inner decoders, and in case of a decoding failure (more than 50 
errors detected) a new attempt is performed each time a new decoded 
symbol is available from the inner decoders. When the word is de- 
coded the result is fed back and used to guide the sequential decoders 
in the continued decoding, i.e. the sequential decoders are forced to 
follow paths in the tree which agree with the RS decoded data. De- 
coding more and more RS words and feeding the results back to the 
inner decoders will in this way iterate the process towards a succesful 
decoding of the full frame. If 3 consequetive RS words (24 bits >M) 
are decoded, the forced inner decoding will effectively split the full 
frame into sub-sub-frames of length 48 bits, which can be decoded 
independently in both directions. If the decoding in one of these is 
stuck, a jump to the next sub-sub-frame can be made with only a 
small penalty. 

II. RESULTS FOR ITERATED SEQUENTIAL DECODING 

In a system where sequential decoding is used the code should have 
a good (or optimum) distance profile (DP) together, of course, with a 
large free distance. However, if decoding is performed forward and 
backward on a frame (or subframe) a suitable code must also have a 
good distance profile in its reversed form, since this is the code used 
in the backward decoding. From a code search we obtained the fol- 
lowing ODP memory M = 23, dj=54 code written in hexadecimal 
form 

G = [ 96A77B B7EA67 D0A25D E1C4D9 ] 

which also has a very good DP in reversed form. 
In the simulations we have used an AWGN channel quantized 

into 16 levels, and the quantizing thresholds are Es/N0-dependent as 
is common practice. The Fano decoders use an ordinary FANO met- 
ric, which in our case is unquantized (32 bit floating-point words). As 

a preliminary value of A we have used the ratio A/bmmax = 6, where 
bmmax is the maximum branch metric. We have chosen to use inter- 
leaving degree I = 8, but a further gain may be available by increasing 
the interleaving degree. A good choise for the number of subframes 
was determined through simulations to be 15. The choice of profile 
(and rate) for the outer codes is by no means obvious and deserves 
further investigation. Our simulation approach includes a number of 
different profiles, and the one chosen here, has proven the best re- 
sults. Very good profiles with only two different outer codes does 
also exist. 

In Figure 1 we have shown the average number of computations 
Cav found by simulation runs of 1000 frames (a total of 14,368,000 
information bits) with different signal to noise ratios. No errors appe- 
ared at all. The Ej/Ng values specified are the net values for the entire 
system. Since the overall rate of the system is Roverall = 0.216 (includ- 
ing the small loss introduced by the termination of subframes) we 
notice that the inner sequential decoder operates at an Es/N0 which is 
6.66 dB below Eb/N0. With a computational cut-off rate F^. that 
falls below the convolutional code rate of 1/4 for Eb/N0 < 2.55 dB 
these results support our claim that a sequential decoder can operate 
well above Rcomp if some kind of side information is available. In this 
case the side information is achieved by using an outer code. 

We notice that for Eb/N0 = 1.0 dB we can build a decoder with a 
Cav that is at least 100 times smaller than the 16,384 decoding opera- 
tions used by the Viterbi decoder for the n=4, M=14 code used in the 
Galileo mission. For Eb/N0 = 1.0 dB no frame required more than 
2000 computations per bit and very few frames required more than 
500 computations per bit. When we consider the Eb/N0 = 0.6 dB case 
3% of the frames requires more than 10,000 computations, and 2% of 
the frames requires more than the Galileo code Viterbi decoder. 

III. CONCLUSION 

We have described a very efficient scheme utilizing iterated sequen- 
tial decoding. However, the number of computations depends on the 
profile chosen and on the strategy used for the inner decoding, but as 
demonstated, very good results can be obtained. 

Computations/bit 

1000 

100 K  

0.60      0.70      0.80      0.90      1.00      1.10      1.20      1.30      1.40      1.50      1.60 

Eb/No (dB) 

Figure 1: Average number of computations per bit as function of Eb/N(). 
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I. INTRODUCTION 

The number of iterations of an iterative optimal or sub- 
optimal decoding scheme [1-5] for binary linear block codes 
without any effect on its error performance can be reduced by 
testing a sufficient condition on the optimality of a candidate 
codeword. In this paper, the least stringent sufficient condi- 
tion on the optimality of a decoded codeword is investigated 
under the assumption that the available information on the 
code is restricted to (1) the minimum weight or the distance 
profile and (2) for a given positive integer h, h or fewer already 
generated candidate codewords. The least stringent sufficient 
conditions of optimality for 1 < h < 3 are presented. Condi is 
the same as the one given in [2], Condi is less stringent than 
the one given in [3], and Condi and Cond2 are derived from 
Cond3 as special cases. These conditions can be used effec- 
tively to save computer simulation time for evaluating error 
probability for maximum likelihood decoding. 

As examples, we consider Chase Algorithm II [1] and two 
iterative decoding algorithms [5,6] for RM5,i, RM5]2, RM6|2, 
and RM6,3, where RMm,r denotes the r-th order Reed-Müller 
codes of length 2m. Majority-logic decoding with randomly 
breaking ties is used to generate candidate codewords. For 
an AWGN channel and BPSK, the effectiveness of Condh for 
1 < h < 3 is evaluated by simulation. 

II. SUFFICIENT CONDITIONS ON THE OPTIMALITY OF 

A DECODED CODEWORD 

Suppose a binary block code C of length N with distance 
profile W is used for error control over the AWGN channel us- 
ing BPSK. A codeword c is mapped into x € {—1,1}N. Sup- 
pose x is transmitted and r is received sequence at the output 
of matched filter of the receiver. Let z = (zi,z2,... ,ZN) be 
the binary hard-decision sequence obtained from r. 

Let VN denote the set of all binary N-tuples.    For u = 

(U!,U2,...,UN) in VN, Di(u)={i : m ^ zi, and 1 < 

i < N}, D0(u)={l,2,...,N}-Di(u), n(«)=|Z>,(«)|, and 

L(u)= SieDj(u) lr;l- For MLD, the decoder finds the optimal 

codeword copt, for which i(copt) = mincgc L(c). If there ex-     [1] 

ists c* e C for which L(c*) < a(c*)=minCec,c^c- L(c) then 
c* = copt- If it is possible to determine a tight lower bound 
on a(c*), we have a sufficient condition on the optimality of 
a candidate codeword 

For simplicity, assume that the bit positions are ordered 
with |n | < |r2| < •■• < |rjv|. For a subset X of {1,2,..., N} 

and a positive integer j < \X\, let X^ denote the set of j 

smallest integers in X. For j > 0, X^=cf> (empty set) and for 

j > \X\, X"'=X. Let dw(-,-) denote the Hamming distance. 
For h   >   0,  let  B' 

of length   h.     For  a   €   Bn   and   1   < 
denote the  i-th  bit  of a.     For Ui,u2 

denote the set of binary sequences 
-fc   _„j   i    -   i   <   h,   let  pna 

and uh u  in 

VN, Da=f).=1DT,ria(ui), na=\Da and  qa = \Di(u) n Da\ 

For di,d2, dh in W - {0},  VN,dl,d2 dh={u   e   VN 

1This research is partially supported by NSF Grants NCR- 
9115400 and BCS-9115400, NASA Grant NAG 5-931 and the Min- 
istry of Education, Japan, Grant No. (C) 06650416. 

dH{u,Ui) > di for 1 < i < h}. Then, u € VN,dud2,...,dn if 
and only if 

Y^ {-lYriaqa > SSdi - n(ui), for 1 < i < h.      (1) 

Let Q denote the set of those 2fc-tuples over nonnegative 
integers which satisfy (1). We say, q = (qoo-o,qo-oi,-■ ■, 
9ii-i) € Q is minimal if and only if there is no q' = 
(9oo-o.9o...OD"M9n-i) such that q ^ q' and qa > q'a for 
any a in B . Let <5m;n denote the set of minimal tuples in Q. 
Then 

mm 

Example: Let h ■■ 

L(u) =    min 
9€Qnli„ £ 

2. It is proved in [4] that 

)l4a) 

mm L(u) = E 

(2) 

(3) 
ie(DooUD<^~^>/2J')IM 

For U\ = «2, that is, h = 1 and d\ = d2 = the minimum 
distance, equality (3) reduces to the formula given in Theorem 
1 in [2]. 

For Ui ^ w2j the right-hand side of (3) is shown to be 
tighter than the lower bound EieDo(M3)(r(«i+«2)/»l N in [3]. 

For h = 3, we derive a formula for minuevN d d d L(u) 
in [4]. 

III. SIMULATION RESULT 

Simulation results show that Condi is effective in all cases. 
Condz is slightly more effective than Cond2. The effectiveness 
of Cond2 over Condi is relatively small for RMö,2 and RM6.3 
The details are shown in [4,6]. 
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Implementation and Performance of a Serial MAP Decoder for use in an Iterative 
Turbo Decoder 

Steven S. Pietrobon 
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Abstract —A MAP decoding algorithm is described that can 
greatly speed up computer simulations of turbo coding schemes 
and which allows the practical implementation of turbo codes in 
their most powerful form. 

I. INTRODUCTION 

The discovery of Turbo codes and the claim that they can perform 
within 0.7 dB of Shannon capacity for 1 bit/sym [1] has generated 
considerable interest within the coding community. The heart of an 
iterative decoding algorithm for Turbo codes described in [ 1 ] is the use 
of a Maximum a Posteriori (MAP) decoding algorithm derived from 
[2]. This MAP decoding algorithm is extremely complicated and 
greatly limitsthe decoding speedpossible (since twoMAPdecodersare 
required in each iteration stage of the Turbo decoding algorithm, which 
may be up to 18 stages). 

A great simplification of the MAP decoding algorithm is given in 
[3 ]. For a rate 1 /n systematic convolutional code with memory v (and 
M = 2V states) this algorithm involves 4M additions, 6M+2n— 1 
multiplications, one division, and n exponentials (for an additive white 
Gaussian noise channel) per decoded bit. By taking the — logarithm of 
the algorithm (the logarithm is used in [3]) we can convert the 
multiplications, divisions, and exponentials to additions and 
subtractions only (the exponentials conveniently disappear). However 
the addition operand becomes the E operand defined below: 

x E y = - ln(e-x + e'^). (1) 

We can simplify (1) to 
x E y = min(x,y) - ln(l + e^"1). (2) 

The E operand is then reduced to finding the minimum of x and y and 
a function dependent only on the difference between x and y. 

Wecanseethatthemaximumoff(z) = ln(l+e~z),z S 0, is small, 
equal to ln(2) = 0.693. With increasing z, f(z) quickly decays to near 
zero for z > 7. In a computer simulation z can be quantised to some 
maximum value and a look up table used to find f(z). This greatly 
speeds up the MAP decoding algorithm with almost no degradation in 
performance. This technique can also be used in a hardware 
implementation of the MAP algorithm using very small look up tables. 

II. A MAP DECODING ALGORITHM 

The log likelihood ratio of a transmitted information bit at time k 
(dk) can be shown to be [3] (the division in [3] should actually be a 
subtraction) 

M-l M-l 

L(dk) = EA»(m) + B°(m) - J^m) + Bk(m),        (3) 
m=0 m=0 

where we define 

Bk(m) = J7B[+1(S{(m)) + D^^S^m)), 
j=o 

(6) 

£g(m) = g(0) E g(l) E ■ ■ •  E g(M - 1). 
m=0 

Ak(m) and Bk(m) can be computed iteratively as 

l 

At(m) = D^.m) + J^^dn)), 
j=o 

(4) 

(5) 

This work was supported by the Australian Research Council under 
an Australian Postdoctoral Research Fellowship and University of 
South Australia Research Development Grants 85413 78 and 85460 
78. 

where S}(m)and S j,(m) is the state you go to from state m along the path 
dk = iforwardsjmdbackwardsintime.respectively.Ritisthereceived 
length n vector at time k. The branch metric Di(Rk,m) is defined for a 
rate 1/2 code as 

Di(Rk,m) = - ^(xki + ytYXm)). (7) 

whereRk = (xk,yk),Xk = (2dk- l)+Pk,yk = (2Yk- l)+qk,pkandqk 
are two independent normally distributed random variables with 
variance a2, Yk is the coded bit at time k, and Y^m) is the coded bit for 
state m and dk = i. 

For a length N coded sequence (starting and finishing in state 0) the 
algorithm follows these steps: 

1) Starting at time k = 0, compute Dj (Rk,m) using (7) for all received 
symbols and store in an array of size 2nN. 

2) mitialiseB^_,(S^(0))=Ofori=0,landBJj_,(m)= » forallother 
m and i. Starting at time k =N-2, iteratively compute Bk(m) using 
(6) and store in an array of size MN (since Bk(m) = Bk(m') where 

Sj(m) = Sj(m') we can reduce the array size by half). 

3) Initialise AJ,(0) = Dj(R0, 0) for i = 0,1 and Aj>(m) = oo for all m * 

0 and i = 0,1. Starting at time k = 1, iteratively compute Ak(m) 
using (5). For each k compute L(dk) using (3). 

The "state metrics" Ak(m) and Bk(m) need to be renormalised after 
each iteration to preventthe metrics from overflowing. This is achieved 
by subtracting the smallest state metric at eachk (previously this would 
have been done by division). 

A serial MAP decoder is being designed whichuses a modified form 
of the above algorithm. The received samples are quantised into six bits 
with eight bit state metrics. We have N = 216/M where M is 
programmable from 4 to 512 states. The decoder is able to decode any 
systematic code with rates from 1/2 to 1/4. Limiting is used to prevent 
overflow and small 64x4 lookup tables are used to implement f(z). The 
maximum bit rate is 107/(M+14)bit/s(19to556kbit/sforM=4to 512 
states, respectively). 

Four Xilinx XC3100A programmable gate arrays are being used, 
together with several 64Kx4 static RAMs and 1 Kx8 dual port static 
RAMs. With an additional XC3100A chip, two MAP decoders with 
depth 64K random interleaving can be implemented on a single board 
as one stage of a turbo decoder (the inner and outer code must be the 
same). Each board can have its data fed back or passed onto another 
board depending on the required speed/complexity requirements. 
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Abstract — Recently, the concept of iterated decoding 
of concatenated codes has been developed . Success- 
ful applications of this concept include turbo-codes and 
soft-decoding of product codes. After stating the iter- 
ated decoding algorithm formally, we provide a con- 
jecture on the convergence and the asymptotic opti- 
mality of this algorithm. 

I. INTRODUCTION 

Consider the following decoding strategy for block codes over 
a memoryless channel [1, 4]. The receiver observes the "un- 
constrained a posteriori" (UAP) distribution Q, and feeds it 
to the decoder to obtain a new distribution P which satisfies 
the code constraints and minimizes the directed divergence 
(or cross-entropy) D(P || Q) between Q and P. If Ic denotes 
the set of constraints introduced by code C, we write 

P = QoIc (1) 

to describe the operation of the decoder. 
Decoding by cross-entropy minimization consists of com- 

puting P given Q (i.e., given the observed channel output 
and the knowledge of the channel transition distribution), 
and then selecting the code word x which maximizes P. 
A "soft-output ML decoder" can be thought of as a device 
performing operation (1) [1], Standard variational-calculus 
techniques provide the solution 

Q o Ic = Q(x)Ic(x) £«*> 
.x€C 

(2) 

outputs code word xo if this is the unique code word x G C 
such that (x, y) are jointly typical, otherwise it outputs an 
error message. 

Assume that we receive a typical y (if the received se- 
quence is not typical we are done, since in any case we have 
an error). The number of x code words jointly typical with y 
is, on the average, 2nH(x\y\ where H(X\y) denotes the con- 
ditional entropy rate of x given y. These are the words "of 
high probability" when y is given, and, by the asymptotic 
equipartition property, they have roughly the same proba- 
bility ~ 2~HiQ\ where H(Q) denotes the entropy of the UAP 
distribution Q. Let A(y) denote the set of those sequences, 
and A''e(y) the set of the sequences x jointly typical with y 
under the new conditional distribution Pl,t obtained at the 
4!-th step of the iteration (i = 1 or 2). The three parts of the 
conjecture are as follows: 
1. IfCinA(y)jQ, then \A1A(y)\ < \A(y)\. This is equivalent 
to saying that, if some sequences x S Ci are typical under 
distribution Q, then H(Q) > HiP1-1). 

2. Suppose that both A(y) n C\ and A(y) n Ci are not empty. 
Then 

\AX\y)UCx\    ~    |A(j/)nCi| 

\AX\y)V\C%\    <    \A(y)nC2\ 

In other words, the typical sequences in Ci under Q are still 
typical under P1,1. Hence, since the size of the set must de- 
crease, we must delete some sequences from A(y) which are 
not in C\. In particular, we can throw away some sequences 
of C% (which are not also in Ci). 

II. ITERATED DECODING 

Consider binary block codes which can be described as the 
intersection of two supercodes, i.e. C = C\ n C% (two-fold prod- 
uct codes and the turbo-codes can be expressed in this way.) 
The iterated decoding schemes proposed for these codes [2,3] 
can be formally described as follows. 

Given a distribution P, let P denote the distribution ob- 
tained as the product of the marginals of P. Let Q denote 
as usual the UAP distribution. Then let P2,0 = Q, and for 
I = 1,2,3,..., iterated decoding consists of the sequence of 
minimization problems 

pu = p.i-i 0 Ici pV = jpM0/c2. (3) 

*° III. SOME CONJECTURES 

We conjecture that iterated   decoding  is   equivalent   to 
typical-set decoding. It is known that typical set decoding is 
asymptotically optimal, in the sense that it achieves channel 
capacity. Given the received word y, the typical-set decoder 

This research was sponsored by the Italian National Research 
Council (CNR) under "Progetto Finalizzato Trasporti." 

3. If C is a good code, there will be at most one sequence 
xo £ C jointly typical with y (otherwise we would have an er- 
ror in any case). If A(y)nC = {xo}, then A^iy) = A2'°°(y) = 
{xo} and the iterations converge to the distribution 
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Abstract — We present an iterative soft-output de- 
coding algorithm for serially concatenated convolu- 
tional codes which has better performance than the 
conventional noniterative decoding algorithm. The 
proposed decoding scheme can be used whenever 
some form of serial concatenation of encoders and 
channels with memory is applied. 

The figure shows the block diagram for a serially concate- 
nated coding system with iterative soft-output Viterbi decod- 

ing. The binary data sequence {at} is fed into the outer en- 

coder. The binary sequence {6j} at the output of this encoder 
is interleaved to result in {ck}. This sequence is then serially 
encoded by the inner encoder into the sequence {di}. The se- 
quence {di} is sent over a Gaussian channel and produces at 
its output the noisy sequence {yi}, where yi = di + m. The 

{ni} denotes an additive white Gaussian noise sequence with 
zero mean and variance a2. 

In the first stage of the m-th iteration of the decoding al- 
gorithm, soft information, Ä(

fe
m), k = ..., -1,0,1,..., associ- 

ated with the estimated symbols c(
fc
m), k = ...,-1,0,1,..., 

are computed by the simplified version of the SOVA [l] taking 
into account the intrinsic contributions of the outer decoder 
from the previous iterations. This algorithm is referred to as 
the inner SOVA. Let %. denote the trellis which represents 
the structure of the inner encoder. The metric adopted by 
this stage is the Euclidean metric 

Eü"-*)2-£(2x*-l)£(e<">A<">), 
I fc n 

where Xk and & are respectively the inputs and noiseless out- 
puts in an arbitrary path with the same position as yi in % 
and n goes over all previous iterations. For a given SNR, the 
positive parameters e^ are arbitrary and should be chosen to 
minimize the bit-error-probability of the sequence {at} at the 

end of the iterative decoding process. A^n) are the intrinsic 
contributions of the outer SOVA as defined below. The soft- 

information variables Äjj,"1' represent, up to a multiplicative 
factor, an approximation of the log-likelihood ratios 

In 
P(ck = "0»|fa» 

P(ck = "r\{y,}) 

The sequence of estimated symbols and the associated reliabil- 
ity information are deinterleaved using the reverse procedure 
of the block interleaver. The resulting sequences are denoted 
by {S<m)} and {f<m)}, respectively. 

The outer decoder uses also a simplified SOVA. It applies 
the structure of the outer encoder trellis to the sequence de- 
livered by the inner decoder. Therefore, it provides enhanced 

1 Author to whom correspondence may be addressed. E. Pap- 
proth was supported by a DAAD-fellowship HSP II financed by the 
German Federal Ministry for Research and Technology (BMFT). 

soft outputs for the sequence received from the inner decoder 
f \m) associated with the new estimated symbols o(m). This al- 

gorithm is referred to as the outer SOVA. The metric adopted 
by this stage is the simple correlation metric 

-£(2A-l)(2&^>-l)f('B>, 
i 

where ßj £ {"0","1"} is an arbitrary path symbol with the 

same position as by1' in the outer encoder trellis T0.   Once 

again, the enhanced soft-information variables f ^ represent, 
up to a multiplicative factor, an approximation of the log- 
likelihood ratios 

In 
P(bj="l»\{b^},{tp)}) 

This second stage exploits the fact that the sequence {^m)}, 

when correct, must be a codeword sequence of the outer en- 
coder. Denote respectively by {c(

fc
m)} and {Ä(

fc
m)} the inter- 

leaved versions of the sequences {6$m)} and {f(m)}. The in- 
trinsic contribution of the outer SOVA in comparison with the 
inner one is measured by the difference 

A(«) = (2g(m) _ 1)Ä(m) _ (2£(m) _ l)Ä(.m)_ 

For the following iteration, the new soft-information variables 
generated by the inner SOVA and its associated decisions are 
denoted by l[m+1) and c{m+1), respectively. 

At the final /-th iteration of the iterative decoding process, 
an outer conventional Viterbi decoder delivers the estimated 

sequence, {df}, of the information sequence. The metric used 

by this decoder is - Y,j(2ßi - l)(26^/) - l)t{/K 

(4 Outer 
encoder 

w 
Interleaver 

fc} Inner 
encoder 

M 

Interleaver 
2 

(2c*"-l)AW-(2c<*,-I)A{" 

{A(r> 

{f«} Outer 
SOVA 

m 
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#f} 
De- 

interleaver 
$fl| 

fctf 
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Abstract — This paper presents a suboptimum soft- 
decision decoding scheme for binary linear block codes 
based on an iterative search algorithm using a purged 
trellis diagram. The scheme achieves near optimum 
error performance with a significant reduction in com- 

putation complexity. 

I. SUMMARY 

The proposed scheme uses a hard-decision decoder to 
produce a candidate codeword and exploits the fact that the 

hard-decision decoded codeword is either the optimum maxi- 
mum likelihood decoding (MLD) solution or at a distance not 
too far away from the optimum MLD solution. As a result, the 

optimum MLD solution may be found by searching through 
those codewords that are close to the candidate codeword. 

The search is conducted through a purged trellis diagram 
for the given code. If the optimum MLD solution is not found, 
a new candidate codeword is generated by using a new test 
error pattern to modify the hard-decision received sequence. 
Then optimality test is repeated and a new search begins. 
Generation of new candidate codewords and searches repeat 
until either the optimum MLD solution is found or the decod- 
ing process is terminated by exhausting all possible test error 

patterns. 
Sufficient conditions for optimality are proved. Upper 

bounds on the Hamming distance between a hard-decision de- 

coded candidate codeword and the optimum MLD solution are 

derived [1]. These upper bounds define a search region for 

the optimum MLD solution. The proposed decoding scheme is 
simulated for some well known codes. The simulation results 
show that the proposed decoding scheme achieves either prac- 
tically optimum performance or a performance only a fraction 
of a dB away from MLD with a significant reduction in de- 
coding complexity compared with the Viterbi decoding based 

on the full trellis diagrams of the codes [3]. 

II. Examples 

Consider the (23,12,7) Golay code. The proposed decod- 
ing algorithm achieves practically optimum performance. At 

SNR = 4 dB, the proposed decoding algorithm achieves the 

bit-error-rate (BER) of 10-3 and requires less than 100 bi- 
nary operations (including additions and comparisons for the 
purged trellis search). The average number of iterations re- 
quired to decode a received sequence at SNR = 4 dB is 0.9. At 

SNR = 6 dB, the proposed decoding algorithm achieves BER 
of 10-6 with average number of binary operations less than 15 
and the average number of iterations required to decode a re- 

ceived sequence is 0.2. However, the optimal Viterbi decoding 
algorithm based on the full trellis diagram of the code requires 
a fixed number of 2,559 binary operations. The most efficient 

optimum decoding algorithm for the (24,12,8) extended Go- 
lay code proposed so far requires at least 550 but no more 
than 651 binary operations [2]. For SNR greater than 3 dB, 
the proposed decoding algorithm requires much less computa- 
tions than that of the optimum decoding proposed in [2]. 

Next, we consider the (32,21,6) extended primitive 

BCH code. The proposed decoding algorithm again achieves 

practically optimum error performance. It achieves the BER 

of 10~5 at SNR = 5.4 dB. At this SNR, the average num- 
ber of binary operations and the average number of iterations 

required to decode a received codeword are 25 and 0.5 re- 

spectively, whereas the optimum Viterbi decoding based on 
the full trellis diagram of the code would require 30,156 bi- 
nary operations. Even for the worst case, the proposed de- 
coding algorithm requires a maximum of no more than 6,350 
binary operations. We see that for the (32,21,6) extended 
BCH code, the proposed decoding algorithm achieves prac- 
tically optimum performance with a significant reduction in 

computation complexity. 
Using the proposed algorithm to decode the (64,45,8) 

extended BCH code, there is a 0.5 dB loss in coding gain at 
the BER 10~6 compared with the optimum MLD. The SNR 
required to achieve BER 10~5 is 5.3 dB. At this SNR, the av- 
erage number of binary operations and the average number of 
iterations required to decode a received word are 300 and 0.7 
respectively. However, optimum Viterbi decoding based on 

the full trellis diagram of the code requires 4,301,823 binary 

operations (this number can be reduced by certain permuta- 

tions of the order of bits in the trellis). Even for the worst 
case, the proposed decoding algorithm requires only a maxi- 
mum of 57,182 binary operations. We see that a tremendous 
reduction in computation complexity is achieved with only a 

small performance degradation. 
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A Soft Output Decoding Algorithm for Concatenated Systems 
Xiao-an Wang    and    Stephen B. Wicker 

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 

Concatenated codes are a powerful means for improving 
the performance of digital communication systems over ex- 
tremely noisy channels. Such a code contains an inner code, 
which is often a convolutional code, and an outer code. Since 

the conventional inner decoder only gives hard outputs (i.e., 
0 or 1 for binary codes), the outer decoder is forced to work 
in the HDD (hard decision decoding) fashion. Reliability in- 

formation is needed to fully utilize the SDD capacity of the 
outer code. Even in cases where no practical SDD algorithms 

exist for the outer codes (e.g., Reed-Solomon codes), reliabil- 
ity information can help to erase highly unreliable bits, and 
the performance can be improved through errors and erasures 
decoding [1]. A decoder capable of delivering such reliability 
information is called a soft output decoder. 

The reliability measure for a decoded symbol is the prob- 
ability Pc that the symbol is correct or the probability of er- 

ror Pe = 1 — Pc- Such quantities can be obtained by the 
symbol-by-symbol MAP (maximum a posteriori probability) 
algorithm. Unfortunately this algorithm is computationally 
inefficient. A soft output Viterbi algorithm (SOVA) [2] can 
provide an estimate of Pe which is accurate only for large 
SNR. 

This paper proposes an efficient modified MAP algorithm 
for obtaining Pc for the outputs of convolutional inner de- 
coders. The outer decoder uses Pc to perform SDD by choos- 

ing a codeword y = {yo,y\, ■ ■ ■ ,yi-i) which maximizes the 

maximum likelihood (ML) metric nP(y) = ^i=o m 7r'(j'>)> 
where 7r,(g/;) is the probability Pc that symbol j/t is correct. 
Decoding based on this ML metric is referred to as Gener- 
alized SDD since it includes the Euclidean metric on AWGN 
channels and the one proposed in [2] for binary memoryless 
channels as special cases. The following theoretical and im- 
plementation issues are also investigated: 

Convergence. Practical decoders have to have finite de- 
coding delay (decoding depth) T which causes truncation er- 

rors for very long or infinite data streams. By a matrix formu- 
lation of the MAP algorithm, Pc can be seen to be a function 
of the products of infinite random matrices. The theory of 
products of random matrices (PRM) is then used to show 
that the estimated Pc over a finite T, PC(T), converges to Pc 

exponentially fast with T. Thus the truncation error can be 
made arbitrarily small. 

Complexity. The VA is the most efficient hard output 
convolutional decoder. A soft output decoder is expected to 

have more complexity because it extracts more information 
from the inputs. It is informative and of practical significance 
to use the Viterbi decoder as a complexity measure against 
other decoders. It is demonstrated that the MAP soft output 
decoder has a complexity of T + 1 times that of the Viterbi 
decoder. 

Decoding delay. The T required for a fixed level of ac- 
curacy changes bit by bit, as well as with channel conditions 
such as SNR. A fixed delay would have to be very long to 
accommodate the worst case, which increases the complexity 

and is unnecessary most of the time. Using the PRM theory, 

Average decoding delay for 
a rate-1/2, M » 2 code 

SNR (dB) 

Fig. 1: Average decoding delay 
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Fig. 2: Comparison of Pe and Pe 

the problem of obtaining Pc can be reformulated as a prob- 
lem of best fit between two vectors. Solutions of the best fit 
problem provide a scheme which keeps F at a minimum for 
required precision. The scheme makes the modified MAP al- 
gorithm very efficient. Figure 1 shows that the average delay 
F versus SNR for a rate-1/2 code with constraint length 3. F 
is kept below 5 over the entire operating region of the code 
and rapidly drops to zero. The algorithm is as efficient as the 
VA for SNR as low as 3 dB. 

Range overflow. This phenomena was shown to occur 
very easily during the decoding process. To solve this problem, 
it is shown that the relative amplitudes among the quantities 
in consideration are bounded, thus a very simple and effective 
scaling scheme is constructed. 

Finally, a comparison is made between the exact Pe pro- 
vided by the modified MAP algorithm and the approximation 
Pe in [1, 2]. It is shown that the approximation gives an op- 
timistic estimate of Pe, especially for low SNR. The result is 
plotted in Figure 2 for 50,000 consecutive bits at SNR = 2 
dB, using the same code mentioned above. The discrepancy 
becomes smaller for increasing SNR. 
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On the Impact of Laser's Relaxation Oscillation on Quadratically 
Detected Heterodyned Lightwave Signals 
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We consider the performance of quadratically detected het- 
erodyned lightwave signals in the presence of Laser's relax- 
ation oscillations. Here the limiting form of the channel 
presents both additive white Gaussian noise (AWGN) of spec- 
tral density No and Laser's phase noise. The widely accepted 
model for the Laser's phase noise is a Brownian Motion giving 
rise to a Lorentzian line spectrum [1]. However, the actual line 
shape of semi-conductor lasers deviates from this simplified 
and idealized statistical characterization [2]. The analytical 
techniques provided here show that this deviation may have a 
signficiant impact on the communication-system performance. 

The major difference stems from the Laser's relaxation os- 
cillations, which induce periodic satellite peaks in the line 
spectrum. The resulting phase noise is characterized by a 
normalized zero-mean Gaussian process with autocovariance 
function 

W,Ms min(t,s) + — Real Be -(R\*->\ eJ"«l*—«I 
(1) 

The term min(t,s) gives rise to a perfect Lorentzian spec- 
trum. The second term presents a deviation from the Brow- 
nian Motion phase model. Here £R = (KBITR)

-1
 where Bi 

is the underlying "Brownian" linewidth, TR is the decaying 
time-constant and VR = QR/KB( where £IR is the resonance 
angular frequency. B is a complex constant depending on the 
laser's parameters. 

The receiver in focus here comprises Z-fold square-law de- 
tection of L filtered noisy phase frequency shift keying (FSK) 
signals observed in AWGN. The underlying decision statis- 
tics relies on Laser's phase noise via normalized exponential 
functionals of the form: 

-I/ \J O 

,>>*♦. di T, \ h3 V2<ps    jS-s ds (2) 

where et crrepsonds to the inband received signal and Tt ren- 
ders a crosstalk signal. Here 6 is the normalized frequency 
spacing between the FSK signals. 

The joint statistics inherited by the phase noise function- 
als (2), is unknown, even for the simplified Brownian Motion 
Model [1]. Assuming i-fold diversity reception (L statistically 
independent and identically distributed observed noisy phase 
signals) which can be achieved via interleaving techniques, 
power moment statistical characterization of et and I\ is a 
useful approach. Indeed in the case of a Brownian Motion, 
tight Bit Error Rate (BER) bounds are achievable with the 
use of a few moments, for optimized system parameters [3]. 

Following [3], the application of the theory of limiting val- 
ues of integrals, the Holder-Inequality and the Chernoff bound 
yield upper bounds on the bit error probability (BER). The 
bounds are given in terms of the power moments induced 
by the phase noise functionals et and Tt, the computation 
of which is required.   Noting that the joint power moments 

featured by the Markovian Brownian Motion functionals are 
analytically tractable, [3] the considered power moments of et 
and Tt are related to certain mutual moments governed by a 
Brownian Motion. For illustration, the first-order moment of 
et at t = ß is given by 

CXI 

££/3 = e-ReaJ<B>   £  Ar^((l,r)(-l,r)),0</?<^   (3) 

where J~p(-) is obtained via the inverse Laplace transform of 
IFs(-) stated below at t = ß, 

Fs((7i,Wi)(7aiW2)) =2(s+l+yiJiWi+jI/aW2) 

(s + (h + 72)
2) -1 (s + jhW1 + jIaWa) _1 (5 + 1 + j!2W2) _1 

(s + i + i/iWi)-1. 

(4) 
The {Ar} are Fourier-Series coefficients, computed on the in- 
terval [—ß,ß], which are strictly determined by the relaxation 
oscillation parameters £.R and VR. Similar expressions are ob- 
tained in general for higher order moments. 

The resulting upper bounds on the BER are determined 
by the various system parameters: laser linewidth-to-bit rate 
ratio Bi/R, the bit-energy-to-noise density ratio Eb/N0, the 
diversity level L (or equivalently the IF bandwidth expan- 
sion relative to the bit rate), Laser's relaxation oscillation nor- 
malized decaying time j-, and Laser's relaxation oscillation 
normalized resonance frequency VR. Orthogonal reception in 
the absence of phase noise is assumed namely j^ = 2rr • 8, 
where AQ is the frequency spacing, R is the bit rate, and 6 
is a positive integer. The impact of Laser's relaxation oscilla- 
tion on the obtained upper bounds is studied and it is shown 
that Laser's relaxation oscillation may result in a significant 
penalty relative to the simplified Brownian Motion model. For 
example, assume BER = 10-9, Bt/R = 1, 6 = 4, L = 25, 
i/R = 53.9, £R = 2.3. Then a relative penalty of nearly 9 dB 
is predicted. Increasing the IF bandwidth to L = 30 would 
result in a decreased penalty of 3.5 dB. 
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On a new detection scheme of optical PPM signal. 
Kouichi Yamazaki 
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Abstract — A new detection scheme is proposed 
for optical pulse position modulation (PPM) commu- 
nication system. Channel property of the proposed 

scheme is clarified theoretically. 

I. INTRODUCTION 
This paper proposes a new detection scheme for detecting 
M — ary optical PPM signal. It is shown that the proposed 
scheme performs almost optimum on error probability crite- 

rion. Channel capacity of the proposed scheme is compared 
with other detection schemes. 

II. NEW DETECTION SCHEME 
The block diagram of the proposed receiver is shown in Figure 

1. The receiver consists of a local laser, a highly transmissive 
beam splitter, a photodiode and a feedback control system of 
the local laser. Frequency of the local field is identical to the 
signal field, its phase is 7r-shifted with respect to the signal 
and its amplitude is set so that its reflected part is the same 

as the transmitted part of the signal. Then, if the local laser is 
on, it cancels out the signal field perfectly by the combination 
process through the beam splitter. At the beginning of each 

symbol, a local laser is on. A photon number of combined 

field is counted for each time-slot individually. If no photon 
is counted during a certain, say " ith", time-slot, the feedback 
control system switches the local laser off from the next time- 
slot. If no other photons are counted after that till the end of 
the symbol, a symbol having an optical pulse at the ith time- 
slot, mi, is decided as the transmitted symbol. On the other 
hand, if some other photons are counted in the j'th time-slot 
(j > i), a symbol rrij is selected. In the above operation, when 

a symbol rrij is transmitted, an error occurs if no photon is 

counted in a certain, say "ith" (i < j), time-slot, and if no 
photon is counted in the j'th time-slot. The probability of this 
error depends on a symbol as follows: 

Pe(mi)=e-lf'{l-(l-e-Ny-1} (1) 

Averaging these symbol-dependent error probabilities with re- 
spect to a priori-probabilities, we obtain average error prob- 
ability. For equally probable signal (=1/M), an average error 

probability is given as follows: 

-Ns 

-{l-a-e-*")"-1} (2) 
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III. NUMERICAL RESULTS 
Error performance and channel capacity of the proposed 
scheme are shown as a function of signal energy Ns for sym- 
bol length M of 64 in Figures 2 and 3, respectively. Those of 

optimum-quantum receiver[l] and direct detection receiver are 
also shown. It is found in Figure 2 that the proposed scheme 
is superior to direct detection scheme on error performance, 
and it performs almost optimally. Fig.3 also shows superiority 

of the proposed scheme, especially for Ns over 6dB. It seems 
from these results that we can expect the proposed detection 
scheme to perform ultimately low-energy communication. 

Signal Field—*/" 

[Local Field 

Photodiode 

Local Laser 

Figure 1: Block diagram of proposed detection scheme. 
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Figure 2: Error performance for symbol length M = 64. 
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Figure 3: Channel capacity for symbol length M = 64. 
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Differential overlapping pulse position modulation (DO 
PPM) can achieve higher capacity and cutoff rate than PPM, 
DPPM and OPPM when the pulsewidth and the average 
power of the channel are constrained [1]. In [1] erasure events 
of one pulsed chip that can be decoded correctly is defined as 
an erasure event. This results in loose lower bounds on the 
performance. 

This summary analyzes the tighter lower bounds on ca- 
pacity and cutoff rate of DOPPM in optical direct-detection 
channel. Considering what pulsed chips we have to detect to 
decode the words correctly, we derive the transition probabil- 
ity of DOPPM words and the tighter lower bounds in optical 
direct-detection channel. 

We analyze the performance of DOPPM under the window 
scheme [1]. In a given window of length L (chips), we attempt 
to send Wa symbols of DOPPM with N chips consisting of 
Q-ary PPM: L < WdQN. We specify the window scheme as 
follows: only if we detect photons at the both ends of each 
pulse for all the pulses, we can detect any sequence fitting in 
the window correctly. In particular for the pulses continuously 
generated from the left or right end of the sequence, we can 
decide the positions of the pulses only if we detect photons at 
the left or right end chip of each pulse, respectively. Unless 
we detect photons at the chips needed for correct decoding, 
then we consider the entire sequence to be garbled and define 
this sequence as an erasure sequence. 

We denote the probability of using any one of the M sym- 
metric inputs by P(xi) = a and that of not sending a sequence 
by P(x') = ß: Ma -f- ß=l. The mutual information can be 
derived as 

wd    wd-pLx. 

'     -Pc(PL*i,PR*i) Mi 
log I a — PCJPLXQPRXJ) 

Pc(PL*i,PRxi) 

-ßlog(<p) (1) 

where 

wd 

PL=O 

Wd-PL 

J2   <*-S(PL,PR){l-Pc(PL,PR)}      (2) 
PR=O 

and PC(PL,PR) and S(PL,PR) are the correct transition prob- 
ability and the number of symbols having PL and PR pulses 
generated continuously from left and right ends of the block, 
respectively. 

To calculate the cutoff rate of the channel, we use the for- 
mula [1]: EX[J] is derived as 

EX[J]  = ß' 

wd Wd-PLx 

a-S(PLxi,PRxi) 

wd 
Wd-PLx 

Y,   X! "•S(PL*J>PB*J) 
PL*<=0    PRX 

y/{\ - P^PL^PRZM^ ~ PciPLsj.Pllsj)} 

+ a ■ PciPLs^PRxi) + ßy/il-PciPLz^PRzi)} (3) 

Figure 1 shows the optimal capacity per slot of Q-ary PPM, 
DPPM, (Q,N) OPPM and DOPPM. It can be seen that 
DOPPM with new rule can achieve higher capacity than PPM, 
DPPM, OPPM and DOPPM with conventional rule [1]. This 
is because some erasure events in [1] that can be decoded cor- 
rectly are not defined as an erasure event in this paper with 
new rule. Similar trends can be seen in the cut off rate per- 
formance. 
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Fig. 1: Optimal capacity per slot [nats/slot] vs. average number of 
photons per slot s' [photons/slot]. 
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Abstract — In this paper, we evaluate the perfor- 
mance of a two-user optical communications system 
over a noncoherent optical channel. The two users 
are separated in average received energy and are di- 
rectly interfering with each other. We find expres- 
sions for uncoded bit error probability and codeword 
error probability for a particular scheme. 

SUMMARY 
An information source outputs random binary data in 

{0,1} with equal probability. During a time interval T, the 
laser of the j-th transmitter, j = 1,2, is amplitude modulated 
by the data. Both transmitters use the same optical channel 
to communicate with a central receiver. At the receiver, the 
laser light is detected noncoherently with a photo-detector to 
count the photoelectrons. 

We assume that photon arrival is due to the transmitting 
laser(s) only. The photon channel is a Poisson channel where 
if a positive average real number x is transmitted, the prob- 
ability that the integer k is received is Poisson distributed 
according to 

P(fc;x)=e-*^. 

Thus the discrete channel seen by a transmitter receiver pair 
is a ^-channel. Each user has available a distinct ^-channel. 

The decoder outputs the information bits based on a max- 
imum likelihood estimate of the transmitted bits given the 
output of the photo-detector. Let the average energy avail- 
able to user i be Ei (photons), then the decoder finds 

arg    max   Pr{m\b(\),b(2)\, 
6(1),6(2) l      '        "    V   '" 

where m is the photon count at the output of the photo de- 
tector, and b(j) is the bit transmitted by user j, j = 1, 2. The 
decision regions consist of (0, L], (L, U], and    (U, oo), where 

Ei-Ei 

Jog( 
U = 

Ex 

Mi + t) 
The probability of bit error for user j is evaluated for an un- 
coded system and for a coded system. 

A close look at the error rate expressions and Fig. 1 will 
indicate that E\ and E2 should not be equal or close together 
as this will yield maximum interference. On the other hand 
if E\ and E2 are too far apart, the user with high energy 
will suffer from large variance, since for the Poisson process 
the mean and variance are equal (to the average energy). For 
this example, Ex + E2 = 16 dB, and the users have equal 
performance at E2 = 12.5 dB. 

Now consider the use of a i-error correcting (n, k) code. 
Each user pulses between the two Z-channels by alternating 
transmission. In this case the average transmitted energy E 
per codeword and per user is the same, and, therefore, both 
users will have the same probability of error. 

Figure 1: Uncoded performance for Ex + E2 = 16 dB. 

With Pi and P2 as defined earlier, the codeword error prob- 
ability Pw(Ei,E2) is evaluated. The optimal energy levels are 
given by 

{El,E2) = arg min Pw (EUE2), 

where the above minimization is over (Ei,E2) with the fol- 
lowing constraints 

Ei > 0,     E2> 0,     Ei + E2 = E. 

It is not obvious to what values of energy levels result in 
minimum error rate. The above expression is evaluated nu- 
merically for each value of E. Fig. 2 shows typical behaviour 
of Pw as a function of separation between energy levels, and 
for a particular code of block length n = 20 and t = 4. 

Figure 2: Codeword error rate as a function of separation 
between energy levels. 
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Abstract — We analyze the bit-error rate (BER) of 
an optical communication system using the superflu- 
orescent fiber source (SFS). The counting statistics of 
thermal light give improved performance relative to 
the Gaussian statistics that predict a BER floor. 

SUMMARY 

Consider a spectrum-sliced wavelength-division multiple- 
access (WDMA) system that employs the SFS [1]. In the SFS, 
spontaneous atomic emission is amplified through a rare-earth 
doped, single mode, optical fiber end-pumped by an exter- 
nal laser. The incoherent, broad bandwidth output is best 
modeled as thermal light. The output is spectrum-sliced then 
on-off modulated by a binary symbol stream, resulting in an 
intensity modulation waveform arriving at the photodetector. 
Neglecting the dark current and thermal noise, we obtain the 
BER as the Laplace transform of the integrated intensity W: 

BER 
2 Jo 

"pw{w)dw, (1) 

where pw{w) models the stochastic fluctuation of the light, 
a = T)/hi> (JJ is the quantum efficiency and hv the photon 
energy). Using the negative binomial statistics for the photo- 
electron count [2], the BER and the signal/noise ratio are: 

BER    =    =- 

SNR    = 
 M  
Pc/r,P + .5(l+V2)- 

(l-7>2) (2) 

(3) 

In spectrum-sliced WDMA, the maximum SNR is inversely 
proportional to the number of channels. Equation (2) demon- 
strates that the BER is not determined solely by the SNR 
which reaches a limiting value; increasing the spectral inten- 
sity of the light reduces the BER. In fact, the number of chan- 
nels can be increased by increasing the received power, while 
maintaining a desired BER for a given symbol rate. This has 
important implications for spectral amplitude encoded CDMA 
systems that require a large number of spectral chips [3]. In- 
voking the Gaussian assumption [1] would lead to incorrect 
conclusions. For example, the Gaussian predicts a BER floor 
due to the limiting SNR and therefore expects that it would 
be impossible to increase the number of channels by increasing 
the power, once the limiting SNR has been reached. 

One can show that the BER is lower bounded by using the 
fact that e~aw is convex over [0,oo) and applying Jensen's in- 
equality to Eq. 1 to obtain BER = .5E[e~aW] > .5e-aE[w]. 
Accordingly, a light source that achieves this can be considered 
ideal, i.e. its intensity is deterministic: pw{w) = S(w — E[W]), 
as would be expected. Figure 1 shows calculated BER values 
for the ideal and spectrum-sliced fiber sources, and the Gaus- 
sian assumption. The Gaussian predicts a BER floor and un- 
derestimates the true performance. 

The mode number, M, is the ratio of the symbol duration 
T to the coherence interval Tc of the incident light. That 
is, M = Bo/2Be, where B0 = 1/TC and Be = 1/2T are the 
optical and detection bandwidths, respectively. P — E[W]/T 

is the received power, Pc = hv/Tc is the coherence power 
of the photon and V the degree of polarization. The limiting 
SNR is B0/(l + 7'2)5e for high received power (vP/Pc » 1). 

The BER approaches the shot-noise limited value of 
.5e~aE^w] if the count degeneracy parameter, i\PjPc, is much 
smaller than unity. Since the BER decreases monotonously 
with Tc, a Lorentzian spectral shape can have a lower BER 
at a higher symbol rate compared to a Gaussian shape with 
the same power and 3 dB linewidth. The ideal rectangular 
linewidth has the worst performance. This must be consid- 
ered against the channel crosstalk since, not surprisingly, the 
tail of a Lorentzian has the slowest spectral decay. Without 
the linewidth constraint, we obtain a rather interesting theo- 
retical result that the shot-noise performance is achieved with 
a spectral shape of infinite linewidth and zero spectral height. 
In comparision, this is also achieved with an ideal, coherent 
laser of zero linewidth and infinite spectral height. 

1 This work was supported by the Advanced Technology Program 
of the Texas Higher Education Coordinating Board, GTE, Inc., the 
U.S.A.F. Phillips Laboratory and its Palace Knight program. 
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Fig. 1: BER comparisions at 1 Gbps.  The spectrum-sliced SFS is 
polarized (V = 1); M = 36, rj = 50% at 1550nm wavelength. 
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The Channel Capacity of Hybrid Fiber/Coax (HFC) Networks 

Kenneth J. Kerpez 
Bellcore, 445 South Street, Morristown, NJ 07960 

Hybrid fiber/coax (HFC) is emerging as an inexpensive 
architecture for providing broadband services to residences. It 
has optical fibers extending from the central office or head- 
end to remote fiber nodes. Extending from the fiber nodes to 
the residences is a coaxial cable distribution bus. 
Multiplexing allows 100 to 500 users to share the bandwidth 
of each coax distribution bus.fl] This architecture 
advantageously combines the long range of optical fiber with 
the high bandwidth and simple electrical interfaces of coaxial 
cable. HFC will initially provide telephony and cable TV, but 
it also has sufficient bandwidth for future interactive and 
multimedia services. Many regional telephone companies, 
and most cable TV companies, in the U.S. have committed to 
HFC. This architecture will be widely deployed well into the 
future, while the demand for residential bandwidth will 
increase. To meet this demand, there will be an increasing 
need for multi-user information theory and communication 
techniques to maximize the bandwidth and fully exploit the 
potential of this unique medium. This paper initializes 
exploration into maximizing the channel capacity of HFC. 

Capacity calculations can safely ignore the optical link and 
instead focus on the coax distribution bus. The coax bus has a 
physical tree-and-branch architecture, but it is logically a 
shared bandwidth bus. Receivers are spatially distributed 
along the bus, with propagation distance /,■ between the fiber 
node and receiver i. The magnitude response of a receiver i is 

|#;|=r '"'•' where Tis a constant and /is the frequency. The 

transmitted signal is s(t), which is attenuated by //, and 

delayed by Z,/v, where v is the propagation velocity. The 
signal received by the rth receiver, on carrier frequency /, is 

ri(t)=rl'Jfs(t-l;/v). The Fourier transform of r,(f) is 

R.(f)=r'iJfe-
J2*fli'vS(f),    where    j=^R.    Define 

D=Te~j2K^lv . Then /?,(/)=D''^ S(f). This response 
is fundamental to capacity calculations. 

Gaussian noise is assumed. For a single user, the capacity is 
easily solved with the classic "water-filling" spectral density. 
However, there are multiple users, and the capacity is a multi- 
dimensional function with dimensionality equal to the 
number of users. Communication from the fiber node to the 
users is similar to the classic Gaussian broadcast channel, and 
from the users to the fiber node is similar to the classic 
Gaussian multiple access channel. Classic multi-user 
information theory assumes that the channel response is the 
same to each user. However, users on the coax bus are located 
at different distances from the fiber node, so although they 
each see the same superposition of signals, they each have a 
different channel response. Unlike classic multi-user capacity 
calculations, here the ensemble of propagation distances is a 
fundamental new variable. This problem is unsolved in its 
general form. 

Assumptions are made to get the results here. Only two types 
of communications are considered: information that is 
broadcast to all users, and information that is specific to only 

a single user. Each user's specific information has the same 
bit-rate, and is carried in a single distinct interval on the 
frequency axis. The capacity of the user specific information 
transmitted to each user is calculated here. Closer users are 
assigned higher frequencies than more distant users are. 

Two types of coax bus architectures are examined: a cable TV 
type of coax network with analog amplifiers and attenuating 
taps, and a passive coax network with ideal band-pass filter 
taps. A typical suburban tree-and-branch coax distribution 
bus [2] is modeled with 250 feet of 0.625 inch coax between 
the splitters and four-way taps. Users connect to the taps with 
250 feet of coax drop. Each user's channel response is 
calculated, and with typical cable transmission parameters 
SNRs (about 40 dB) are found as a function of frequency. 
Downstream digital signals are restricted to the 450 to 1000 
MHz band. Using Shannon theory, differential entropies and 
capacities are found, then frequency assignments are 
numerically calculated to maximize the capacity, which is 
shown in Fig.l.  The sum total capacity is multiple Gbps. 
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Fig.l. Shannon capacity dedicated downstream to each user. 

There are simplifying assumptions here, and the multi-user 
channel capacity of the shared coax bus is in general an 
unsolved problem. The shared upstream channel from 5 to 42 
MHz has much radio ingress, causing many noise spikes in 
the frequency domain, and making the upstream capacity 
calculation more difficult. 
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Error Probability Evaluation of Optical Systems Disturbed by Phase 
Noise and Additive Noise 

Goran Einarsson, Johan Strandberg and Idelfonso Tafur Monroy 
Telecommunication Theory, Royal Institute of Technology, S-100 44 Stockholm, Sweden 

Abstract— A direct and efficient method for evaluation of 
the error probability of optical heterodyne receivers in the 
presence of phase noise is presented. 

Closed form expressions for the statistics of the decision 
variable, including photodetector shot noise and thermal 
noise from electronic circuitry, are shown. 

I. INTRODUCTION 

The decision variable, in complex signal notation, of a 
heterodyne optical system with an envelope detector re- 
ceiver has the form 

\v\2 = \y + x\ (i) 

where y represents phase noise and X additive noise. The 
phase noise is produced by the transmitting and local os- 
cillator lasers. The additive noise X is photodetector shot 
noise and thermal noise from the electric circuitry. 

Further background and derivation of the formulas can 
be found in a forthcoming paper by Einarsson et al [1], 

II. AMPLITUDE-SHIFT KEYING 

To simplify the analysis let the prefilter be a bandpass 
integrator operating at the heterodyne frequency. During 
the data symbol interval the prefilter output is sampled L 
times at t = kT', k = 1, 2,..., L, generating a sequence of 
complex valued stochastic variables 

vk = Ayk + xk (2) 

/.fcT' 
where 

yk = ± e^dt (3) 
J-    J(k-1)T' 

is filtered phase noise and Xk, filtered white noise, is a 
complex valued, zero mean Gaussian variable. 

The phase noise is a continuous Brownian motion (Wiener- 
Levy) process with Gaussian statistics. The primary sta- 
tistical properties of 6(t) are easily specified but the prob- 
ability distribution of yk is difficult to determine. Foschini 
and Vannuci [2] obtained a closed form approximate result 
by expanding the integrand eJ'eO in (3) in a Taylor series 
and keeping the first terms, 

The decision variable U is the sum of L = T/T' equally 
distributed independent variables |Vfc|2 and the approxi- 
mate moment-generating function (mgf) of U is 

*ff(«) 
(1 

■ exp 
l-s 

sinch t 
2ßm\s 
(l-^2 

-L/2 

(4) 

This work was supported by the Swedish Research Council 
for Engineering Sciences 

where "sinch" denotes the hyperbolic sine-function. 
The parameter ß = 2-KBLT is equal to 2it times the 

product of the data symbol interval T and BL, the sum 
of the 3-dB linewidths of the lasers at the transmitter and 
the local oscillator. The quantity mi = A2T/2 = A2LT'/2 
is the expected number of photoelectrons in the received 

optical pulse. 
III. FREQUENCY-SHIFT KEYING 

Frequency-Shift Keying (FSK) is readily analyzed utiliz- 
ing the results from ASK since an FSK receiver contains 
two branches, each identical to an ASK receiver. 

IV. DIFFERENTIAL PHASE-SHIFT KEYING 

In Differential Phase-Shift Keying (DPSK) the phase of 
the transmitted optical field is modulated and the phase 
of the previous signal is used as a phase reference in the 

receiver. 
We consider the case without predetector filtering where 

T' = T and one sample per signal interval is generated. 
An approximate mgf of the decision variable U is 

Vu{s) 
exp (2ms\ 

y/1 - (2m/3/3 + l)2s2Vl^3^ 
(5) 

V. ERROR PROBABILITY 

The moment-generating function determines the statis- 
tical distribution of the decision variable. The transmis- 
sion error probability is easy to calculate from ^a(s) using 
the saddlepoint approximation suggested by Helstrom [3]. 
The optimal value of the prefilter bandwidth parameter L 
is readily determined by this procedure. 

The theory presented applies also to receivers with an 
optical preamplifier in the presence of phase noise. We 
refer to the text by Einarsson [4] for a discussion. 

[l] 

[2] 

[3] 

[4] 
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Applications of Coding and Design Theory to Constructing the 
Maximum Resilient Systems of Functions 

Vladimir I. Levenshtein1 

Institute for Applied Mathematics, RAS, Miusskaya Sq.4, 125047, Moscow, Russia 

Abstract — Some ideas, methods, and results of cod- 
ing and design theory, especially a duality in bounding 
the optimal size of codes and designs (orthogonal ar- 
rays), are used to solve a new problem connected with 
randomized systems of functions. 

I. INTRODUCTION 
A system of functions in n variables is called randomized if 
the functions preserve the property of their variables to be in- 
dependent and uniformly distributed random variables. Such 
a system is called t-resilient if for any substitution of con- 
stants for any i variables, 0 < i < t, the derived system 
of functions in n — i variables is also randomized. A sys- 
tem of N Boolean functions in n variables of which any T 
form a t-resilient system is referred to as a (n,t, AT, T)-system 
(1 < T < JV, 0 < t < n). We investigate the problem of find- 
ing the maximum number N = N(n,t,T) of functions in a 
(n, t, N, T)-system. This problem is reduced to the minimiza- 
tion of the size of certain combinatorial designs, which we call 
split orthogonal arrays (SOA). A binary code C of length n+N 
is called (n, t, N, T)-SOA if for any choice of binary word of 
length t + T and any choice of t + T places of which t belong 
to the first n places and T belong to the last iV places there 
are exactly |C|2~'_T code words which contain this word in 
these places. Let B(n, t + 1, N, T + 1) be the minimum size of 
a code C which is (n,t,N,T)-SOA. 

II. LINEAR PROGRAMMING BOUNDS 
A (n,t, N, T)-system exists if and only if there exists a sys- 
tematic (n, t, N, T)-SOA with the first n information symbols. 
This gives the following necessary condition for existence of a 
(n, t, N, T)-system: 

2n >B{n,t + l,N,T + l). 

We extend the linear programming method of Delsarte [1] to 
obtain a lower bound on B(n,t + 1, N, T + 1) and an up- 
per bound on N(n,t,T). Let A(n,d) (B(n,d)) be the max- 
imum (minimum) size of a code of length n with the min- 
imal distance (respectively, with the dual distance) d.   Let 

ÄfcCO = E^oM^jHn) be the Krawtchouk polyno- 
mial of degree k and suppose that for an arbitrary polyno- 
mial /(*) = ElU/itfrW, «(/) = /(0)/ /o. If A*(n,d) = 
minü(/), where the minimum is taken over all polynomi- 
als f(z) such that /o > 0,/; > 0 for i = l,2,...,n, and 
/(0) > 0, f{i) < 0 for i = d, ...,n; and B*(n,d) = maxO(/), 
where the maximum is taken over all polynomials f(z) such 
that /o > 0, fi < 0 for i = d,... ,n, and /(0) > 0, f{i) > 0 for 
i = 1,2,..., n, then by the Delsarte inequalities, 

A(n,d) < A*{n,d), B{n,d) > B*{n,d). 

Delsarte [1] found an /(z) which gives the Rao bound 

B*{n,d) > R(n,d), 

where R(n, 11 +1 + a) = ¥ ^-=o ("7") when a e {°> ^ The 

author [2] found polynomials which imply 

Af{n,d) < 

L( 
j  Ll{d) if dk(n - 1) < d - 1 < dfc_i(n - 2) 

n'   j~\   2Ll-\d)    ifdk{n-2)<d-l<dk{n-l), 

where dk (n) is the smallest root of K% (z) and 

fc-i 

Lt{z) = ]T 
n\Kl-_\{z-l) 

K^{z) 

1This work was partially supported by RFBR under grant 95- 
011-03 and by ISF under grant MEF300. 

Using the linear programming method for bounding 
B(n,t + 1,N,T + 1) and the important relationship 
A*(n, d)B*(n,d) = 2" proved in [3], we obtain 

Theorem 1. If there exists a (n, t, JV, T)-system, then 
2n > R(n,t+l)R(N,T+l), L(n,t+1) > R(N,T+1), and 
2nL(N, T + l)> 2NR{n, t + 1). 

III. SUFFICIENT CONDITION 
Let l(n, d) be the minimum number of information symbols in 
a systematic binary code of length n with the dual distance 
d. In [4] it was shown that the condition T < n — l(n, t + 1) 
is sufficient for the existence of a (n, t, T, T)-system. In the 
general case we have 

Theorem 2. If l(n,t + 1) + l(N,T + 1) < n, then there 
exists a (n,t, AT, T)-system. 

Theorems 1 and 2 give rise to good asymptotic bounds on 
N(n,t,T) and imply complete results in some cases. 

Examples. For any h=2,3,... , 

N(n,3,n/2-l)=n     if     n = 2h+1, 
A/(n,5,(n.-y/k)/2-l) = n      if      n = 22h, 

AT(n,3,5) = y/2"-l/n     if     n = 2ih'1. 

Indeed, the existence of the Hamming, Kerdock and Preparata 
codes implies that Z(n, 4) = log 2n, l(n, n/2) = n — log 2n 
when n = 2h+1, and l(n,6) = 21ogn, l{n, (n - yß)/2) = 
n — 2 log n when n = 22h. This gives the corresponding lower 
bounds by Theorem 2. On the other hand, R(n, 4) = 2n, 
L(n, n/2) = 2n, R(n, 6) = n2 - n + 2, L{n, (n - ^/n)/2) = 
n2 + \/n — l(n — 2)/2 and the same upper bounds follow from 
inequalities of Theorem 1. 
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H. Janwa 
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Abstract — McEliece proposed a public-key cryp- 
tosystem based on binary linear codes, in particular 
binary classical Goppa codes. In this talk we will look 
at various aspects of McEliece's scheme in the gen- 
eral setting of g-ary codes. In particular, we consider 
schemes based on much larger class of g-ary algebraic- 
geometric (AG) Goppa codes, subfield subcodes of 
AG codes, and concatenated codes. We will give 
explicit constructions of several schemes which have 
very high work factor, excellent key-length/plain-text 
ratios, and relatively smaller size of the keys for given 
work factors. We will also present its modifications 
and generalizations following Krouk and others. Fi- 
nally, we will discuss some open problems. 

I. INTRODUCTION 

In 1978, McEliece [2] introduced a public key cryptosystem 
(PKS) based on binary linear codes and suggested the imple- 
mentation of his scheme by randomly selecting the generator 
matrix of a [1024,524,101] Goppa code and suitably modify- 
ing it. The security of this scheme is based on the well known 
NP-completeness of the decoding problem for general linear 
codes and the fact that there are a huge number of inequiva- 
lent Goppa codes with the given parameters. 

For practical applications that need flexibility and complex- 
ity (e.g., computer communication), we will look at various as- 
pects of McEliece's scheme using the newer and much larger 
class of g-ary AG Goppa codes. We will also present mod- 
ifications and generalizations of this scheme using the ideas 
of Krouk and others. Furthermore, we also make some ob- 
servations on the cryptanalytic attacks. We first discuss the 
McEliece PKS in the general setup applicable to g-ary codes. 
We show by analysis, by examples, and by heuristics that the 
complexity of breaking this scheme under one widely discussed 
attack is greater than previously believed. 

II. THE PROPOSED SCHEMES 

Our  constructions,   modifications,   and  generalizations   are 
based on the following coding schemes: 

(A) AG codes defined over a finite field with g elements (im- 
mensely many choices are attained by varying various 
parameters of the corresponding curves); 

(B) Subfield subcodes of g-ary codes in (A). This includes 
binary AG codes, some of which perform better than 
binary Goppa codes. 

(C) Concatenation of gm-ary AG code with good g-ary 
codes. 

In each of the cases (A)-(C), we give explicit construc- 
tions of schemes where the work factor is quite substantial. 
They have excellent key-length/plain-text ratios and relatively 
smaller size of the key for the same work factor. The decrypt- 
ing complexity from schemes based on plane curves, especially 
from maximal curves, is 0(ns) or better. 

III. ON THE ATTACK OF SIDELNIKOV AND SHESTAKOV 

Sidelnikov and Shestakov (S-K) [4] have shown that the 
Niederreiter PKS [3] scheme (known now to be equivalent to 
the McEliece PKS scheme) is insecure for the particular case 
of generalized Reed-Solomon codes. 

The attack of S-K depends fundamentally on the Vander- 
monde structure of the generalized RS codes (and also on their 
MDS property), and is not applicable to systems based on 
other types of codes. For various considerations, our schemes 
are excellent alternatives. 

IV. IMPLEMENTING KROUK AND GABIDULIN 

MODIFICATIONS 

Krouk [1] strengthens the McEliece scheme by trying to 
remove symmetry from the coding scheme. We make some 
observations on his modification and show that AG codes are 
particularly suitable for it. 

We will also present improvements, modifications, and im- 
plementations of some recent PKS schemes of Gabidulin. 

V. FURTHER IMPROVEMENTS AND OPEN PROBLEMS 

We show that many more constructions of PKS using AG 
codes are possible if certain curves that are maximal or near 
maximal exist. 

Some of the results sumarize in this article will appear in 
details in Design Codes and Cryptography. 
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Binary Trinomials Divisible by a Fixed Primitive Polynomial 
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I. INTRODUCTION 
This paper examines the growth of the degrees of binary 

trinomials that are divisible by a fixed binary primitive poly- 
nomial f(x) of degree n. Our goal is to find a heuristic 
distribution that depends only on n. Our motivation stems 
from some suggested correlation attacks on certain stream ci- 
phers [1, 2, 3]. These attacks use binary relations—binary 
polynomials—as parity checks in order to recover information 
about the cipher key. Low weight relations perform best but 
require more sequence because of their large degrees. 

II. BINARY TRINOMIALS 
Let a be a primitive element of GF(2") with minimum 

polynomial /(x). We consider the set of 3-term or trinomial 
relations ab + aa + 1 = 0, b > a > 0. That is, /(x) divides 
xb+xa+l. lib € {l,...,2n-2} = I, then a6+l is some power 
of a with exponent also in I. Thus the trinomials partition I 
into pairs. We denote the set of all trinomials as an ordered 
listing of ordered pairs: 

{(i;,a;)  | bi > a;; 6, increasing; i= 1 2"_1 — 1}     (1) 

We call such an ordered listing of pairs a pattern of trinomials. 
As an example, the two trinomial patterns for n = 3 are 

31    54    62    and    32    51    6 4. 

Consider all partitions of T that are in the canonical form 
of (1); we call such partitions patterns. We take all patterns to 
be equally likely, and we model choosing a random trinomial 
pattern, i.e., a primitive polynomial, as choosing a random 
pattern. We model the distribution of trinomial degrees by 
the distribution of the size of 6, over all patterns: 

Ri(k) = Prob(6; = Jfc) 

In particular, Ri (k) models the distribution of the lowest de- 
gree trinomial. We derive the distributions by considering pat- 
terns as in (1) defined for a general index set I = {1,..., N = 
2M}. The distribution Ri(k) is only nonzero for k between 2i 
and M + i. 

III. FORMULA FOR Ri(k) 
The calculation of the Ri(k) is combinatorial and follows 

from calculating the total number of patterns and those pat- 
terns with bi = k. (We also have an alternative derivation as 
a classical "birthday problem" in probability.) 
Proposition 1  For i = l,...,M and k = 2t,..., M + i, 

"**)-* (jfc-2i)!(i-l)!      JV!      (M-fc + t)!' 

In Figure 1, we plot in ascending order (the V curve) the 
degrees of the trinomials divisible by f(x) = x16 + x6 + x3 + 
x2 + 1. Since the x-coordinates correspond to the i index in 
Ri(k), we also plot for a given i the mean of the Ri(k) distri- 
bution and ±2 standard deviations from the mean. Though 
the actual trinomial curve levels off sooner than the model, 
the model captures the essence of the growth in the degrees. 

xThe authors were supported by the MITRE Sponsored Re- 
search program. 
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Figure 1: Growth of Trinomial Degrees (n = 16). 

IV. APPROXIMATE DISTRIBUTIONS 

As N gets large, Äi(fc) = -j^e-*2^.  This approximation 

yields an approximation for the mean:  y/NT/2. The general 
distribution can be approximated similarly: 

Ri(k) -fc2/N 
2'-17V'(t- 1)! 

If we replace k with a continuous variable, then the distribu- 
tion is in fact a generalized Rayleigh distribution with param- 
eters 2i and y/W. In particular, a good approximation to the 
mean of Ri(k) is 

l-3---(2t-l) 
l(i-l)! 

v/iVx/2 

Such formulas present an easy way to generate the model 
curves as in Figure 1 and offer an analytic method to mea- 
sure the growth of the degrees of the binary trinomials. 
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Abstract — This paper analyzes risks and presents 
the requirements of digital multisignature scheme in 
electronic contract systems. A new digital multisigna- 
ture scheme suitable for contract systems is proposed 
and the efficiency of the scheme is discussed. 

I. INTRODUCTION 
The electronic contract system needs to replace hand writ- 

ten signatures with digital signatures, digital multisignature 
might also be needed in such environments where several per- 
sons must sign the same digital message. 

There are the following potential risks: signature forgery, 
contract with the unauthorized party, denial of contract, mis- 
use of contractor's signature, malicious contract destruction. 
It is desired that the digital multisignature scheme satisfy 
the following requirements in the electronic contract system: 
verifiability, viability, dishonesty - detectability, commonness 
(common procedures), generality, orderlessness. 

This paper assumes that m users join the electronic con- 
tract system and sign the same contract message, and all sign- 
ers are connected by a bridge node or MCU. Let M be the 
contract message to be signed. / and h denote public one-way 
functions which are easily computable and are hard to invert. 
Let ID, and IDcm denote the identification information of 
user (contractor) i and the concatenation of signers' IDs, i.e., 
IDcm = IDl \\ID2 || ■■• ||/Dm. 

II. KEY GENERATION AND PUBLICATION 
Signer i registers his identification information (IDi) and 

the trusted center issues a smart card as follows : 
1. The trusted center selects two large prime numbers p 

and g, and keeps them secret. 

2. The trusted center publishes a modulus N which is the 
product of p and q. 

3. The trusted center calculates integers Sij for signer i : 

It;    =    f(IDi,j),        i=l,...,fc (1) 

Z;-1     =    Sfj    (mod AT) (2) 

4. The center issues a smart card to signer i after identi- 
fying his physical identity. 

The smart card includes the set of (N, f, h, Su, ■ ■ ■, Su-). 

III. MULTISIGNATURE GENERATION 

1.  The signer n generates a random integer Rn g Zjv and 
calculates 

Xn    =    R2
nXn-i    (mod N) (3) 

(eni,---,e„t)    =    h(M,IDcm,Xn) (4) 

Yn    =    Y-a-xR-a  Yl  Snj    (mod N)(5) 

where Xo — 1, Yo = 1 and j = 1, • • •, k 

2. The signer n broadcasts (X„, Yn) to all the other sign- 

IV. MULTISIGNATURE VERIFICATION 

When the multisignature generation procedures were 
completed, the verifier or signer gets the multisignature 
(M, IDcm, Xi, ■ ■ ■, Xm, Ym), the verifier calculates 

(en,---,eik) = h(M,IDcm,Xi),      »=l,--.,m       (6) 

and stores only (M, IDcm, (en, ■ • •, en), • • •, (emi, • • •, emfc), 
Ym) for verification of the multisignature.   When multisigna- 
ture verification is requested, the verification procedures are 
as follows: 

1. The verifier calculates Iij with IDcm. 

Iij=f(ID„j),      i = l,---,m,j = l,...,k       (7) 

2. The verifier calculates Zm. 

m 

Zm = Y^Y[ I] 7,J    (modA0>      J = l,"-,fe   (8) 

3.  The   verifier   calculates   h(M,IDcm, Zm)   and   checks 
whether the equation 

(emi, • • •, emfc) = h(M, IDcm, Z„ (9) 

holds true. 

If it does, the multisignature message is considered to 
be valid. 

V. EFFICIENCY AND CONCLUSIONS 

The proposed digital multisignature scheme satisfies with 
all the requirements of multisignature scheme in electronic 
contract systems. The proposed scheme requires (it/2 + 3)t 
modular multiplications to generate a signature, rn transmis- 
sions to complete the multisignature procedure and the in- 
formation redunduncy of {m\ID\ 4- ktm + |JV|) bits must be 
stored for multisignature verification where t is a security level 
parameter. 

Since the new proposed multisignature scheme is based on 
the Fiat-Shamir scheme, the scheme is more efficient than 
other RSA based multisignature schemes and as secure as the 
Fiat-Shamir scheme. Owing to the high processing speed and 
the high degree of satisfaction to the requirements, the new 
proposed scheme is suitable for electronic contract systems. 
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Abstract — We introduce a new model, the broad- 
cast channel with confidential messages, with tamper- 
ing. Here, the enemy not only taps the wire but also 
actively tampers the signal communicated over the 
wire. We show that the legitimate users always have 
to take a certain worst case scenario into account. 

Csiszär and Körner [1] introduced the broadcast channel 
with confidential messages (BCC). It consists of three partic- 
ipants: two legitimate users of the main channel, Alice and 
Bob, and a wire-tapper, Eve, the enemy. Alice and Bob want 
to generate a secret key such that Eve can only obtain a neg- 
ligible amount of information about it. It is assumed that all 
players know everything; the codes and protocol used by the 
legitimate users, and the noise characteristics of the main and 
wire-tap channel. The central question is to determine the 

secrecy capacity Cs, which is the maximal rate at which Alice 
and Bob can generate a secret key. 

We introduce the BCC, with tampering (BCCT), in which 

in addition Eve actively tampers. Now, solely Eve is assumed 
to know everything. Alice and Bob can measure the noise 
characteristics of the main channel, and they have limited 
knowledge about the noise characteristics of the wire-tap chan- 
nel. 

If Alice wants to transmit the binary signal a 6 {0,1}" 
then she converts it into a polar analog signal a(t) with signal 
power 5,4, which she transmits to Bob over a distortionless 

channel with length IA+IB and attenuation coefficient a. The 
first part of the main channel from Alice to the position where 
Eve taps the wire has length I A, and, hence, transmission loss 
(.LA)CLB = cd A- The second part of the main channel has 
length IB and transmission loss (Lß)dB = als- Bob uses an 
amplifier with noise figure ns and power gain gs to obtain 
an analog signal 6(f), which he converts to a binary signal 

b 6 {0,1}™. The wire-tap channel of Eve causes transmission 
loss LE ■ Eve uses an amplifier with noise figure TIE and power 
gain gs, to obtain an analog signal e(f), which she converts 
to a binary signal e £ {0, l}n. The noise caused in both 
amplifiers is additive white Gaussian noise with zero mean, 
independent of the signals 6(f) and e(f). We assume that the 

electrical noise of the channels is nihil compared to the noise 
caused in both amplifiers. Finally, Eve has inserted a tamper 

device which causes additional transmission loss (Lr)dB = 
£T{IA + IB) independent of her signal e(f). 

Alice and Bob know SA, TIB (which they can measure as 
accurate as they like), I A, IB- They only know a probabil- 
ity distribution of the attenuation coefficient Pr(a), and they 
know LE and HE with LE < LE and TIE < TIE. In the worst 
case for Alice and Bob LE = LE and TIE = TIE- The tam- 
per device introduces additional transmission loss LT- Since, 
the exact value of the transmission loss over the main channel 
is unknown LT is unknown. Alice and Bob can only obtain 
statistical information about LT (as we shall see). 

The signal power of 6(f) is SAQB/LALTLB, and the corre- 

sponding noise power is UBgB- Hence, the signal to noise ratio 

of the main channel equals (S/N)AB = SA/LALTLBTIB = 
SA/{nBW(a+ST){lA+lB)/w). Alice and Bob view this as a 
function of a + ET- Thus the channel from Alice to Bob 

with input a and output b is a BSC{PAB{OI + er)) with 

PAB(CX + ET) = Q{y/{S/N)AB), that is a binary symmet- 

ric channel with cross-over probability Q(^(S/N)AB), where 

«(*)=vfcJ."«-.A,/a^ 
Suppose that prior to the secret key generation Alice trans- 

mits m zero's to Bob. Let the random variable k(m) be 
the number of Is Bob receives over the main channel. Let 
P(x) = Pr(a > x). Then we can derive 

Pr PAB(a + ET) 
k(m) 

< £,a > x H1-!^)^ 
Hence, for m large enough Alice and Bob may approximate 
PAß(a + ET) by k(m)/m, which leads to an approximation 

a(k(m)/m) of a + ET (a = PAB)- More precisely 

Pr a + ET — a 
k(m) 

> 
4m<5(e)s P(x). 

The signal power of e(f) is SAQE/LALE, and the corre- 
sponding noise power is nsgE- Hence, the signal to noise 
ratio of the channel from Alice to Eve equals (S/N)AE = 

SA/LALEUE < SA/Wa,A/10LEnE. Thus the channel from 
Alice to Eve with input a and output e is a BSC(PAE) with 

PAE = Q(y/(S/N)AB) > Q(.y/SA/10r*'A/™LBnE)=pAB{a). 
We notice that all noise is generated in both amplifiers. 

Hence, the BCCT is equivalent to the binary symmetric BCC, 
in which the main channel is a BSC(PAB(CX + ET)) and the 
wire-tap channel is a BSC(PAE) from Alice to Eve. With 
probability at least (1 — l/AmS(E)2)P(x) the worst-case sce- 
nario for Alice and Bob is a BSC(pAB{a(k(m)/m) + e)) 
as main channel and a BSC(PAE(X)) as wire-tap channel. 
The secrecy capacity of the worst-case scenario is equal to 
Cs(x,k(m),m,E) = h(pAE(x)) - h(pAB{a{k(m)/m) + e) [1]. 
We notice that a secret key generated in the worst-case sce- 
nario is also secret (for Eve) in the real situation. We conclude 
that in the BCCT a secret key can be generated with rate at 
least 

sup (1 - l/4m6{e)2)P(x) V Cs(a;1fc)m,e)Pr(fc(m) = k). 

The final conclusion is: "Alice and Bob need to take tam- 
pering by Eve into account, which implies that they have to 

realize that k(m)/m is an approximation of CX + ET, not of a". 
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Abstract —  The two notions in the title coincide. 

I. INTRODUCTION 

Secret sharing schemes (SSS) made their appearance (see 
[1], [2]) in the form of threshold (n, r)-schemes in 1979. 
R.McEliece and D.Sarwate pointed out [3] a relationship be- 
tween threshold schemes and MDS-codes in 1981. In 1983 
E.Karnin,J.Greene and M.Hellman [4] gave an information- 
theoretic approach to SSS and proved some upper and lower 
bounds on the number of participants in an ideal perfect 
threshold SSS. The proof is based, in fact, on the observa- 
tion that each ideal perfect threshold SSS determines a unique 
MDS code, and vice versa, when the secret and shadows be- 
long to the same finite field. E.F.Brickell and D.M.Davenport 
[6] considered combinatorial ideal perfect SSS for the general 
access structure and established the relationship between such 
schemes and matroids. Prom their results the equivalence of 
combinatorial ideal perfect threshold SSS and MDS codes (i.e. 
orthogonal arrays OA\ (r, n+1, q)) follows almost immediately. 
In this paper we give an independent, self contained proof 
(following the ideas in [4]) for the (formally) more general 
information-theoretic definition of ideal SSS. 

II. DEFINITIONS AND A USEFUL LEMMA 

Let So; Si... ,Sn be finite sets used by an SSS dealer as al- 
phabets. So is for the secret, and other Si for shares. We call 
a point s = (so, si,..., s„) G S = «So x • • • x Sn a sharing rule. 
Any SSS can be defined as a probability distribution P(s) on 
S, which the dealer uses for generating sharing rules, i.e. for 
choosing a secret so and giving a corresponding share s; to 
the i-th participant. 
Let T be an access structure , i.e. a set of subsets of {1,..., n} 
with the monotonic property (A G T, A C B imply BgT). 
Consider So, ■ ■ ■, Sn to be random variables with P as their 
mutual distribution. We call a pair (P, S) a perfect SSS, real- 
izing an access structure T if (see [4], [5]) H(So | Si, i G A) = 0 
or H(So) according as A G T or not. 

Denote by rmin the set of minimal subsets of F. The fol- 
lowing lemma (see [5]) is very useful 
Lemma 1 H(Sj \ Si,i e A\{j}) > H(S0) for any A G rmin 

and any j G A. 

Corollary 1 H{Si,i G A) >| A | H(So) for any A G rmin. 

III. AN EQUIVALENCE INVOLVING THE COMBINATORIAL 

DEFINITION 

We call V = {s G S \ P{s) > 0} the "code" of the SSS 
(P,S). Let q = \So\- Let us note that if the pair (P, S) 
perfectly realizes an SSS for the access structure T for some 
distribution p(so) on secrets, then any distribution on So can 

be perfectly realized by the same S, the code V and an ap- 
propriate choice of P. Prom this remark and Corollary 1 one 
can show that the following are true. 
Lemma 2 [V| > qw for any perfect SSS and any A G rmin. 

Corollary 2 For any perfect (n,r)-threshold SSS the cardi- 
nality of its code satisfies the inequality \V\ > qT. 

We will distinguish between two definitions of ideal SSS. The 
combinatorial definition of an ideal perfect SSS is that |<So| = 
|<Sj| for all i. A (formally) weaker information-theoretic (IT) 
definition is that H(Si) < H(S0) for all i. The following 
corollary of Lemma 1 (see [4]) shows that the set V is a code 
with minimal Hamming distance d(V) > n — r + 2 . 

Corollary 3 H(Sj \ Silt...,SiT) = 0 for any IT-ideal 
perfect (n,r)-threshold SSS and any distinct j,i\,...,iT G 
{0,1,..., n), i.e. Sj is a function of Six,..., SiT. 

Hence, for the combinatorial definition of an ideal perfect SSS, 
Corollaries 2 and 3 ensure that the code V of an ideal perfect 
(n, r)-threshold SSS is a g-ary code of length n + 1, distance 
d(V) > n — T + 2 and cardinality | V\ > qT. Therefore V is an 
MDS code with | V \— qT and d(V) = n-r + 2 (the converse, 
that any MDS code with the above parameters generates an 
ideal perfect (n, 7")-threshold SSS, is rather obvious). 

IV. THE MAIN RESULT - AN EQUIVALENCE INVOLVING 
THE INFORMATION-THEORETIC DEFINITION 

Now we can prove that the same equivalence is true for 
IT-ideal SSS also. Denote by VA the punctured code ob- 
tained from V by deleting coordinates "outside of A" (t.e. 
not belonging to A). Corollary 3 states that |V| = \VA\ for 
any A : \A\ = r. On the other hand, the random variables 
Sit ..., SiT are mutually independent (see Lemma 1). There- 
fore, |Vi!,...)jT | = |5ix | • ■ • |<SiT |. Hence, the cardinalities of all 
sets Si are equal to |5o| = q and we again have the case of 
combinatorial ideality. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 
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Abstract - In this paper the use of product codes 
cryptographic purposfor es is discussed. The 
codes are used in a scheme that applies a special 
type of structured errors that, as far as we know, 
do not exist in any real communication channel. 
Although this fact seems of no importance, since 
the errors in any error-correcting code based 
cryptosystem are artificially generated at the 
transmitter, its use allows an improvement in the 
security level in comparison with similar 
schemes. 

I. SUMMARY 
The use of burst-correcting product codes for 
cryptographic purposes has been recently investi- 
gated [1],[2], where a private-key cryptosystem 
was proposed, based on the fact that the single 
burst-correcting capacity of a code is, in general, 
larger than its random error-correcting capacity. 
In this paper the scheme is revisited and a new 
class of product codes to implement the cryp- 
tosystem is proposed. The key idea of the origi- 
nal scheme has been to use a code which is ca- 
pable of correcting a special kind of structured er- 
rors and then disguise it as a code that is only lin- 
ear, which makes it unable of correcting the er- 
rors as well as their permuted versions. 
Specifically, in the search for such a structure, 
the choice for bursts and burst-correcting codes 
was a natural one in the context of error control 
codes. However, we observe that the errors 
structure to be used does not have to necessarily 
exist in a real communication channel, once that, 
for cryptographic purposes, they are artificially 
generated at the transmitter. With that in mind we 
introduce the following concepts: 
Definition 1 -The direct mapping of parameters 
1 and s, denoted DMjs (.), is the one that maps 
the vector v = ( vi ,   v\s) into the matrix V 
(vjj), of elements vy = vis+j+i, i = 0, 1, ..., 1-1, 
j = 0, 1, ..., s-1. 
Definition 2-The vector e = ( ei , &i ,.... eis ), 
ej E GF(q), is said to be a biseparable error over 
GF(q), denoted BSE (l,s), if (i) Its components 
are nonzero distinct elements of GF(q) and (ii) 
each row and each column of DMis(e) contains, 
at most, one nonzero component. 
From the above definitions, it can be seen that the 

maximum weight of a BSE(l,s) over GF(q) is 
«max = min (q-1, min(l,s)) and the number of 

BSE's with a given weight co is (co=l,2... tomax) 

NBSE(1,S) (co) = ^ ~ ^ f\   (1 +1 - i)(s + 1 - i) 

Proposition- A product code PC (n, k, d) 
over GF(q), whose constituent row and col- 
umn codes are, respectively, single parity- 
check codes Ci (Ni = s+1, K} = s, Di = 2) 
and C (N2 = 1+1, K2 =1, D2 =2), can correct 
BSE(l+l,s+l)'s of weights up to comax. 
Denoting by G the generator matrix of PC(n, k, 
d), the encryption procedure consists of calculat- 
ing the ciphertext C from the plaintext M, using 
C = (MSG + E1S)(D)P , where EiS;(D   is a BSE 

(l+l,s+l) of weight co, P is an nxn permuta- 
tion matrix and S is a kxk scrambling matrix, 
used to hide the structure of the matrix GP. The 
working factors for breaking the system by some 
of the attacks that are typically applied against 
cryptosystems based on error control codes, are 
related with the number of codes in the class de- 
fined above, which is Nc = (1+1) (s+1) (Is)!. 
Using G' = SGP, the cryptanalyst must find, 
among all Nc matrices, one of the (1+1)! (s+1)! 
matrices that can be used to decode the corrupted 
received vector (ciphertext). That means a work- 
ing factor of (1 s) ! / 1 ! s! , which compairs 
favourably with the results obtained by the previ- 
ous scheme. 
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Abstract — We consider the problem of partial ap- 
proximation of binary sequences by the outputs of lin- 
ear feedback shift registers. A generalization of the 
linear complexity profiles of binary sequences leads to 
a sequence that is regarded as the profile of interval 
linear complexity. Some properties of this sequence 
are examined. 

I. INTRODUCTION 
A widely used criterion of the linear complexity of binary se- 
quences was introduced by R.Rueppel [1]. In accordance with 
this criterion, we construct an integer-valued sequence, called 
the 'linear complexity profile' (LCP), whose j'-th component, 
Lj, is the shortest length of a linear feedback shift register 
(LFSR) generating the first j bits of our binary sequence. The 
component Lj can be found using Berlekamp-Massey algo- 
rithm [2], and pseudo-random sequences possess an LCP with 
Lj « j/2 for all j. However, there are many examples when 
the deviations of the LCP from the sequence j/2, j = 1, 2,... 
do not characterize the 'randomness' of binary sequences. For 
example, let us suppose that we are given a sequence u'Ol00, 
where u* is a sequence of length n having a 'good' LCP. Then 
u* is generated by an LFSR of length « n/2. Nevertheless, 
the final result of Berlekamp-Massey algorithm, applied to the 
whole sequence, is the LFSR of length n + 2, and the LCP is 
as good as before up to the « 2«-th component. It is easy to 
see that if we construct the LCP of the sequence starting at 
the n + 1-st bit then the conclusion would be different. Thus, 
to extend the Rueppel's approach we need to construct the 
LCPs for all subsequences of the input sequence and select 
the worst one, whose deviations from the line j/2 should be 
used as a measure of complexity. Such a procedure seems to 
be rather complicated. 

In this paper, we introduce a new measure of complexity, 
called an interval linear complexity. For all L < m, where m is 
a given positive integer, we find all the fragments of the binary 
sequence that have length L + m and can be generated by an 
LFSR of length L. The number of such fragments and their 
lengths contain information on LCPs for all starting positions, 
and the results of analysis can be useful for different methods 
based on linear approximations. 

II. SOME PROPERTIES OF THE m-INTERVAL LINEAR 
COMPLEXITY 

Let u = tti,U2)--- be a binary sequence. We assume that 
u\ = 1 and Ui = 0 for i = 0,-1,... For all k > 0, we set 
Uj ' = (uj-k+i, ...,iij) and write u) ' -< T(L) iff there exists 
a binary vector (oi,...,ai) such that ut = a\ ■ ut-\ + ... + 
O.L ■ Ut-L for all t £ {j — k + 1,..., j}. Furthermore, we write 
uj ^ -F(L') iff «t # h ■ ut-i +...+ bLi ■ ut_Li for at least one 
t S {j — k + 1, ...,j}, where (bi, ...,bLi) is any binary vector. 

Let us fix j > m and define 4 as the shortest length of an 

LFSR, generating the fragment Wm' provided that the subse- 

quence u^_m, where L = Ly1', forms the initial content of the 

shift register, i.e., (a) u^m) -< r(L{^); (b) if V < L^, then 

u,      7^ T(L'). Using conventional notations [2], we claim that 

L m = L iff L is the shortest length of an LFSR generating 
the subsequence Uj-m-L+i, ...,UJ, and all the subsequences 
Mj_m_L'-|.i, ...,»j, where V < L, cannot be generated by an 

LFSR of length V'. The parameter £j will be referred to 
as the m-Interval Linear Complexity (m-ILC) of u at position 
j, and the sequence L^™h, L™22,... will be regarded as the 
profile of the m-ILC of u. Some properties of the m-ILC are 
detailed below. 

Theorem. 
1. Let Lij be the shortest length of an LFSR generating 

Ui, ...,UJ. Then 

L)  ' = mm Lij. 
3 i: i+Lij<j-m+l 

2. If Lj' — L < m, then there is exactly one LFSR of 
length L generating Uj-m-L+i, ...,UJ. 

3. If 

4-i # 4"°' 
r.(m) -     - (m) 
~, -     -i+,_i -L<m, 
r(m) -L  r(m) 

then 

r(m)   ^ 
4-1 ^ m' 
4+H-A I = ™ + l for all  Al = 0,...,m-1-L, 
r(m) ^ 
4+l+m-L   ^ m- 

The theorem claims that the profiles of the m-ILC have 
very regular structure. If the current element of the profile, 
4^1 > 's greater than m then the next element, Lm , can be 
less than m, i.e., the profile 'falls into the pit'. In this case, the 
profile can stay in the pit for I times or jumps at the level m + l 
and stays at this level for m — Lj1' times.   The parameters 

/ and m r(m) can be interpreted as the 'length' and the 
'depth' of the pit, and the duality between them takes place. 

Such a behaviour gives an opportunity to realize an inter- 
val atack on the stream cipher when the cipher is constructed 
using some complex scheme, but an eavesdropper approxi- 
mates its fragments by LFSRs of length < m. Suppose that 
the eavesdropper has some set of the key words and assumes 
that they are written in the plain text. If he is right and the 
position of one of these words corresponds to a pit in the pro- 
file of the m-ILC, then he reconstructs the LFSR and reads 
all the other words of the plain text while the corresponding 
elements of the profile belong to this pit. 
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Abstract — Affine-invariant codes are primitive 

cyclic codes whose extension is invariant under the 
affine-group. We present the formal expression of the 
permutation group of these codes. We after give sev- 
eral tools in order to determine effectively the per- 
mutation groups. Our main application is the per- 
mutation group of primitive narrow-sense BCH-codes 
defined on any prime field. 

I. THE FORMAL EXPRESSION 

The reader can refer to [2, 4] for the definition of affine- 
invariant codes and their description by antichains. The per- 
mutations of coordinate places which send a code C into itself 
form the permutation group of C, denoted by Per(C); when 

the code is binary, this group is actually the automorphism 
group of C, usually denoted by Aut(C). 

Let G be the finite field of order pm and let k be a sub- 
field of G. We denote by AGL(m,p) the affine group of G 
over GF(p) and, for any divisor e of m, by AGL(m/e,pe) 
the affine group of G over GF(pe). The corresponding semi- 
affine group is denoted by ArL(m/e,pe) . We consider cyclic 

codes C of length pm — 1 over k. The extended code C is 
said to be an affine-invariant code if and only if its permuta- 
tion group contains AGL(l,pm). Affine-invaraint codes form 
a class including codes of great interest as BCH-codes or Reed- 
Muller (RM) codes (and generalized RM-codes). BERGER 
has recently proved that the permutation group of an affine- 
invariant code is contained in AGL(m,p) [l]. Then a formal 

expression of the permutation group of any affine-invariant 
code can be deduced: 
Theorem 1 Denote by 6k the kth-power of the Frobenius 
mapping on G. Let C be a non trivial affine-invariant code; 
let £ be the smallest integer dividing m such that 8e leaves C 
invariant. Then there is a divisor e of m such that Per(C) 

is generated by AGL(m/e,pe) and 9i - respectively Per■(C) is 
generated by GL(m/e,pe) and 8(. 

II.  TO DETERMINE THE PERMUTATION  GROUPS 

We give two conditions equivalent to DELSARTE's condition, 
providing new tools for the study of infinite classes of codes. 
The first one is derived from the result of DELSARTE, by using 

the description of affine-invariant codes by antichains. The 
second one comes from the polynomial representation of per- 
mutations: 

Theorem 3 The code C is invariant under AGL(m/e,pe) iff 
its defining set T satisfies: 

teT and j <mt  =>   t + j{pe - 1) € T . 

III. THE P-ARY BCH-CODES 

Theorem '4 Denote by B(d), the BCH-code of designed dis- 

tance d and length pm — 1 over GF(p), and by B(d) the 

extended code. Suppose that B(d) is not trivial, i.e. d £ 

{l,pm — 1} (in the trivial case Per(B{d)) is the symmetric 

group). Then the permutation group of B(d) is the semi-affine 
group ArL(l,pm), except for the following cases. 

• When p = 2, we have three kinds of exception: 

1. If d£ {3,2m_1 -1}, for anym, or d = 7 for m = 

5, then Aut(B(d)) is AGL(m,2); whence B(d) is 
a Reed-Muller code. 

2. If d = 2m~1 - 2(m-2)/2 - 1, for m even, then 

Aut{B{d)) = ArL(2,2m/2). 

3. If m = 6, then Aut(B(7)) = ArL(2,23) and 

Aut{B(15)) = ATI(3,22). 

• For p odd, the only exceptions are whenever B(d) is a p- 
ary Reed-Muller code. That is : de {2,pm~1(p-l)-l}, 
for any m; d = p2 — 2p — l, for m = 2 and p > 3; d = 5 
for m = 3 and p = 3. In these cases Per(B{d)) = 
AGL(m,p). 

Note that Per(B(d)) is the linear group GL() (or the semi- 

linear group rLQ), when Per(B(d)) is AGL{) (or AFLQ). 

For a large part of affine-invariant codes, mainly when m 
is a prime, the permutation group is completely determined 
by applying Theorem 1. The problems appear when m has no     [1] 
trivial divisors. 

Let 5 = [0,pm - 1] and let a be a primitive root of G. We     [2] 

call defining set of C the subset T of S consisting of 0 and 
of the s such that a! is a zero of C.  Let e be a divisor of m 
and v = pe. We identify any s € S with its u-ary expansion     t3l 

(so,...sm/e_i).    The «-weight of s is uv(s)  =  Yl^o'1 Sl- 
Then we can define the poset (5, <Ce) :  s and t in S satisfy 
3 <e t iff uv(pks) < u>v(pkt), for all k in [0, e - 1]. In terms of     W 
partial order the condition of DELS ARTE, given in [3], becomes: 

Theorem 2 Assume that C is affine-invariant.   Then C is 
invariant under AGL(m/e,pe) iff its defining set T satisfies: 

teT and s -Ce t  =>   s eT . 

[5] 
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Mixed-Rate Multiuser Codes for the T-User Binary Adder Channel 
A. Brinton Cooper III 
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Brian L. Hughes1 

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA 

Abstract — Coding schemes for the T-user binary 
adder channel are investigated. Recursive construc- 
tions are given for two families of mixed-rate, mul- 
tiuser codes. These basic codes can be combined by 
time-sharing to yield codes approaching most rates 
in the T-user capacity region. The best codes con- 
structed herein achieve a rate sum, Ri + ■ ■ ■ + RT, 

which is higher than all previously reported codes 
for T > 4 and is within 0.519 bits/channel use of the 
information-theoretic limit. 

SUMMARY 

One of the most extensively investigated multiple-access 
channels is the binary adder channel, described as follows. T 
users communicate with a single receiver through a common 
discrete-time channel. At each time epoch, user i selects an 

input Xi G {0,1} for transmission. The channel output is 

*£ Xi (1) 

Chang and Weldon's construction shows how to approach 

one point on the boundary of the T-user capacity region. Sim- 
ilarly, all subsequent work for T > 2 has focused on the sym- 
metric rate case, except for [5] where R1 = R2 = ■ ■ ■ = RT-I 

but RT > Ri- It is natural to ask, however, whether other 
points in the capacity region can be approached by a similar 
construction. 

This talk will present two mixed-rate, multiuser code con- 
structions for the binary adder channel. The codewords con- 

tained in these codes are equivalent, up to an affine transfor- 

mation, to those in [1] and [6]; however, the recursions are 
adapted in order to distribute these codewords among as few 
users as possible. As a result, we obtain codes with a wide 
range of information rates. In particular, we show that these 
basic codes can be combined to approach all rates in the poly- 
tope 

0    <     Ri   <   Hi - ei , 

0    <     Ri + Rj   <   H2-e2 , 

where summation is over the real numbers.  We assume that 
there is no feedback and all users are synchronized. 

Chang and Weldon [1] showed that the capacity region of 
the T-user binary adder channel is the set of all nonnegative 
rates (Ri,..., RT) satisfying 

0    <     Rt   <   Hx , 

0     <     Ri + Rj   <   H2 , 

0    <    Ri + ■ ■ ■ + RT  <   HT eT (4) 

0    <    ÄH + RT  <   HT 

where 

H„ 4-E los (3) 

In particular, observe that the largest achievable sum-rate, 

-Rsum(T) = Ri + ■■■+ RT, is CSum{T) = HT, which is called 
the sum,-capacity. 

Chang and Weldon [1] also presented a family of mul- 

tiuser codes which are asymptotically optimal in the sense 
that Rsu-m.{T)/Csum.{T) —> 1 as T —» +00. In their construc- 
tion, each user's code consists of only two codewords which 
are defined recursively (so Ri = R2 = ■ ■ ■ = RT). This basic 
construction has been generalized in several ways [2, 3, 5, 7], 

and alternate constructions have been proposed based on coin 

weighing designs [6] and additive number theory [4]. 

1B. L. Hughes was supported by the National Science Foun- 
dation under grant NCR-9217457,' and by the U.S. Army Re- 
search Laboratory and the U.S. Army Research Office under grant 
DAAL03-89-K-0130. 

where 0 < em < 1.090 bits/channel use, 1 < m < T. More- 
over, we construct a family of T-user codes with RSUm(T) > 
CSum{T) — 0.519 bits/channel use, which exceeds the sum- 
rate of all codes previously reported in [1, 2, 3, 4, 5, 6, 7] for 
T > 4. Extensions to a T-user, Q-frequency adder channel 
are also discussed. 
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Abstract — In this paper, new (pm,m) and (pm,m- 

1) quaternary linear codes of dimension 5 are pre- 
sented. These codes belong to the class of quasi- 
twisted codes. 

I. INTRODUCTION 

A fundamental and challenging problem in coding theory is to 

find a linear (n, k) code over GF(q) achieving the maximum 
possible minimum Hamming distance. This value is denoted 

as dq(n,k), and linear codes which have a minimum distance 
equal to dq(n,k) are called optimal. For q = 4, dq(n, k) has 
been determined for k < 3 and all but 10 values of d for 

k = 4[1]. Many values of di(n,5) have been established, and 
Brouwer [2] maintains an up to date table of upper and lower 
bounds for k < n < 132. In this paper several values of 
dt(n,5) are determined. 

II. QUASI-TWISTED CODES 

The class of quasi-twisted (QT) codes is a generalization of 
the class of quasi-cyclic (QC) codes over GF(g), q > 2[4]. A 

code is called quasi-twisted if a negacyclic2 shift of a codeword 
by p positions results in another codeword. The blocklength, 
n, of a QT code is a multiple of p, so that n = mp. Many 
QT codes codes can be constructed from m x m twistulant 
matrices (with a suitable permutation of coordinates). In this 
case, the generator matrix, G, can be represented as, 

G = [Bu B2, ..., Bp] (1) 

where the Bi are m x m twistulant matrices of the form 

B = 

b0 h h bm-2 bm-l 
abm-i bo fti bm-3 bm-2 
Clbm-2 a6m-i 6o bm-i bm-3 

aii afco ab3 .abn 

(2) 
and a GGF(g)\{0}. The algebra of m x m twistulant matrices 
over GF(g) is isomorphic to the algebra of polynomials in the 
ring GF(q)[x]/xm — a if Bi is mapped onto the polynomial 

bi(x) formed from the entries in the first row of Bi. The bi(x) 
are called defining polynomials. 

The 1-generator QC codes[6] can be generalized to 1- 
generator QT codes. The order of a 1-generator QT code, 
V, is defined as 

h(x) = 
gcd{sm - l,co(x),ci(x),- ■ ■ ,cp-i(x)}' 

(3) 

where a gGF(g)\{0}, and k, the dimension of V, is equal to 
the degree of h(x). If h(x) has degree m, (1) is a generator 
matrix for V.  If deg(h(x)) = k < m, a generator matrix for 

1This research was supported in part by the Natural Sciences 
and Engineering Research Council of Canada. 

A negacyclic shift of an ra-tuple (XQ,X\ ,... ,xm—l) is the m- 
tuple (axm-i,x0,...,xm-i),a 6GF(g)\{0}. 

V can be constructed by deleting m — k rows of (1).   Codes 
with k — 5 and m = 5 and 6 are considered here. 

A search for good QT codes requires a representative set of 
defining polynomials[4] which can be enumerated using Burn- 

side's Lemma[5]. For q = 4 and m = 5, there are 70 for all 
values of a. However, since 4 J( m, the quaternary QT codes 
with a =£ 1 are not equivalent to QC codes[4]. The results of 
a greedy local search are given in the next section. 

III. CONSTRUCTION RESULTS 
In addition to establishing many lower bounds on d$(n, 5), 

the following new optimal codes (based on the bounds in [2] 

and the Griesmer bound) were found. A (50,5) code with 
d = 35, A (105,5) code with d = 76, a (110,5) code with 
weight distribution 

Weight 0 80 84 88 92 
Count 1 618 225 105 75 

a (115,5) code with d = 80, a (120,5) code with distribution 

Weight 

Count 

0       88 96 120 

1      765     255 

a (126,5) code with d = 92, a (132,5) code with d = 96, a 
(205,5) code with weight distribution 

Weight 0 152 156 160 168 
Count 1 810 120 4 90 

and a (216,5) code with weight distribution 

Weight 0 160 168 176 192 
Count 1 792 192 36 3 

IV. SUMMARY 

The construction of quasi-twisted (QT) codes over GF(4) 
has been presented. Many of the codes constructed have 
a minimum distance which establishes a lower bound on 
the maximum minimum distance. The new codes include 
several optimal codes which determine dt(n,5) for n = 
50,105,110,115,120,126, 132, 205 and 216. 
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Abstract — We discuss the error correction capab- 
ilities of a class of Hecke modules as linear codes and 
free linear block m-PSK modulation codes. 

We provide an introduction to the study of modules for a 
Hecke algebra (of type A) as linear codes for the Hamming and 
the Euclidean metric. These modules are called Hecke mod- 
ules and play an important role in another branch of math- 
ematics, representation theory of groups and algebras [l]. 

We first introduce a class of Hecke modules in a purely 
combinatorial manner. In particular, we provide a basis for 
each of these modules which can be easily calculated by a 
computer [2]. 

These Hecke modules are very interesting from the point 
of view of coding theory. For this, note that these Hecke 
modules can be defined as vector spaces over any field and so 
may be considered as linear block codes [2],[3]. In particular, 
the primitive generalized Reed-Muller codes over the primes 
as well as shortened versions of them and the Simplex codes 
emerge as subclasses of our Hecke modules in a very natural 
way. We review Hecke modules whose coding parameters are 
known as the Specht modules and several one-step majority 
logic decodable codes [4]. Then we consider so-called char- 
acteristic Hecke modules. A characteristic Hecke module is a 
free Z-module yielding a linear code over GF(p) by reducing 
the coefficients of all linear combinations of its generating ele- 
ments modulo p so that the parameters n, k and d of the code 
are independent of the choice of p. For instance, binary Reed- 
Muller codes and Simplex codes emerge in this way but not 
generalized Reed-Muller codes. 

Moreover, these Hecke modules can be considered as free 
modules over the ring Zm or one of its extension rings 
and therefore represent free linear block m-PSK modulation 
codes [5]. We have calculated the minimum squared Euclidean 
distance of the Hecke modules over Zm, m a prime, result- 
ing from the previously discussed characteristic Hecke mod- 
ules. Furthermore, we give a list of Hecke modules of length 
n = 6,..., 16 over Zs with a good minimum squared Euc- 
lidean distance calculated by an exhaustive computer search. 
Finally we compare the resulting codes with further classes 
of block m-PSK modulation codes such as cyclic codes over 
Zm and multilevel codes. It will turn out that at least for 
short length, the minimum squared Euclidean distance of our 
codes is as good as the one of the best unrestricted modulation 
codes. 

[3] K.-H. Zimmermann, Beiträge zur algebraischen Codierungsthe- 
orie mittels modularer Darstellungstheorie. Habilitationsschrift, 
Bayreuther Mathematische Schriften, vol. 48, 1994. 
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REED-SOLOMON GROUP CODES 

A. A. Zain, Student member, IEEE and B. Sundar Rajan, Member, IEEE 

I. Introduction Reed-Solomon codes over GF(pm), p a 
prime and m a positive integer, are cyclic, Maximum Dis- 
tance Seperable (MDS) and of length pm -1. The additive 
group of GF(pm) is elementary abelian of type (1,1,...,1), 
isomorphic to a direct product of m cyclic groups of order 
p, denoted by C™. This paper deals with MDS codes over 
C™ of length pm - 1 which is cyclic and MDS is called a 
Reed-Solomon group code. In general, a group code over 
C™ need not be a linear code over GF(pm) as shown in 
the following example. 

groups of nonzero elements of GF(pm) when represented 
by their companion matrices [4] corresponding to each ir- 
reducible polynomial of degree m coincides with a maximal 
order cyclic subgroup of Aut(C™). There are other cyclic 
subgroups of maximal order and one can use them to de- 
fine transforms which are counterparts of transforms over 
finite fields. 

Definition 1:   For any C™, let \? denote a maximal 
order cyclic subgroup of Aut(C™). \& with all zero matrix 
consitute an elementary abelian group isomorphic to C™ 

Example 1: Consider length 4> code over C\ — {l,x,y,xy}qnd considered along with matrix multiplication, form a 
consisting of the following 16 codewords. 

(1,1,1,1) 
(x, l,xy,xy) 

(y,i,2/,y) 
(xy,l,x,x) 

{l,x,xy,y) 

(y,x,x,l) 
(xy,x,y,xy) 

{x,y,x,y) 
(y,y,l,xy) 
{xy,y,xy,l) 

(l,xy,x,xy) 
{x,xy,y,l) 
(y,xy,xy,x) 
(xy,xy,l,y) 

The Hamming distance of this code is 3 and hence this is 
a MDS group code. 

In [1], it is shown that if Cis an (n,k,n—k+l) group code 
over an abelian group G that is not elementary abelian, 
then there exists an (n, k, n — k + 1) group code over a 
smaller elementary group G . In view of these results a 
natural question that arises is "Are all MDS group codes 
over C™ linear over GF(pm) as well?" Example 1 shows 
that is not true, in general. But, if one considers only 
cyclic and length pm — 1 group codes then it is true. In 
other words, all Reed-Solomon group codes over C™ are 
conventional linear codes over GF(pm). This can be shown 
by extending the well known transform approach for cyclic 
codes over finite fields [2] to group codes over elementary 
abelian groups. 

II. Transform approach to cyclic codes over ele- 
mentary abelian groups: Let C™, denote the elemen- 
tary abelian group isomorphic to direct sum of m cyclic 
groups of order p each. The ring of endomorphisms of 
C™, is denoted by End(C™). The set of automorphisms 
of C™, denoted by Aut(C™), form a group whose order 

is p 2 H^L^p1 — 1). Among the cyclic subgroups of 
Aut{C™) ,the maximal order subgroups have order (p™ -1). 
The ring End(C™) is isomorphic to Mm(p), the ring of 
mxm matrices over GF(p) [3]. This isomorphism gives ma- 
trix representation for elements of End{C™). It can be eas- 
ily seen that, when this matrix representation is used, the 

The authors are with the Department of Electrical Engineering, Indian 
Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India, 

email: bsrajan@ee.iitd.ernet.in 

ring calles a cononical ring of C™. 
For example, the representation of a finite field with a 

canonical matrix and its powers along with all zero matrix, 
clearly gives a canonical ring of C™. 

Definition 2: Generalized Discrete Fourier Transform 
(GDFT)): Leta = (a0,ai,... ,an_i), where d{ £ C™,i = 
0,1,..., n — 1, and n = pm — 1. The transform vector of a, 
denoted by A, is defined by 

Aj=®?-0
1aii(ai),j = 0,l,...,n-l, 

where a is a generator of a cyclic subgroup of Aut{C™) of 
order n, and ® denotes group operation in C™. 

When C™ is made GF(pm) by imposing a multiplica- 
tion structure with an irreducible polynomial g(x) then all 
non zero elements of GF(pm) can be represented by the 
companion matrix of g(x) and its powers and a in Defini- 
tion 2 can be replaced by the companion matrix of g(x). 
Then, Definition 2 coincides on the conventional DFT over 
GF(pm), of length pm - 1. 

Using the GDFT given in Definition 2 and the properties 
of Aut(C™) and its matrix representation the following can 
be proved. 

Theorem 1: Every cyclic and length pm — 1 MDS group 
code is a conventional linear code over GF(pm). In other 
words, all Reed-Solomon group codes over G™ are conven- 
tional linear codes over GF(pm). 
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Abstract — We propose a new construction of non- 
linear unequal error protection (UEP) block codes 
whose encoding complexity is approximately equiva- 
lent to the decoding complexity of a linear block code. 
Some classes of codes that are better than any linear 
UEP codes with the same parameters are presented. 

I. INTRODUCTION 

In the literature studies of UEP block codes were mainly 
concentrated on linear codes because of easy implementation 
of encoding and decoding. However, there are nonlinear UEP 
block codes that are better than any linear ones. In [1][2] a 
construction of such codes were presented along with exam- 
ples, which is based on the idea of superimposing codeword 
clouds originally introduced by Cover. But the drawback of 
the construction in [1][2] is that there do not appear to be 
easily implementation methods of encoding. We propose a 
new construction of nonlinear UEP block codes whose encod- 
ing complexity is approximately equivalent to the decoding 
complexity of a linear block code. 

II. DESCRIPTION OF CONSTRUCTION 

Here for simplicity we only consider two-level UEP codes. 
Let C be an (n, fci + k2) UEP code for the message space 
Mi x M2, where Mi = GF(q)ki, for i = 1,2. Each message 
m can be written as (mi,m2), where mi € Mi, for i = 1,2. 
Let c(m) denote the corresponding codeword in G for the 
message m. The error-correcting capability of a UEP block 
code is described by its separation vector s = (si,s2) defined 
by Si = min{d(c(m),c(m')) : m; ^ mj}, for i = 1,2, where 
d(a, b) denotes the Hamming distance between a and b. Let 
Ci, C2, and G3 be linear codes of block length n and generator 
matrix G\, G2, and G3, respectively. Define C23 to be the code 
with generator matrix [G2

r,G3
r]'r. The important message 

mi is encoded to a codeword ci in C\. The less important 
message 1x12 is first encoded to a codeword c2 in C2. The 
codeword c2 is then decoded by using a complete nearest- 
neighbor decoder of G3 and the output codeword denoted by 
C3(c2) £ C3 is produced. The codeword b which carries the 
less important message m2 is obtained by b = c2 — 03(02). 
The final transmitted codeword c = ci+b. Clearly, the overall 
two-level UEP code C = C\ + B, where B is the set of all b. 
Property 1: If all the rows of [G2, G"1]

T
 are linear independent, 

the encoding mapping from the less important message space 
M2 to B is one-to-one. 

Let w represent the maximum weight of codewords b e B. 
Since all b are minimum-weight coset leaders of C3, we have 
w < p, where p is the covering radius of C3 defined by p = 
max {min {|y - c| : c E C3} : y € GF(<j)n}. Let d\ denote the 
minimum distance of Ci and d23 be the minimum distance of 
the code G23. 
Property 2: s\ > d\ — 2w > d\ — 1p. 
Property 3: If d\ > d23 + 2w, s2 > d23. 

Consider two lower bounds on block length for linear UEP 
codes.  The first bound is a generalization of the well-known 

Singleton bound: n > s\ + k\ + k2 - 1. The second one is 

a generalization of the Griesmer bound: n > Ei=i   J&"   + 

Ei=Lt*+i "ST ■ Notations ns and na will be used to repre- 

sent these two lower bounds. 
With this new construction, there exist codes which are bet- 

ter than any linear ones. For example, let Gi be a repetition 
code of length 24 and C23 be a (24,23) parity check code. We 
can choose C2 to be a (24,12) extended Golay code because 
the (24,12) extended Golay code is a subcode of the (24,23) 
parity check code. The covering radius of the (24,12) ex- 
tended Golay code is 4. Hence this construction gives k\ = 1, 
k2 = 11, si > 24 - 2 • 4 = 16, and s2 > 2. The bounds give 
ns = riG > 27. However, our construction only has n = 24. 

Other new UEP codes can be constructed from BCH codes 
and Reed-Muller codes. Examples of these codes which are 
better than any linear ones with the same parameters are given 
in Tab. 1 and Tab. 2. 

Tab. 1: Examples of UEP codes constructed from BCH codes of 
length 2m — 1 which are are better than any linear codes. (NC: no 
coding, SEC, DEC, TEC: SEC, DEC, TEC BCH code.) 

m > Ci C-3 fcl 
fc2 »1   > '2 > 

3 Repetition NC SEC 1 2'"   - 3 1 

4 Repetition NC DEC 1 ■2m 2"" - 7 1 

5 Repetition NC TEC 1 3 m. 2'"' - 11 1 

4 Simplex NC SEC m TO 2TO.-1  _ 2 1 

6 Simplex NC DEC m 2 m 2™-i-6 1 

7 Simplex NC TEC m 3m 2'n-l  _ 10 1 

6 Repetition SEC DEC 1 m 2'"1 - 7 3 

5 Repetition SEC TEC 1 2m 2'"  - 11 3 

8 Repetition DEC TEC 1 m 2""   - 11 5 

11 Simplex SEC DEC m TO. 2TO-1  _ 6 3 

10 Simplex SEC TEC m 2m 2">-l  - 10 3 

19 Simplex DEC TEC m m 2TO-1  _ 10 5 

Tab. 2: Examples of UEP codes constructed from Reed-Muller 
codes of length 2m which are better than any linear codes. (The 
entries for Ci, C2, and C3 give the orders of the Reed-Muller codes.) 

m > Ci V* *i *2 »1 > "2  > 

5 0 m m-3 1 ELO(T) 2m-2(m+2) 1 

5 0 m-1 m-3 1 EL (7) 2m-2(m + 2) 2 

7 0 m-2 m-3 1 (m-2) 
2™'-2(m + 2) 4 

9 1 m m-3 m+l EL, (?) 2m--1-2<m + 2) 1 

9 1 m-1 m-3 m + 1 EL (7) 2™--1-2(m + 2) 2 

11 1 m-2 m-3 m+l U-0 2™-1-2(m + 2) 4 

7 0 m m-4 1 EL (7) 2Tr?'-m2-3m + 12 1 

7 0 m-1 m-4 1 E3   (?) /-ii=i v«1 
2m-m2-3m + 12 2 

8 0 m-2 m-4 1 EL (7) 2m-m.2-3m + 12 4 

10 0 m-3 m-4 1 (7) 2m-m2-3m + 12 8 

14 1 m m-4 m+l EL (7) 2rn'-1-m2-3m + 12 1 

14 1 m-1 m-4 m + l 
y3       m 2*T,-1-m2-3m + 12 2 

14 1 m-2 m-4 m+l E3   (?) 2r7l~1-m2-3m + 12 4 
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Abstract — This paper deals with the construction of 
a class of binary uniquely decodable code pairs (Ci, Cz) 
for the two-user binary adder channel (2-BAC), where 
C\ is a linear code. The generator matrix G for code 
Ci has the property that any of its columns has at 
most a single 1 among its k elements. These codes 
are called strongly orthogonal codes in the sense that the 
Hadamard product of any two rows of G is the all- 
zero n-tuple. The proposed 2-BAC codes achieve the 
upper bound for the sum rate when the rate of Ci 
is greater than or equal to 1/2. Block and bit syn- 
chronization is assumed between the users and the 
receiver. 

I. INTRODUCTION 

A code pair {Ci,Ci) is called a linear code for the 2-BAC 
if either C\ or Ci is a linear code. Without loss of essential 
generality we shall assume henceforth that C\ is a linear code. 
Our goal is to start from Ci and to construct the largest code 

Ci such that (Ci,C2) is uniquely decodable in the 2-BAC. 
Due to the linearity of code C% we can conveniently make use 
of the standard array decomposition of the set of binary n- 
tuples into cosets of C\. The codewords of code C? will be 
chosen from the cosets of C\. We have shown [6] that the 
search of codewords for code C2 in one coset of Ci, say v®Ci, 
can be performed without interfering with future choices of 
potential, i.e., not yet chosen, codewords for C2 contained in 

other cosets. We denote by J4„®CI the set of vectors in the 
coset v@Ci which are codewords of C2. We have also shown 
in [6] that it is possible to simplify the search for codewords 
for C2, within a given coset, by decomposing it into disjoint 
subsets of n-tuples. The decomposition of a coset is neatly 
done with the use of a subspace of C\. In order to specify 
A-v^Ci it is convenient to partition u©Ci into disjoint subsets 
and we thus define the set 

II. CODE CONSTRUCTION 

Proposition 1: Let C\ be a binary linear code of blocklength 
n and dimension k, with generator matrix G.    Code G\ is 
strongly orthogonal if and only if each column of its generator 
matrix has at most a single 1 among its k elements. 

Without loss of essential generality in the sequel we con- 

sider a combinatorially equivalent form of G = [h ■ g], where 
Ik is the k x k identity matrix and g is a k x (n — k) matrix 
whose i* row p;,0 < i < k — 1, has a string of U consecu- 
tive l's and the remaining coordinates are filled with 0's. If 

we denote by h+i the number of all-zero columns of g it fol- 
lows that 2i=0 /; = n — k. The following theorem establishes 

the maximum rate ifo.max achievable for code C2 under the 
constraint that C\ is strongly orthogonal. 

Proposition 2: Let C\ be a strongly orthogonal code. The 

maximum rate i?2,max for a code C2 such that the pair 
(C\,Ci) is uniquely decodable in the 2-BAC is given by 

R3, max      — (2) 

where Nm is the number of distinct cosets whose leaders v 
have exactly m non-zero blocks out of the k blocks {^i}i. 
This number Nm is given by 

*- = £    E   •••       E      (2'4i-l)x(2'*-l)x...x(2'<~-l), 
il = l t2=il + l tm=«m-l+l 

(3) 
where U is the blocklength of Vi, 1 < i < fc + 1. 
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«S^eCi = {&3 S Ci; X3-(xi@y2) = 0, for somea:i € Ci} C d   m 

(1) 
where 3/2 G uffiCi. We do not need here to go further with r2i 
this theory but remark that the objective of our specific code 

construction in this paper is to guarantee that <S-u®Ci ls always 
a subspace (of dimension I < k) and notice that in general this [31 
is not case. We therefore introduce next a class of linear codes 
for the 2-BAC for which all cosets v&C\ give rise to sets Sv®Ci 
which are subspaces easily derivable from code C\. [4] 

By a strongly orthogonal code we mean a binary linear code 
Ci of blocklength n and dimension k, with generator matrix 
G whose rows a, i = l,2,...,k, have the property that 

[5] 
Ci-Ci = (0,0,...,0), 

Vi,j = l,2,...,fc, with i ± j. 

We define code the pairs (Ci, C2) for the 2-BAC as strongly 
orthogonal codes whenever C\ is a strongly orthogonal code. 
A strongly orthogonal code is characterized as follows. 

[6] 

REFERENCES 
E. J. Weldon, Jr., "Coding for a multiple-access channel", In- 
formation and Control, vol.36, pp.256-274, 1978. 

G.H. Khachatrian,"On the construction of codes for noiseless 
synchronized 2-user channel", Problems of Control and Infor- 
mation Theory, vol.11, No.4, pp.319-324, 1982. 

J.L. Massey, "On codes for the two-user binary adder channel", 
Information Theory Meeting, Oberwolfach, Germany, 8 April, 
1992. 

V.C. da Rocha, Jr. and J.L. Massey, "A new approach to the 
design of codes for the binary adder channel", in Cryptography 
and Coding III (Ed. M.J. Ganley), IMA Conf. Series, New Series 
No. 45. Oxford: Clarendon Press, 1993, pp.179-185. 

I.F. Blake, "Coding for adder channels", in Communications 
and Cryptography (Eds. R.E. Blahut, D.J. Costello, U. Maurer 
and T. Mittelholzer), Kluwer Academic Publishers, 1994, pp.49- 
58. 

H. A. Cabral, Coding for Synchronous Multiple Access Chan- 
nels, M.Sc. Thesis, Dept. of Electronics and Systems, Federal 
University of Pernambuco, Recife, Brasil, 1994. (in Portuguese) 

497 
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Abstract — Desmedt-Frankel (June 1991) presented 
an erasure code in which the entries of the codewords 
belong to any Abelian group. We extend this work to 

error-correction. 

I. INTRODUCTION 

In Reed-Solomon codes the entries of the generator and the 

parity check matrix, the message and the codeword vector all 

belong to a finite field. We discuss a generalization of Reed- 

Solomon in which the entries of the message tuple and the 
codeword tuple belong to any Abelian group K. The entries 
of the generator matrix G and the parity check matrix H are 
similar as in alternant codes but belong to a ring R such that 
K is an iJ-module.  Clearly R is not necessarily a field. 

II. BACKGROUND 

Let H be the Vandermonde matrix [i>h,i], where Vh,i = af, 
h = 0 ... ,n — k — 1, i = 0,... ,n — 1 and ai £ R. To guarantee 

a similar distance as for alternant codes each (n — k) x (n — k) 
submatrix should be invertable, which if R is commutative 

implies that for all »",»"' (i ^ i'): ai — a/,/ are units in R. The 

following R has, for example, been chosen [l]1: R = Z[u] = 
Z[x]/((x9 — l)/(x — 1)), where q is a prime larger than n — 1. 

Choosing ao = 0 and the other cti = ^!~0 u
3 satisfies the 

requirements. Now, K needs to be replaced by an expanded 
Abelian group K' = Z[u] ®z K, where ® indicates the ten- 
sor product of modules (no knowledge of tensor products of 
modules is required to understand the essence of this text). 

K' is a Z[a]-module. So the entries of c and u belong to K1. 
Clearly any k € K maps easily into a k' € K'. This code (to 

be more precise its dual) was studied in [1] (see also [3]) as an 

erasure code. The purpose of this paper is to study this code 
as an error-correcting code. 

III. DECODING 

Let K' be the Ä-module where R is a commutative ring. As 
for extended BCH codes, there exist the following equations 

between the syndromes: 

V 

ßj,v     =     /^A(5J + „_;      =     0,     where (1) 

(=o 
V 

A(x)    =    Ao+Aix + .-. + A^1'     =     J\[\-xah){2) 
i=i 

and j = 0, ...,n~l — k—v, ii is an error location (0 < ii < n—1), 
for all i and i   (i ^= i ):  o/,: — a;< is a unit and the syndrome 

'This research has been partially supported by NSF Grant 
NCR-9106327. 

1A similar ring was used later on in [2], but they worked modulo 
a prime p, while no limitation on K is set. here. 

Sj € K'. Since the syndromes no longer belong to a ring, the 
Peterson-Gorenstein-Zierler decoder cannot be used. Indeed 
on K' only an addition is defined and no internal multiplica- 

tion. This implies that the standard technique to prove that 
if (1) is satisfied, then there are at maximum v errors in the 

received word, can no longer be used. Fortunately, one can 

still prove (details skipped) that if v errors have occurred then 

for all v' < v some ßJiVi ^ 0 for 0 < j < v — v' — 1. Let us 

discuss decoding of this code in more details. 

The obvious decoder for alternant codes is the Berlekamp- 
Massey algorithm. However, the syndromes are no longer in 

a finite field, but in a module. So it seems that we need to ex- 
tend this algorithm. Extensions have been presented, e.g. [4]. 
Unfortunately it is not too difficult to prove that if one could 
extend Berlekamp-Massey's algorithm to our scenario, then 
discrete logarithm modulo p and factoring integers would be 
easy. (Both problems are assumed to be hard.) Let us explain 

this. Given any sequence (s0, «i, • • •, «n-i-fe) of elements of 
a finite field, Berlekamp-Massey finds the smallest v and A; 
such that (1) is satisfied. Now we allow any i?-module, and 
Si belong to the Ä-module and A, g R. Now take the Zp-i- 

module Zp(*), p a prime, and define the scalar operation a ■ x 
as i° mod j), where a £ Zp_i(+,*) and x € Z°(*). Take 

v — n — l — k = 1, then if Berlekamp-Massey could be extended 
to any module, it would find Ai, where — Ai is the discrete 
log of si in base so (if it exists), which is believed to be hard. 
Worse, replacing the ring Zv-\ by Z^m^ and the Abelian 

group Z°(*) by Z^i*) implies that if Berlekamp-Massey could 
be extended for this module, factoring also would be easy. 
This discussion easily extends to the expanded A"'. So under 

the assumption that discrete log is hard, Berlekamp-Massey 
cannot be extended to be used to decode this code. However, 

when v is small an exhaustive search will allow one to eas- 

ily find the error locations! So far, we have not been able to 
develop a decoder when v is large. 

We conclude by saying that Berlekamp and Massey were 

lucky that BCH codes were studied over finite fields. 
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Abstract — We describe here the one subclass of 
quasi-cyclic Goppa codes with Gopa polinomial G(x) = 

x*-l. 

I. INTRODUCTION 

It is well known that Goppa codes include as cyclic codes only 

BCH codes (with Goppa polinomial G(x) = x')[l] and double 
error-correcting cyclic codes (extended double error-correcting 
Goppa codes) [2]. Here we will discuss a subclass of binary 

Goppa codes with Goppa polinomial G(x) = xl — 1 and loca- 
tion set L = {a.j ■ a1' }, j = l..p, i = 0..t — 1, p < I, a— is a 
primitive element of GF(2m), I ■ t = 2m - 1 and G(aj) ^ 0. 

It is easy to show that such Goppa codes are quasi-cyclic. 

II. QUASI-CYCLIC GOPPA CODES 
In this paper,as an example, we would like to discuss some 
codes from special subclass of quasi-cyclic Goppa codes with 

following type of generator matrix: 

G = 

Cl.ll |Cl,2 

C2,l| |C2,2 

«1,11 |f 1,2 

«2,11 l«2,2 

Vq.l l«9,2| 

Cl,p-l| |0| 

|0| |c2,p 

"i,p-i| Kp 
"2,p-l| Kp 

Vq,p-1\ 

where \cij\- generator submatrix of cyclic code with lenght m 
and generator polinomial Cy(i), |0|- zero submatrix, \vij\ - 
all-zero or all-one vector. 
1. (55,16,19)-Goppa code [3,4]. G{x) = xg -a54 and location 
set L = {ctj ■ ai7}, j = 1..6, i = 0..8, 

2 
OJ1   = 

0, a 

G 

l,c«2 = 01,013 = 01",014 = a 

- is a primitive element of GJF(2
6
) 

0:5 = a , ae = a , 0:7 = 

|451| |231| |066| |563| |440| |000| |0| 
|462| |707| |275| |743| joooj |440| |0| 
JOOOJ |777| |000| |777| |000| |777| |0| 
|000| |777| |777| |777| |777| |000| joj 
|777| JOOOJ |000| |777J |7TT| joooj jo| 
J777J J777J J000| |TTT| joooj joooj |lj 

The generator polinomials are given here in octal, i.e. 
|0112518| coresponds to |00001001010101001| - generator 
submatrix of (17,8,6)-cyclic code with generator polinomial 
g(x) = (x8 + x4) ■ (x8 + xs + x4 + x3 + 1). 
^From this code it is easy to construct best known (102,16,40) 
quasi-cyclic code with generator matrix 

r    |342021|        |011251|        |331364|        |074202|        |143377|        |000000|    "I 
L   |332533|        |364213|        |016316|        |264774|        |000000|        |143377|    J 

This code improves the lower bounds on the maximum mini- 

mum distance for (102,16), (101,16), (100,16) and (99,16) bi- 
nary linear codes[6]. 
3.   (136,20,52)-Goppa code.  G(x) = x     — 1 and location set 

{ a; 
,t-15 a }, j = 1..8, i = 0..17, 

1 2 4 7 8 11 a\ = a ,a?2 = a ,«3 = a on = a ,0:5 = a ,ot§ = a ,aj = 
a13,a8 = a14, a— is a primitive element of GF(2S). From 
this code it is easy to construct (119,11,52) quasi-cyclic code. 
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where, for example, |451s | corresponds to [100101001] - gen- 
erator submatrix of (9,6,2)-cyclic code with generator poli- 
nomial g(x) = (x3 + 1) • (xs + 1). iFrom this code it 
is easy to construct two different (with different weight dis- 
tribution) (46,9,19) [5] quasi-cyclic codes ,(46,11,17)[5] and 
(28,9,10) quasi-cyclic code. 

2.   (103,20,35)-Goppa code.  G(x) = x 

set L = {a>j ■ ail5}, j = 1..7, i = 0..17, 
3529 

OL\ = öL ,OL2 = ct ,OIQ = a  014 = a , 0:5 = 

0, a— is a primitive element of GF(28) . 

|342021| 
|332533| 
|377777| 
|377777| 
jooooool 
|377777| 

10112511 
364213| 

|377777| 
10000001 
I377777J 
|377777| 

|331364| 
J016316J 
|000000| 
|377777| 
|377777| 
|377777| 

|074202| 
|264774| 
|377777| 
jooooooj 
jooooooj 
jooooooj 

|143377| 
jooooooj 
jooooool 
|377777| 
10000001 
jooooooj 

1 and location 

„10 „ a12, on = 

|000000| 
|143377| 
jooooool 
jooooool 
J377777J 
10000001 

|0| 
|0| 
|0| 
|0| 
|0| 
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Abstract - Linear codes with parameters [47, 5, 30; 3], 
[44, 6, 27; 3], [90, 6, 57; 3] and [94, 6, 60; 3] have been found. 

I. Introduction 

Let GF(q) denote the Galois field of q elements. A linear code 

of length n, dimension k, and minimum Hamming distance d, 

over GF(q) is called an [n, k, d; g]-code. Let nq(k, d) denote 
the minimum n for which an [n, k, d; q] code exists. 

For linear codes over GF(q) with q > 2, there is a natural 
generalization of the class of constacyclic codes to the class 
of cyclic codes [2]. A constacyclic (a - twisted) code has the 
following property: For some fixed element a of GF(q), if 

(a0,ai,... ,a„_i) is a codeword then (ao„-i, a0, ai,... ,o„_2) 
is a codeword too. The theory of constacyclic codes is very 
similar to that of cyclic codes. 

The algebra of twistulant m x m matrices over GF(q) is iso- 
morphic to the algebra of polynomials in the ring F[x]/(xm - 
a). The [pm,k]~ codes C with generator matrices of type: 

[-Si, -B2, •••, Bp\ where each 5; is a twistulant matrix are 
called quasi-twisted [4]. 

Let ci(x), C2(x),..., cp(x) be the polynomials corresponding to 
twistulant m x m matrices BltB2,..., Bp and h{x) = (xm - 
a)/gcd(xm - a, a(x), c2(x),..., cp(x)). Then the dimension k 
of C is equal to the degree of h(x). Two polynomials, Cj(x) 
and a(x), belong to the same class if c3{x) — axlct(x) mod 
(xm - a), for some integer, I > 0. Two twistulant matrices, 

Bt and Bj, are called conjugates if a(x) and CJ(X) belong to 
the same class. 

Good quasi-twisted codes are obtained if there are no conju- 
gates in the generator matrix. 

II. Results 

LEMMA   l.[3]    47  <  ra3(5,30)   <  48,  44  <  rc3(6,27)   <  45, 
89 < n3(6,57) < 91, 93 < n3(6,60) < 96 . 
THEOREM 1. 
(i) 89 < ra3(6,57) < 90; 

(ii) n3(5, 30) = 47, n3(6, 27) = 44, 93 < n3(6, 60) < 94 . 
Proof: 

(i) The [90, 5, 57; 3] codes were constructed as quasi-twisted 

with a rate 1/p and (m - 4)/pm. The generator polynomials 
are: 

110000, 000121, 000122, 001002, 001022, 001101, 001211, 010122, 

010212, 011011, 011021, 011112, 011122, 011212, 111111; 

1021210000, 1210111000, 2111211000, 2021101000,1202001100, 

1022111100, 1112221100, 1211012100, 1210201110. 

(ii) Codes with parameters [47, 5, 29; 3], [44, 6, 27; 3] are con- 

structed by the method from [1]. The generator matrices are: 

Gl 

/ 000000000000000001111111111111 mm] 1111111111 \ 

00000001111111111000000000011111111112222222222 

00111110000011112001111222200001112220000111222 

11000111112200221110012001201120120011112001002 

\ 01012010121201010010122122110102001210120020122/ 

G2 = 

/ oooooooooooooommmimm 1111111111m i\ 

00000111111111000000000111111111111222222222 

00111001122222011112222001111122222011112222 

00012120101122201220112120112201122101220112 

01002202110102020021022121020120102012022011 

\ 10010100011220000212102201021221001112100212/ 

The weight distributions are: 

[47, 5, 30; 3]   -     A0 = 1, A30 = 166, A33 

A3g = 8, Al2 = 2, 

[44, 6, 27; 3] -   A0 = 1,A27 = 352, A30 = 264, A33 

46,   ^36 

24, A36 

20, 

A [94, 6, 60; 3]-code was also constructed by the method from 
[1], and has a weght distribution A0 = 1,A60 = 456, A63 = 
76,^69 = 192,^72 =4. 
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